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Abstract

Mediation analysis is a widely used statistical approach to estimate the causal pathways
through which an exposure affects an outcome via intermediate variables, i.e., mediators. In
many applications, high-dimensional correlated biomarkers are potential mediators, posing
challenges to standard mediation analysis approaches. However, some of these biomarkers,
such as neuroimaging measures across brain regions, often exhibit hierarchical network
structures that can be leveraged to advance mediation analysis. In this paper, we aim
to study how brain cortical thickness, characterized by a star-shaped hierarchical network
structure, mediates the effect of maternal smoking on children’s cognitive abilities within
the adolescent brain cognitive development (ABCD) study. We propose a network-assisted
mediation analysis approach based on a conditional Gaussian graphical model to account
for the star-shaped network structure of neuroimaging mediators. Within our framework,
the joint indirect effect of these mediators is decomposed into the indirect effect through hub
mediators and the indirect effects solely through each leaf mediator. This decomposition
provides mediator-specific insights and informs efficient intervention designs. Additionally,
after accounting for hub mediators, the indirect effects solely through each leaf mediator
can be identified and evaluated individually, thereby addressing the challenges of high-
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dimensional correlated mediators. In our study, our proposed approach identifies a brain
region as a significant leaf mediator, a finding that existing approaches cannot discover.

Keywords: pathway analysis; mediation analysis; brain imaging; mental health; RDoC;
ABCD study

1. Introduction

Mediation analysis has been widely applied in biomedical research and social sciences to
study the causal pathways through which an exposure affects an outcome via intermediate
variables, i.e., mediators. Standard mediation analysis with a single mediator or multiple
low-dimensional mediators jointly has been well established (Baron and Kenny, 1986; Robins
and Greenland, 1992; Pearl, 2014; VanderWeele, 2015). Let A,M,Y , and C denote the
exposure, mediator(s), outcome, and confounder(s), respectively. Under the counterfactual
framework, let Ya and Ma represent the counterfactual values of Y and M , respectively,
that would have been observed had A been set to a. Let YaMa∗

denote the counterfactual
value of Y that would have been observed had A been set to a and M been set to the
counterfactual value Ma∗ . Then, the total effect (TE) of the exposure on the outcome can
be defined and decomposed by TE = E[Ya−Ya∗] = NIE+NDE, as shown in Figure 1(a), where
NIE = E[YaMa − YaMa∗

] represents the natural indirect effect, NDE = E[YaMa∗
− Ya∗Ma∗

] is
the natural direct effect, and a∗ and a are two reference values of A measuring the change
in the exposure. Conceptually, the NIE quantifies the effect of A on Y that operates
through M , whereas the NDE is the effect of A on Y independent of M . The following
assumptions are required to identify the NIE and NDE: (i) no unmeasured exposure-outcome
confounding, i.e., Yam ⊥⊥ A∣C; (ii) no unmeasured mediator-outcome confounding, i.e., Yam ⊥
⊥M ∣{A,C}; (iii) no unmeasured exposure-mediator confounding, i.e., Ma ⊥⊥ A∣C; (iv) cross-
world independence between counterfactual outcomes and mediators, i.e., Yam ⊥⊥Ma∗ ∣C. If
the assumptions are satisfied, the NIE and NDE can be identified by the following empirical
expressions:

NIE = ∑
c,m

E[Y ∣C = c,A = a,M =m]{P (M =m∣C = c,A = a)−
P (M =m∣C = c,A = a∗)}P (C = c),

NDE = ∑
c,m

{E[Y ∣C = c,A = a,M =m]−
E[Y ∣C = c,A = a∗,M =m]}P (M =m∣C = c,A = a∗)P (C = c).

Numerous approaches have been developed to estimate the NIE and NDE. Among these,
the regression-based approach (VanderWeele and Vansteelandt, 2014) is commonly used. In
this approach, the conditional expectations and probabilities in the above expressions are
approximated using corresponding regression models based on the variable’s distribution,
such as linear regression for continuous variables or logistic regression for binary variables.

In many applications, potential mediators are high-dimensional correlated neuroimaging
measures across brain regions (Caffo et al., 2008; Wager et al., 2009; Lindquist, 2012; Chén
et al., 2018; Geuter et al., 2020; Zhao et al., 2021). Understanding the role of neuroimaging
measures is essential in mental health research to probe the pathology of mental disorders
and develop new treatment strategies. This objective is promoted by the Research Domain
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(a) (b)

Figure 1: (a): Causal diagram with a single mediator M (NDE in red and NIE in blue).
(b): Causal diagram with two causally dependent mediators H and L (NDE in
red, NIEH in orange and NIEL in blue).

Criteria (RDoC) framework (Cuthbert and Insel, 2013), initiated by the National Institute
of Mental Health (NIMH). The RDoC framework advocates for the integration of measures
from various behavioral and biological domains to achieve a comprehensive understanding of
the constructs and mechanisms underlying mental disorders. For example, intergenerational
psychiatry studies the transmission pathways of vulnerability and resilience to mental illness
from one generation to the next through potential biomarkers such as the children’s brain
development (Sawyer et al., 2019). Under the RDoC paradigm, we aim to contribute to
the adolescent brain cognitive development (ABCD) study (Karcher and Barch, 2021), the
largest population-based mental health study of brain development among U.S. adolescents.
Specifically, our study seeks to investigate the effect of maternal smoking on children’s cog-
nitive abilities mediated through the development of cortical thickness across brain regions
during adolescence, an area that remains unresolved in intergenerational psychiatry.

