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Abstract

Machine learning for early syndrome diagnosis aims to solve the intricate task of predicting
a ground truth label that most often is the outcome (effect) of a medical consensus definition
applied to observed clinical measurements (causes), given clinical measurements observed
several hours before. Instead of focusing on the prediction of the future effect, we propose
to directly predict the causes via time series forecasting (TSF) of clinical variables and
determine the effect by applying the gold standard consensus definition to the forecasted
values. This method has the invaluable advantage of being straightforwardly interpretable
to clinical practitioners, and because model training does not rely on a particular label any-
more, the forecasted data can be used to predict any consensus-based label. We exemplify
our method by means of long-term TSF with Transformer models, with a focus on accu-
rate prediction of sparse clinical variables involved in the SOFA-based Sepsis-3 definition
and the new Simplified Acute Physiology Score (SAPS-II) definition. Our experiments are
conducted on two datasets and show that contrary to recent proposals which advocate set
function encoders for time series and direct multi-step decoders, best results are achieved
by a combination of standard dense encoders with iterative multi-step decoders. The key
for success of iterative multi-step decoding can be attributed to its ability to capture cross-
variate dependencies and to a student forcing training strategy that teaches the model to
rely on its own previous time step predictions for the next time step prediction.

1. Introduction

Early detection of syndromes like Sepsis is key to prevent a rapid progression to deadly
stages by timely clinical invervention (Ferrer et al., 2014; Rudd et al., 2020). Machine
learning from electronic health records (EHRs) bears the big promise of enabling early pre-
diction of syndromes from historic measurements of vital and physiological parameters and
laboratory test results. Inspired by supervised machine learning, early syndrome prediction
is often framed as predicting a future label given clincial variables observed so far. Crucial
prerequisites in this regime are the availability of syndrome labels and the exact time of
syndrome onset. However, such labels are often not routinely documented by clinicians.
Furthermore, in the rare case where they are part of the information provided in EHRs,
caution is advised in interpreting the chart time of diagnosis as the true time of syndrome
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Figure 1: Based on clinical variables observed several hours before the prediction time point
(part left of the dashed line), a prediction of effects (bottom arrow) aims to predict
the label that the consensus definition assigns to unseen future observations. In
contrast, a prediction of causes (top arrow) directly predicts future values of
clinical variables and then deterministically applies the consensus definition to
these predictions.

onset.1 Most machine learning approaches to early prediction of syndromes thus resort to
automatically creating ground truth labels by applying consensus definitions, for example,
the Sepsis-3 definition (Seymour et al., 2016; Singer et al., 2016). Such consensus definitions
are widely accepted as the basis of ICD codes and build on standard clinical measurements
in EHR databases. For example, the Sepsis-3 label is assigned by determining an infec-
tion accompanied by an organ function deterioration according to the SOFA (Sepsis-related
Organ Failure Assessment) criteria (Vincent et al., 1996), which are themselves based on
thresholding various fundamental clinical measurements. The time of sepsis onset is deter-
mined by the onset of salient organ dysfunction or the onset of suspicion of infection, or by
the earlier of these two events (Cohen et al., 2024). Examples for early prediction of sepsis
using this automatic labeling scheme are the approaches described in the overview papers
of Reyna et al. (2019) or Moor et al. (2021).

From a machine learning perspective, the setup of predicting a label that is the outcome
of a consensus definition can be abstractly viewed as the prediction of an effect that is
caused by applying a consensus definition to future values of clinical variables. We propose
to turn this setup around: Instead of predicting an effect based on measurements taken
at an earlier time than the values causing the ground truth label, we directly predict the

1. For example, in the two datasets that to our awareness provide expert annotations of the exact time of
sepsis diagnosis, one dataset only reports a normalized daily diagnosis time of 2 p.m. (Schamoni et al.,
2019; Lindner et al., 2022), and the other (Pollard et al., 2018) explicitly warns that the ”diagnoses that
were documented in the ICU stay by clinical staff [...] may or may not be consistent with diagnoses
that were coded and used for professional billing or hospital reimbursement purposes.” (Documentation
of diagnosis field of eICU Collaborative Research Database, available at https://eicu-crd.mit.edu/

eicutables/diagnosis/.)
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causes by forecasting clinical variables, and determine the effect by applying the consensus
definition to the forecasted values. This setup is illustrated in Figure 1.