Several methods have been developed for high-dimensional mediators (Zhang et al.,
2016; Huang and Pan, 2016; Chén et al., 2018; Huang, 2019; Zhao et al., 2020; Zhao and
Luo, 2022). However, these methods mainly focus on hypothesis testing with adjustment
for multiple comparisons or using dimension reduction techniques to combine mediators.
Therefore, none of these methods can provide mediator-specific effects except when media-
tors are causally independent, an uncommon scenario for neuroimaging measures. To better
understand how neuroimaging mediators contribute to underlying causal mechanisms and
inform more efficient intervention strategies, it is crucial to identify significant mediating
pathways involving specific brain regions through mediator-specific NIEs.

To evaluate mediator-specific NIEs, standard mediation analysis approaches can be ap-
plied separately for each mediator when mediators are causally independent. However, when
mediators are causally dependent, some decomposition is necessary to obtain mediator-
specific NIEs. Avin et al. (2005) and Miles et al. (2020) have showed that under several
additional identifiability assumptions, the NIE of two causally dependent mediators H and
L can be decomposed into the NIE operating solely through H or through both H and L
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(NIEH), and the NIE operating solely through L (NIEL), as shown in Figure 1(b). With
more identifiability assumptions, finer decomposition is possible. Daniel et al. (2015) pro-
poses further decomposing NIEH into the NIE solely through H and the NIE through both
H and L. However, this decomposition requires an inestimable distribution parameter,
which must be varied during sensitivity analyses to estimate multiple versions of the NIEs.
Consequently, estimating mediator-specific NIEs for more than two causally dependent me-
diators is impractical, as the number of identifiability assumptions and inestimable distri-
bution parameters required increases exponentially with the number of mediators (Daniel
et al., 2015). Thus, the high-dimensionality and dependence among neuroimaging me-
diators pose substantial analytical challenges to current methodologies, necessitating the
development of new approaches.

Fortunately, neuroimaging measures typically exhibit hierarchical network structures,
such as star-shaped small-world structures, providing an opportunity to develop new ap-
proaches for estimating mediator-specific NIEs of neuroimaging mediators. A small-world
topology is characterized by dense local clustering, short distances between nodes, and a
limited number of long-range connections. Star-shaped network structures represent a spe-
cial case of the small-world topology and consist of nodes with high centrality, known as
hubs, which are directly connected to leaf clusters that are disconnected from each other,
as illustrated in Figure 2(a). With hub regions acting as central communication hubs, these
structures facilitate efficient transmission of information across distributed brain regions.
These structures have been revealed by many brain imaging techniques, including structural
magnetic resonance imaging (sMRI), functional MRI (fMRI), and diffusion tensor imaging
(DTI) (He et al., 2007; Bullmore and Sporns, 2009; Harriger et al., 2012; Gollo et al., 2015;
Fornito et al., 2016).

Motivated by the star-shaped network structures observed in neuroimaging measures,
we propose a hybrid approach that leverages these network structures to obtain mediator-
specific NIEs of neuroimaging mediators. In the first step, we estimate the star-shaped
network of neuroimaging mediators using a conditional Gaussian graphical model frame-
work. Both the mean of the mediators and their partial correlations, i.e., the precision
matrix, are adjusted for the exposure and confounders to facilitate subsequent mediation
analysis. To achieve this, our approach integrates domain-specific knowledge, including in-
sights from neuroscience regarding brain network structures, with data-driven techniques.
Domain knowledge is essential to determine whether the neuroimaging measures biologically
exhibit a star-shaped network structure. During network estimation, we assume sparsity in
line with the modularity and the small-world structures of brain networks. Once the net-
work is obtained, hub and leaf mediators can be identified using centrality measures. In the
second step, we perform mediation analysis to decompose the joint NIE of the neuroimaging
mediators into the NIE through hub mediators, i.e., NIEH , and the NIEs solely through
each leaf mediator, i.e., NIELs. Here, a leaf mediator may consist of a single mediator or a
cluster of mediators. One advantage of this decomposition is that it helps identify leaf medi-
ators whose effects cannot be controlled by hub mediators and informs efficient intervention
designs. Additionally, after accounting for hub mediators, the NIEs solely through each leaf
mediator can be identified and evaluated individually. Thus, our approach addresses the
challenges posed by the dependence among these high-dimensional mediators and makes
the estimation of mediator-specific NIEs feasible.
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The rest of this paper is organized as follows. Section 2 presents our approach for
constructing the network structure of neuroimaging mediators and performing mediation
analysis. In Section 3, we conduct simulation studies to evaluate the effectiveness of our
proposed approach. In Section 4, we illustrate our proposed approach by applying it to the
ABCD study. Lastly, Section 5 provides discussions and future directions.

Generalizable Insights about Machine Learning in the Context of Healthcare

This paper makes two significant contributions to machine learning and healthcare, partic-
ularly in the context of mediation analysis and neuroimaging studies. First, we propose a
network-assisted mediation analysis approach that provides a novel framework for analyzing
high-dimensional neuroimaging mediators which exhibit a star-shaped network structure.
By incorporating the star-shaped network structure of neuroimaging mediators into medi-
ation analysis, our approach can estimate mediator-specific indirect effects, which current
methodologies are unable to achieve. Second, we apply our approach to the adolescent brain
cognitive development (ABCD) study (Karcher and Barch, 2021), the largest population-
based mental health study of brain development among U.S. adolescents. Our analysis
shows that the effect of maternal smoking on children’s cognitive abilities is mediated by
changes in their cortical thickness across multiple brain regions during adolescence. These
findings offer valuable insights into intergenerational psychiatry and demonstrate the practi-
cal utility of our approach in discovering significant mediating pathways with neuroimaging
mediators.

2. Methods

2.1. Construction of the network

In the first step, we estimate the network structure of neuroimaging mediators across brain
regions. To do this, likelihood-based methods are typically used under a Gaussian graph-
ical model framework (Yuan and Lin, 2007). To adjust for the exposure and confounders
while estimating the network structure of neuroimaging mediators, we adapt a conditional
Gaussian graphical model (Xie et al., 2020). Subsequently, hub and leaf mediators can be
identified from the network using Kleinberg’s hub centrality scores (Kleinberg, 1999).

Let Xi = (xi1, ..., xiq)T denote a q-dimensional vector of covariates including the expo-
sure Ai and confounders Ci, and let Mi = (Mi1, ...,Mip)T denote a p-dimensional vector of
neuroimaging mediators, for individual i = 1, ..., n. The mediators are assumed to follow a
multivariate Gaussian distribution with both mean and precision matrix depending on Xi

as

P (Mi∣Xi)∝ exp(κT
i Mi −

1

2
MT

i ΩiMi), (1)

where κi = (ζT1 Xi, ...,ζ
T
p Xi)T , and ζj is the q-dimensional coefficient vector of the covariates

on the mean of mediator j, j = 1, ..., p; Ωi is the p×p precision matrix of Mi with the (j, k)th
element Ωi(j, k) = Ωi(k, j) = ωT

jkXi for j ≠ k and the jth diagonal element Ωi(j, j) = 1
σ2
j
,

and ωjk is the q-dimensional coefficient vector of the covariates on Ωi(j, k).
The covariate-adjusted precision matrix Ωi characterizes the network of neuroimaging

mediators by capturing the partial correlations between mediators, after adjusting for the
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exposure and confounders. We assume that individuals share a common network structure.
If the Euclidean norm of ωjk, i.e., ∥ωjk∥2, is non-zero, an edge exists between mediators
j and k in the network. Conversely, a zero norm indicates no edge, implying conditional
independence between mediators j and k, given other mediators, the exposure, and con-
founders. Additionally, our model allows edge strength, i.e., Ωi(j, k), to vary based on
individual-specific covariates, and ωjk represents the effects of each covariate on the strength
of the edge between mediators j and k. Thus, our approach enables identifying a common
network structure underlying the population, while accommodating individual variations in
the magnitude of partial correlations between mediators.

Regularization is crucial to achieve both sparsity and stability in high-dimensional net-
works. Since neuroimaging measures are highly correlated, where the L1 regularization
tends to be unstable, the L2 regularization is applied instead. We employ the pseudo-
likelihood (Besag, 1975) instead of the joint likelihood to simplify computational complex-
ity while still obtaining consistent parameter estimates. Thus, parameters ζ = {ζj}pj=1,
ω = {ωjk}pj,k=1;j≠k and σ = {σj}pj=1 are estimated by minimizing the following objective
function,

− 1
n
logLn(ζ,ω,σ) + λ

⎛
⎝

p

∑
j=1

ζTj ζj +
p

∑
k≠j

ωT
jkωjk

⎞
⎠
,

where Ln(ζ,ω,σ) =∏n
i=1∏

p
j=1 P (Mij ∣Mi,/j ,Xi) is the pseudo-likelihood, Mi,/j is the vector

of mediators excluding mediator j for individual i, and λ is a tuning parameter for the L2

regularization (see Appendix A.1 for details). Based on the modularity and the small-world
structures of brain networks, the connections between brain regions are expected to be
sparse. To introduce sparsity in the estimated network, we apply hard thresholding by
removing edges with the norm ∥ωjk∥2 smaller than a predefined threshold (e.g., c log(qp(p+
1)/2)/√n; Bühlmann and Van De Geer, 2011).

The extended Bayesian information criteria (EBIC) (Chen and Chen, 2008; Haslbeck
and Waldorp, 2020) is commonly used for model selection in Gaussian graphical models.
We select λ and c using an EBIC adapted for our conditional Gaussian graphical model.
By maximizing the pseudo-likelihood, our model aligns with neighborhood-selection-based
methods for graphical models (Meinshausen and Bühlmann, 2006; Peng et al., 2009). Con-
sequently, the estimation of our model can be regarded as performing ridge regression for
each mediator on covariates, as well as on the product of each covariate with each other
mediator. Thus, the EBIC is adapted as

EBIC = −2 logLn(ζ,ω,σ) +Eq log(n) + 2γEq log(
p

∑
j=1

dj),

where E is the number of non-zero edges; γ ∈ [0,1] is a hyperparameter; and dj = tr(Zj(ZT
j Zj+

λI)−1ZT
j ) is the degrees of freedom of the ridge regression for mediator j, where Zj is the

n× (q+ q(p−1)) design matrix with columns {Xs,Xs⊙Mk}q,ps,k=1;k≠j , Xs = (x1s, ..., xns)T is
the vector of covariate s for all individuals, Xs ⊙Mk is the Hadamard product of Xs and
Mk, and Mk = (M1k, ...,Mnk)T is the vector of mediator k for all individuals.