Prediction of causes has a different goal than prediction of effects in that it aims at the
general task of forecasting clinical variables to which arbitrary consensus definitions can be
applied, without being restricted to a specific definition that is used to annotate ground
truth labels. This flexibility comes at the cost of constituting an arguably harder task
since several irregularly and sparsely sampled clinical variables need to be predicted instead
of a single non-sparse effect label. However, despite its challenges, it has several intrinsic
benefits. First and foremost, a prediction of clinical causes has the invaluable advantage
of being immediately interpretable by clinical practitioners. Instead of requiring post-hoc
interpretability techniques to understand a SOFA or Sepsis prediction, the predicted clincial
causes determining the effect of SOFA or Sepsis can be directly inspected. Furthermore, if
a consensus definition is applied to predicted values of clinical variables, there is no room
for shortcut learning (Geirhos et al., 2020), information leakage (Kaufmann et al., 2011) or
circularity (Hagmann et al., 2023; Riezler and Hagmann, 2024) that can skew a machine
learning task. Last, the deterministic application of a consensus definition directly reveals
aspects like the choice of onset time that can have a great impact on predictive performance
(Cohen et al., 2024). It allows a direct investigation of such subtle variations during testing,
while such variations are much harder to explore in approaches where consensus definitions
are hard-coded and hidden in the training labels.

In the following, we present an exemplification of prediction of causes by means of long-
term time series forecasting (TSF) of clinical variables, with a focus on accurate prediction
of the sparse clinical variables involved in the SOFA-based Sepsis-3 definition (Seymour
et al., 2016; Singer et al., 2016) and the new Simplified Acute Physiology Score (SAPS-
II) (Gall et al., 1993) definition. We present an extensive investigation of optimal network
architectures and training procedures to perform long-term clinical TSF on two critical care
databases, MIMIC-III (Johnson et al., 2016) and eICU (Pollard et al., 2018). We build upon
the expressive family of Transformers (Vaswani et al., 2017) that has been shown to be able
to model dynamical or even chaotic systems (Geshkovski et al., 2023; Inoue et al., 2022)
and has been applied competitively to various TSF tasks (Ahmed et al., 2023; Wen et al.,
2023). We compare sparse encoders specialized to modeling irregularly sampled time series
data as sets of observation triplets, containing clinical variable, time of measurement, and
measurement value (Tipirneni and Reddy, 2022) to a standard encoding of time series as a
dense matrix of input features times time-steps, using binning and mean-value imputation.
These encoders are combined with a direct multi-step (DMS) forecasting decoder (Zhou
et al., 2021; Wu et al., 2021; Zeng et al., 2023) that has been proposed specifically for long-
term TSF, and a standard autoregressive Transformer decoder performing long-term TSF
in an iterative multi-step (IMS) fashion. Our experiments show that contrary to recent
proposals, best results are achieved by a combination of a standard dense encoder with
an IMS decoder. This can be attributed to a training strategy called student forcing that
supplies the model’s own previously predicted time steps as context for next time step
prediction. Student forcing outperforms the generic teacher forcing which relies solely on
ground truth contexts (Williams and Zipser, 1989) as well as scheduled sampling (Bengio
et al., 2015; Teutsch and Mäder, 2023) which mixes both context types.
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We present a thorough evaluation of all combinations of the encoders and decoders
implemented by us, together with an evaluation of Informer (Zhou et al., 2021), Autoformer
(Wu et al., 2021), and (D)Linear (Zeng et al., 2023) models, on progressive and increasingly
complex TSF tasks on clinical data. As shown in Figure 2, our evaluation extends the
standard mean squared error (MSE) calculation of 131 clinical variables on the MIMIC-III
dataset and 98 clinical variables on the eICU dataset to an evaluation of the influence of
forecasting accuracy on downstream clinical tasks such as early prediction of SOFA (Vincent
et al., 1996), Sepsis-3 (Seymour et al., 2016; Singer et al., 2016), and SAPS-II (Gall et al.,
1993). Furthermore, we present a study of cross-variate effects of drug administration on
other clinical variables.

Generalizable Insights about Machine Learning in the Context of Healthcare

The contributions of our work to machine learning in the context of healthcare are as follows:

• We present a method for early syndrome prediction that is straightforwardly inter-
pretable by medical practitioners. It directly predicts the clinical causes of a diag-
nosis by long-term TSF of clinical variables, and identifies the label by applying the
known consensus definition that has been used to determine the ground truth to the
forecasted clinical measurements. This technique is general and flexible since it is
applicable to arbitrary consensus-based prediction tasks.