To address uncertainty in network estimation, we can apply bootstrap methods to iden-
tify edges that appear in more than a threshold percentage (e.g., 80%) of networks estimated
from the bootstrapped samples.
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2.2. Orientations of edges in an undirected star-shaped network

The methods in Section 2.1 construct an undirected network of neuroimaging mediators.
To proceed with mediation analysis, it is necessary to derive a directed acyclic graph (DAG)
among mediators. Domain knowledge plays a crucial role in this process. In this section, we
show that even without such domain knowledge, we can still assume a DAG with all edges
directed from hub mediators to leaf mediators, and there will be at most one mis-oriented
edge, i.e., there is at most one leaf mediator preceding hub mediators.

Representing the relationships among variables as a DAG generally requires several
conditions (Shalizi, 2013), particularly when domain knowledge of the DAG is lacking: (i)
there exists a DAG representing the relationships among variables; (ii) the causal Markov
condition: the joint distribution of the variables obeys the Markov property on the DAG;
(iii) faithfulness: the joint distribution reflects all and only those conditional independence
relations implied by the causal Markov condition. Based on these conditions, we can assume
a DAG among mediators from the network obtained by our conditional Gaussian graphical
model in Section 2.1. Specifically, this network has the following two properties:

Property 1 (Pairwise Markov Property) This network is a conditional independence graph
G = (V,E) with vertices V = {Mj}pj=1 and edges E such that

(j, k) ∉ E⇔Mj ⊥⊥Mk∣A,C,MV /{j,k}.

Property 2 For this network, a star-shaped structure ensures conditional independence
between two leaf mediators Lj and Lk,

(j, k) ∉ E⇔ Lj ⊥⊥ Lk∣A,C,H.

Based on these two properties, the following lemma can be stated:

Lemma 1 In a DAG inferred from the star-shaped network obtained by our conditional
Gaussian graphical model in Section 2.1, there can be at most one edge directed from leaf
mediators to hub mediators.
Proof Consider two leaf mediators Lj and Lk connected by the path Lj −H − Lk. If the
directions on this path are Lj →H ← Lk, then H is a collider for Lj and Lk. Since H is a
collider, conditioning on H prevents Lj and Lk from being independent, which contradicts
Property 2. This contradiction implies that there can be at most one edge directed from leaf
mediators to hub mediators. Thus, the directions of all but one of the edges between hub
mediators and leaf mediators are identified, as illustrated in Figure 2(b).

Remark: When there are multiple hub mediators that are pairwise correlated, lemma 1 still
hold.

With conditions (i)-(iii) and Lemma 1, we can assume a DAG among mediators where
all edges are directed from hub mediators to leaf mediators, with at most one mis-oriented
edge.
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(a) (b)

Figure 2: (a): An undirected star-shaped network of mediators.
(b): By Lemma 1, there is at most one edge with an unknown direction between
hub mediators and leaf mediators.

2.3. Network-assisted mediation analysis

In the second step, we conduct mediation analysis based on the star-shaped network of
the mediators identified in Section 2.1. With the star-shaped network, we differentiate
mediators into three categories: (i) independent mediators that are not connected with
any other mediators in the network, (ii) hub mediators, and (iii) leaf mediators that are
connected only to hub mediators. Here, a leaf mediator may consist of a single mediator or
a cluster of mediators. Based on these categories, we will decompose the joint NIE of these
mediators into: the NIEs of each independent mediator, the NIE through hub mediators,
i.e., NIEH , and the NIEs solely through each leaf mediator, i.e., NIELs. We choose this
decomposition for two reasons. First, this is the finest achievable decomposition without
replying on inestimable distribution parameters (Avin et al., 2005; Miles et al., 2020; Daniel
et al., 2015). Second, this decomposition is sufficient to inform efficient intervention designs.
Conceptually, the NIEH represents a system-wide effect due to the connections between hub
mediators and leaf mediators. Interventions targeting hub regions can effectively control for
this effect. In contrast, the NIEL is the specific effect of a leaf mediator which cannot be
controlled by intervening on hub regions. To control for this effect, the intervention must
be specifically aimed at this leaf mediator.

Standard mediation analysis approaches for a single mediator or multiple mediators
jointly can be applied to estimate NIEH and the NIEs of each independent mediator. In this
section, we focus on the estimation of the NIELs of each leaf mediator. LetH denote the hub
mediator(s), and Ha denote the counterfactual value of H that would have been observed
had A been set to a. Let L denote a leaf mediator, and LaHa∗

denote the counterfactual
value of L that would have been observed had A been set to a and H been set to the
counterfactual value Ha∗ . Let YaHa∗LaHa∗

denote the counterfactual value of Y that would
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have been observed had A been set to a, H been set to the counterfactual value Ha∗ , and
L been set to the counterfactual value LaHa∗

. Then, the NIEL of a leaf mediator can be
defined as

NIEL = E[YaHa∗LaHa∗
− YaHa∗La∗Ha∗

].

Under the following assumptions:
(i) No unmeasured exposure-outcome, mediator-outcome, exposure-mediator or hub-leaf
confounding:

Yahl ⊥⊥ A∣C, Yahl ⊥⊥ (H,L)∣{A,C}, (Ha, Lah) ⊥⊥ A∣C, Lah ⊥⊥ (A,H)∣C,

(ii) Cross-world independence between counterfactual outcomes, hub mediators and leaf
mediators:

Yahl ⊥⊥ (Ha∗ , La∗)∣C, Yahl ⊥⊥ (Ha∗ , Lah)∣C, Lah ⊥⊥Ha∗ ∣C,

(iii) Conditional independence of each pair of leaf mediators L and L′ given the exposure,
hub mediators and confounders:

L ⊥⊥ L′∣{A,H,C},

the NIEL of each leaf mediator can be identified and estimated individually by the
following empirical expression:

NIEL = ∑
c,h,l

E[Y ∣c, a, h, l]{P (l∣c, a, h) − P (l∣c, a∗, h)}P (h∣c, a∗)P (c). (2)

Assumptions (i) and (ii) have been proved by Avin et al. (2005) and are met in the
causal diagram shown in Figure 1(b). Assumption (iii) is necessary to enable the separate
identification of the NIELs of each leaf mediator, and is satisfied with the star-shaped net-
work structure of the mediators. The conditional expectations and probabilities in equation
(2) can be approximated using appropriate regression models. The point estimate of each
NIEL can be obtained through Monte-Carlo simulations with these regression models using
equation (2), and bootstrap methods can be used to make inferences.

Continuing from Section 2.2, note that mis-orienting one edge between hub mediators
and a leaf mediator will not affect the estimation of the NIELs of other leaf mediators.
This can be easily seen from equation (2) and is demonstrated through simulation studies
in Section 3. Thus, the NIELs of all but one leaf mediator are guaranteed to be unbiasedly
estimated given the identifiability assumptions hold. However, it may bias the estimation
of the NIEH due to unadjusted confounding from the leaf mediator causing hub mediators.
Since our primary interest is in NIEL rather than NIEH , this issue can be addressed by
conducting sensitivity analyses for unmeasured confounding in the NIEH estimate, such as
using the E-Value approach (VanderWeele and Ding, 2017).

3. Simulation Studies

In this section, we conduct simulation studies under two scenarios to demonstrate the
unbiasedness of our approach proposed in Section 2 for estimating the NIEL, and to highlight
the advantages and importance of using the network to detect mediator-specific effects of
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neuroimaging mediators. In each scenario, 500 datasets are simulated with various sample
sizes, including n = 1000,5000,10000. Each dataset is simulated with a continuous outcome
Y , a binary exposure A, a continuous hub mediator H, two continuous leaf mediators L1

and L2, and a continuous confounder C, for simplicity. Random errors for each continuous
variable are generated from the standard normal distribution N(0,1). The two reference
values of A are a∗ = 0 and a = 1.

3.1. Scenario 1

In Scenario 1, our proposed approach is compared with the standard mediation analysis
approach for a single mediator (VanderWeele, 2015) in estimating the NIEL. This scenario
highlights the importance of accounting for the hierarchical structure between hub and
leaf mediators when estimating the NIEL. Under this scenario, the relevant counterfactual
values of H, L1, L2 and Y for each individual i, i.e., Ha∗,i, Ha,i, L1a∗Ha∗ ,i, L1aHa∗ ,i, L1aHa,i,
L2a∗Ha∗ ,i, L2aHa∗ ,i, L2aHa,i, YaHa∗La∗Ha∗

,i, YaHa∗LaHa∗
,i, Ya∗,i and Ya,i, are simulated under

the following true models:

C ∼ N(0,1),
logit{P (A = 1∣C)} = −1 +C,
E[H ∣A,C] = 2 + 0.5A +C,

E[L1∣A,H,C] = 2 + 2A + β1H +C, E[L2∣A,H,C] = 2 + 2A + β2H +C,
E[Y ∣A,H,L1, L2,C] = 2 +A +H + 0.5L1 + 0.5L2 +C,

where β1 and β2 vary within the intervals [0,1] and [−1,0], respectively, with an increment
of 0.2. The causal diagram under Scenario 1 is illustrated in Figure 3(a). Based on the
counterfactual values and the actual exposure for each individual, the corresponding ob-
served values for H, L1, L2, and Y are obtained. For example, for individual i with Ai = a,
the observed values are Hi = Ha,i, L1i = L1aHa,i, L2i = L2aHa,i, and Yi = Ya,i. According to
the true models, the true NIEL of each L1 and L2 is 1.