• From a machine learning perspective on long-term TSF, we find that contrary to
recent proposals which advocate set function encoders for time series and direct multi-
step decoders, best results are achieved by a combination of standard dense encoders
with iterative multi-step decoders. The latter can be attributed to a student forcing
training strategy that supplies the model’s own predictions as context for next time
step prediction, and outperforms standard teacher forcing or scheduled sampling.

• Our experiments are conducted on two critical care databases for SOFA-based Sepsis-
3 prediction and prediction of the SAPS-II score. We find consistent wins for the
combination of dense encoders and iterative multi-step decoders for both consensus-
based prediction tasks on both datasets.

Code and data of this work are available at https://github.com/StatNLP/mlhc_2024_
prediction_of_causes.

2. Related Work

TSF of clinical variables is a challenging task in itself. First, clinical data constitute mul-
tivariate time series that are irregularly sampled, both in time and across dimensions. Ir-
regular sampling in time series is commonly addressed by data imputation methods. These
include simple imputation of unobserved values by last observed or mean values, or by
learned values using machine learning, e.g., regression of unobserved values against ob-
served neighboring values (see Fang and Wang (2020) for an overview). Recently, neural
ODEs have been proposed as a natural solution for irregular sampling in time series by
integrating the dynamics over the time interval (Chen et al., 2018; De Brouwer et al., 2019;
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Figure 2: Evaluation setup for TSF experiments: Given irregularly distributed real-world
clinical input data, we predict values for 24 hours in the future. We evaluate
MSE loss on all variables, SOFA, SAPS-II, and Sepsis-3 accuracy, and perform a
study on cross-variate effects of drugs.

Kidger et al., 2020). While these techniques show impressive results, they are incompatible
with the parallelization idea of Transformers that explicitly avoid recurrence in the time di-
mension. For our work, we compare the so-called set functions embedding technique (Horn
et al., 2020; Tipirneni and Reddy, 2022) that encodes time series as sets of observations
with a dense encoder that compresses the input time series into 24 hourly bins and uses
mean-value imputation.

Second, clinical patient data require long-term TSF capabilities from machine learning
models. Recently, there has been a surge of works on long-term TSF using Transformers
(Zhou et al., 2021; Wu et al., 2021; Zhou et al., 2022) and work that explicitly questions
the effectiveness of transformers for long-term TSF by conjecturing that the transformer’s
input permutation invariance may cause an ignorance of temporal input relations (Zeng
et al., 2023). The proposed approaches agree in their argumentation that long-term TSF
requires sophisticated DMS techniques in order to overcome the error propagation of IMS
techniques. We show that a standard autoregressive Transformer decoder can be tuned to
achieve comparable and sometimes even better long-term behavior than DMS decoders. The
crucial ingredient is here to teach the Transformer to trust its own predictions as context in
prediction of the next time step. We call this training technique student-forcing to differen-
tiate it from teacher-forcing (Williams and Zipser, 1989). Combinations of both techniques
by scheduled sampling have been shown to be useful in the context of sequence learning
and TSF with RNNs (Bengio et al., 2015; Ranzato et al., 2016; Teutsch and Mäder, 2023),
however, an investigation of scheduled sampling for TSF with autoregressive Transformers
has so far been missing.

Third, multivariate clinical time series exhibit dependencies such as administration of
certain medications resulting in changes in related clinical variables. This requires accurate
modeling of cross-variate dependencies between clinical variables. It seems intuitive that
models like Transformers that explicitly learn cross-variate connections should be more
effective than univariate models like those proposed by Zeng et al. (2023) or Nie et al.
(2023). As shown in Chen et al. (2023), the advantages of univariate models come into play
only for certain types of benchmarks, but not for datasets that contain complex cross-variate
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Figure 3: Overview of combination of encoders and decoders at inference time. Irregularly
sampled time series (lower left) are encoded by a sparse triplet representation
(lower middle), or they are binned into a representation with each vector rep-
resenting an hour of observations (upper left), and encoded into a dense matrix
(upper middle). The encoders are combined with different decoding strategies,
either DMS (non-autoregressive) (upper right) or IMS (autoregressive) (lower
right), yielding four different encoder-decoder pipelines.

information and auxiliary features. We believe that our investigation of cross-variate effects
of drug administration on other clinical variables in critical care data proves the ability of
Transformers to model complex cross-variate information in real-world clinical data.

3. Methods

3.1. Neural Architecture

Figure 3 gives an overview of the neural architectures used in our experiments to encode
irregularly sampled time series and performing long-term TSF.