For each dataset simulated under Scenario 1, both our proposed approach and the
standard mediation analysis approach for a single mediator are used to estimate the NIELs
of each L1 and L2. Since L1 and L2 are causally independent, we fit mediation models for
each of them individually. When estimating the NIELs of each L1 and L2 using the standard
mediation analysis approach, H is not included as a mediator-outcome confounder, since this
approach incorporates no information from the network. The estimated NIELs are shown
in Figure 3(c). As shown in this figure, our proposed approach is consistently unbiased in
estimating the NIELs of each L1 and L2, while the standard mediation analysis approach
is generally biased, except when β1 = β2 = 0, i.e., L1 and L2 are not affected by H. This
is because H is an unadjusted mediator-outcome confounder, violating the identifiability
assumption of the standard mediation analysis approach. As expected, the bias increases
as the absolute values of β1 and β2 increase, indicating a higher dependence between H and
each of L1 and L2.
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(a) (b)

(c)

(d)

Figure 3: (a): The causal diagram under Scenario 1.
(b): The causal diagram under Scenario 2.
(c): The NIELs of each L1 (hollow) and L2 (solid) estimated from our proposed
approach (red) and the standard mediation analysis approach (blue) with varying
β1 ∈ [0,1] and β2 ∈ [−1,0] under Scenario 1.
(d): The NIEL of L2 estimated from our proposed approach with varying β ∈
[−1,1] under Scenario 2.
The true NIEL is the reference line colored in brown.
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3.2. Scenario 2

Scenario 2 shows that our proposed approach remains unbiased in estimating the NIEL

of a leaf mediator even when the edge from hub mediators to another leaf mediator is
mis-oriented, i.e., there is another leaf mediator preceding the hub mediators in the causal
diagram. We consider the causal diagram shown in Figure 3(b), in which the causal order
of H, L1 and L2 is L1 → H → L2. Under this scenario, the counterfactual values of H, L1,
L2 and Y for each individual i are simulated under the following true models:

C ∼ N(0,1),
logit{P (A = 1∣C)} = −1 +C,
E[L1∣A,C] = 2 + 2A +C,

E[H ∣A,L1,C] = 2 + 0.5A + βL1 +C,
E[L2∣A,H,C] = 2 + 2A + 0.5H +C,

E[Y ∣A,H,L1, L2,C] = 2 +A +H + 0.5L1 + 0.5L2 +C,

where β controls the causal dependence between H and L1. According to the true models,
the true NIEL of L2 is 1.

The NIEL of L2 is estimated using our proposed approach for each simulated dataset,
illustrated in Figure 3(d). We see that NIEL of L2 estimated from our proposed approach
is unbiased regardless of β. Thus, the NIEL of L2 estimated from our proposed approach
is not affected by the causal order between the hub mediators and other leaf mediators. As
expected, the variances of all estimates in both scenarios decrease with increasing sample
sizes.

4. Application to the ABCD Study

In the ABCD study, our primary aim is to investigate how the effect of maternal smoking–
both before and during pregnancy–on children’s cognitive abilities is mediated by the devel-
opment of brain cortical thickness during adolescence. The dataset for this analysis includes
n = 9,029 adolescents. The exposure of interest is maternal smoking (whether the mother
smoked before or during pregnancy). The outcome is the number of correct trials in the
children’s emotional n-back test, an emotional regulation task designed to assess the inter-
ference effect of emotional processing on working memory and cognitive function (Miller
et al., 2009). The candidate mediators are whole-brain structural MRI measures of cortical
thickness across 148 brain regions of interest (ROI) in both hemispheres, as defined by the
Destriuex atlas (Destrieux et al., 2010). The T1-weighted images were preprocessed using
the FreeSurfer 5.1 pipeline (Fischl et al., 1999). In this analysis, confounders include age
(the child’s age in month), gender (the child’s gender, male or female), parental education
(whether or not a parent attended college), and race (the child’s race, categorized as black,
white, or other). Study sites are modeled as random effects.

First, we remove the effects of study sites on the cortical thickness measures by the
NeuroCombat package in R (Fortin et al., 2018). Then, we fit the conditional Gaussian
graphical model proposed in Section 2.1 to obtain the network of these measures. Using the
EBIC criterion with γ = 1, we identify 101 independent brain regions, while the remaining
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Figure 4: Identified network of brain cortical thickness from the ABCD study.

47 regions are clustered into a network. Based on Kleinberg’s hub centrality scores > 0.9,
we identify 4 regions as hubs, as shown in Figure 4. The network structure consists of a
star-shaped network with 17 leaf regions and a subnetwork with 26 regions. Figure 4 shows
the 4 hub regions and connected leaf regions. Our subsequent analysis focuses on this star-
shaped network. Abbreviations, full names, and lobes of all brain regions mentioned in this
section are provided in Appendix A.2.

The identified hub regions include the left short insular gyri (lG insular short), right
short insular gyri (lG insular short), left central sulcus (lS central), and right central sulcus
(rS central). Anatomically, the central sulcus is a key ROI that separates the parietal
lobe from the frontal lobe and distinguishes the primary motor cortex from the primary
somatosensory cortex. The short insular gyri, located in the anterior insula, are part of the
salience network and are involved in several functions, including pain perception, emotional
regulation, cravings (potentially related to conscious urges to use drugs), and addiction.
Importantly, our identified hub regions align with existing literature, which consistently
recognizes parietal, frontal, and insular regions as hubs in brain networks across various
cortical parcellations (Van den Heuvel and Sporns, 2013); for example, the insular cortex
has been identified as a neural source or net emitter, highlighting its role in coordinating
complex brain functions.

13
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Before proceeding to mediation analysis, we examine the coefficients of each covariate
on the strength of edges, i.e., wjk, in the identified network shown in Figure 4. Each coeffi-
cient reflects the effect of the corresponding covariate on the partial correlation between the
corresponding pair of brain regions, given the covariates and other regions. The magnitude
of these coefficients is small, indicating that the edge strength does not vary substantially
with these covariates. For example, the mean absolute coefficient of the exposure across
edges is 5.59×10−4 (SD 5.39×10−4, 1st quartile 1.44×10−4, and 3rd quartile 8.02×10−4). Al-
though the magnitude of the covariate effect is small, the direction of these effects varies
across edges. Table 1 presents the coefficients of each covariate on the strength of edges
with the strongest exposure effect (> 1 SD from the mean). As shown in Table 1, maternal
smoking is negatively associated with the partial correlations between some regions, indi-
cating an attenuated effect, while for others, the effect is positive. These findings suggest
a complex pattern of how maternal smoking and other covariates are associated with brain
connections.

Table 1: Coefficients (×10−3) of each covariate on the strength of edges with the strongest
exposure effect

Region 1 Region 2 Maternal Race Race Sex Age Parental
Smoking (Black) (White) (Female) Education
(Yes) (Yes)

lG insular short rG oc.temp med.Parahip -2.10 -2.13 -0.01 8.96 -0.93 0.11

lG insular short lG oc.temp med.Parahip -2.01 -3.69 1.90 6.49 -1.19 0.64

lG insular short rS precentral.sup.part -1.85 3.23 -1.37 0.25 6.27 1.05

rG insular short lG oc.temp med.Parahip -1.65 -4.46 2.99 6.45 0.39 1.21

rG insular short rS circular insula ant -1.25 -3.68 2.14 -0.56 -2.41 0.99

rG insular short rS orbital lateral 1.23 -0.10 0.08 -0.87 0.041 0.67

rS central lG oc.temp med.Parahip 1.17 3.44 -2.71 3.78 -0.05 -0.58

Following the instructions from Section 2.2, we assume that the directions of edges in
the network are from hub mediators to leaf mediators. In the second step, we conducted
network-assisted mediation analysis. A generalized linear mixed model with a binomial dis-
tribution is used for the outcome, which is modeled as a binary variable where 1 represents
a correct response in the emotional n-back test and 0 represents an incorrect response. A
linear mixed model is applied to each mediator. In all models, study sites are adjusted for as
random intercepts. All effects are reported on the odds ratio (OR) scale. The total effect of
maternal smoking on children’s emotional n-back accuracy is quantified as an OR of 0.933
(95% CI: [0.892, 0.983]), indicating maternal smoking significantly reduces a child’s odds of
giving a correct response in the emotional n-back test by 7% (95% CI: [2%, 11%]). The esti-
mated indirect effects are shown in Table 2. The indirect effect though hub regions is 0.996
(95% CI: [0.993, 0.998]), which corresponds to a reduction of a child’s odds of giving a cor-
rect response by 0.4% (95% CI: [0.2%, 0.7%]). The proportion of the total effect mediated
(PM) by hub regions is 4.49% (95% CI: [1.56%, 16.74%]). After accounting for hub regions,
the indirect effect solely through the leaf region, left inferior frontal sulcus (lS front inf), is
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significant at 0.998 (95% CI: [0.996, 0.999]), with a PM of 1.53% (95% CI: [0.85%, 10.04%]).
This finding suggests that maternal smoking reduces a child’s odds of giving a correct re-
sponse by 0.2% (95% CI: [0.1%, 0.4%]) solely though changing the thickness of the left
inferior frontal sulcus. Additionally, we identify two significant independent regions that
are not connected with any other regions in the network: left and right inferior segments
of the circular sulcus of the insular (lS circular insula inf and rS circular insula inf). Their
indirect effect increases a child’s odds of giving a correct response by 0.2% [0.1%, 0.5%].
This effect opposes the direction of the total effect, highlighting the complexity of the me-
diating role of brain cortical thickness. These indirect effects are expected to be small given
the small magnitude of the total effect, the number of brain regions, and other potential
factors underlying the pathways between maternal smoking and children’s emotional n-back
accuracy.

Table 2: Brain regions with a significant indirect effect

Region Type OR (95% CI) PM (95% CI) A→M M → Y †

lG insular short, rG insular short,
NIEH 0.996 [0.993, 0.998] 4.49% [1.56%, 16.74%]

+ -
lS central, rS central - +

lS front inf NIEL 0.998 [0.996, 0.999] 1.53% [0.85%, 10.04%] + -

lS circular insula inf NIE 1.002 [1.001, 1.005] N/A + +

rS circular insula inf NIE 1.002 [1.001, 1.005] N/A + +

†: the sign of path effects A→M and M → Y

By examining the signs of these pathways, we observe that maternal smoking increases
cortical thickness in the left and right short insular gyri, left inferior frontal sulcus, and
left and right inferior segments of the circular sulcus of the insular. It is important to note
that cortical thinning is a typical developmental phenomenon observed in children across
all brain regions (Ducharme et al., 2016). Our results suggest that while cortical thinning
is a normal part of development, maternal smoking leads to cortical thickening, a deviation
from the usual developmental trajectory.

5. Discussions

Mediation analysis with high-dimensional correlated mediators presents significant chal-
lenges. In this paper, we introduce a hybrid approach to advance mediation analysis specif-
ically for neuroimaging mediators that exhibit a star-shaped network structure. Although
our focus is on neuroimaging mediators, star-shaped network structures are also observed in
other domains such as gene regulatory networks (Gerstein et al., 2012) and protein-protein
interaction networks (Uetz et al., 2000), where our proposed approach could be applicable.
Our approach enables the evaluation of mediator-specific indirect effects by leveraging the
network structure. In the first step, we propose a conditional Gaussian graphical model to
estimate the network of neuroimaging mediators. This model is general and can be used
to learn any network, given the multivariate Gaussian assumption holds. If the network
is identified as star-shaped, we can proceed with mediation analysis in the second step.
We propose to decompose the joint indirect effect of the mediators into the indirect ef-
fect through hub mediators and indirect effects solely through each leaf mediator. After
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accounting for hub mediators, the indirect effects solely through each leaf mediator can
be estimated individually. In the data application, our findings imply distinct pathways
through which maternal smoking affects children’s accuracy in the emotional n-back test.
These results provide new insights to the RDoC framework, particularly on the mediating
role of the seven brain regions in Table 2.

Our proposed approach has several limitations. First, it relies on the structural as-
sumption of a star-shaped network, which simplifies the network and may not accurately
represent the truth. However, this simplification facilitates mediation analysis of high-
dimensional neuroimaging measures and enhances our understanding of how these measures
contribute to underlying causal mechanisms. Second, without domain knowledge, our ap-
proach assumes a DAG from the network, specifically that all edges are oriented from hub
mediators to leaf mediators. We have shown that we may mis-orient at most one edge,
which could result in a biased indirect effect for the corresponding leaf mediator, and we
cannot determine which specific edge is mis-oriented without domain knowledge. However,
it is important to note that the mis-orientation of a leaf mediator does not impact the
identifiability of the indirect effects of other leaf mediators, as demonstrated through our
simulation studies. Thus, our approach is primarily designed to help identify potentially
significant leaf mediators. Future work is needed to validate the assumed DAG and refine
the approach.

Here are some future directions. First, data driven approaches for determining edge
directions for our conditional Gaussian graphical model would be highly beneficial. Second,
approaches for sensitivity analysis to measure the robustness of the NIEL to unmeasured
confounding are crucial, since identifiability assumptions about no unmeasured confounding
are not testable. Third, our proposed approach is applied to analyze brain cortical thickness
from structural MRI data at a single time point, which makes it challenging to validate the
assumed causal orders between hub mediators and leaf mediators. Future research could
explore longitudinal mediators or functional MRI measures. These types of data might
make it easier to validate the causal orders between mediators.
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Appendix

A.1 Model estimation

This section provides details on the estimation of our model in Section 2.1. To estimate
the parameters in the conditional Gaussian graphical model (1), we employ the pseudo-
likelihood instead of the joint likelihood to reduce computational complexity while still
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obtaining consistent parameter estimates. The pseudo-likelihood is defined as
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A.2 Brain region abbreviations, full names, and their lobes

Table 3: Brain region abbreviations, full names, and their lobes

Abbreviation Full Name Lobe

lG orbital Left Orbital Gyri Frontal

rG orbital Right Orbital Gyri Frontal

lS front middle Left Middle Frontal Sulcus Frontal

lS orbital lateral Left Lateral Orbital Sulcus Frontal

rS orbital lateral Right Lateral Orbital Sulcus Frontal

lS front inf Left Inferior Frontal Sulcus Frontal

rS front inf Right Inferior Frontal Sulcus Frontal

rLat Fis.ant.Horizont Right Horizontal Ramus of the Anterior Segment of the Lateral Sulcus Frontal

rG and S paracentral Right Paracentral Lobule and Sulcus Frontal

rS precentral.sup.part Right Superior Part of the Precentral Sulcus Frontal

rS orbital med.olfact Right Medial Orbital Sulcus Frontal

lS central Left Central Sulcus Frontal/Parietal

rS central Right Central Sulcus Frontal/Parietal

lS cingul.Marginalis Left Marginal Branch of the Cingulate Sulcus Frontal/Parietal

rS cingul.Marginalis Right Marginal Branch of the Cingulate Sulcus Frontal/Parietal

lG insular short Left Short Insular Gyri Insular

rG insular short Right Short Insular Gyri Insular

lS circular insula ant Left Anterior Segment of the Circular Sulcus of the Insula Insular

rS circular insula ant Right Anterior Segment of the Circular Sulcus of the Insula Insular

lS circular insula inf Left Inferior Segment of the Circular Sulcus of the Insular Insular

rS circular insula inf Right Inferior Segment of the Circular Sulcus of the Insular Insular

lG oc.temp med.Parahip Left Parahippocampal Gyrus Temporal

rG oc.temp med.Parahip Right Parahippocampal Gyrus Temporal
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