A sparse multivariate input time series comprised of n irregular measurements of |F |
clinical variables (lower left) is first variable-wise standardized, and then represented by n
triplets S = {(ti, fi, vi)}ni=1, where ti ∈ R≥0 is a time index, fi ∈ F is a clinical variable
identifier, and vi ∈ R the observed value of fi at ti. For sparse triplet (set function)
encoding, each component of a triplet — time, variable, and value — receives a separate
embedding of length m. These embeddings are summed up for each triplet, and an m× n
matrix is fed into a Transformer architecture for encoding (lower middle), following the
setup of Tipirneni and Reddy (2022).

Alternatively to this sparse triplet encoder, we implement a standard dense encoding
architecture. To achieve this, the irregularly sampled input data (lower left) is binned
into hourly buckets by recording the first observed value of each variable (upper left) and
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applying mean imputation for unobserved values (effectively resulting in imputation of zeros
because of standardization). Furthermore, we generate a masking matrix of the same size
that informs the model if a corresponding value in the binned matrix is imputed or observed
and append this matrix to the first one. A time series of length D := max(ti)

2 then results
in a dense ⌈D⌉ × 2|F | matrix that is fed into a standard Transformer encoder (Vaswani
et al., 2017) (upper middle).

We implement two decoder types to generate dense target time series of length T for
an encoded input x. The direct multi-step (DMS) decoder uses T randomly initialized self-
attention modules to perform T prediction steps at once. This non-autoregressive decoder
predicts time steps independent of each other, and the inferred output ŷt depends only on
the encoded input x and the model parameters θ:

ŷt = fθ(x) (1)

This method is depicted as the DMS strategy (upper right) in Figure 3.
Alternatively to the DMS decoder, the iterative multi-step (IMS) decoder generates an

output vector ŷt ∈ R|F | using a standard autoregressive model (Vaswani et al., 2017). The
inferred output ŷt is a function of the history ŷ<t of predicted tokens until time t, the
encoded input x, and the model parameters θ:

ŷt = fθ(ŷ<t, x) (2)

To perform long-term TSF using the IMS setup, the outputs ŷt from each time step t =
1, . . . , T are concatenated, yielding the IMS strategy (lower right) in Figure 3.

3.2. Training Methods

It is hypothesized in the literature that DMS decoders are superior to IMS decoders for
long-term TSF because of potential error propagation in the latter (Zhou et al., 2021;
Wu et al., 2021; Zeng et al., 2023). In our experiments, we show that an IMS decoder
can be tuned to achieve comparable and even better long-term TSF behavior than DMS
decoders by applying a strategy called student-forcing during training. Student forced
training of an autoregressive decoder means to apply equation 2 during training in contrast
to teacher-forcing (Williams and Zipser, 1989) where during training the history for next-
token prediction is the ground truth value y<t:

ŷt = fθ(y<t, x) (3)

Additionally, we combine teacher forcing and student forcing via scheduled sampling
(Bengio et al., 2015; Teutsch and Mäder, 2023). Following Teutsch and Mäder (2023), we
implemented linear curricula determining the teacher forcing ratio Clin(e) per epoch e as

Clin(e) = ϵstart + (ϵend − ϵstart) ·
min(e,  L)

 L
. (4)

We varied between an increasing (ϵstart = 0.25 and ϵend = 1) and a decreasing curriculum
(ϵstart = 1 and ϵend = .25), both with a curriculum length  L of 200. We also varied the

2. For simplicity, we assume that ti is measured in hours.
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Figure 4: Gradient flow in time for different styles of training. Gradients (in red) are only
shown for a loss generated at the third timestep.

selection of time steps for teacher forcing, either in a randomized or deterministic way.
When teacher forcing is performed randomly, a time step is teacher forced with probability
Clin(e). When time steps are selected in a deterministic way, teacher forcing depends not
only on Clin(e), but also on the current position within the predicted sequence of length l
where only the first ⌊l · Clin(e)⌋ positions are teacher forced.

Different to natural language processing, the Transformer architecture, when applied
to TSF, is used to predict continuous values. This allows us to enhance the expressive
power of the model by back-propagating through the continuously differentiable prediction
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Table 1: Main evaluation results on MIMIC-III for combinations of sparse and dense en-
coders with direct multi-step (DMS) and iterative multi-step (IMS) decoders,
trained by teacher forcing (TF), student forcing (SF), or scheduled sampling (SS),
with or without backpropagation (BP) through predictions. Curricula for sched-
uled sampling are denoted as deterministic increasing (DI) or decreasing (DD),
randomized increasing (RI) or decreasing (RD). Evaluation is done according to
MSE of all variables (Equation 5), MSE for SOFA (Equation 8), and Accuracy for
Sepsis (Equation 9). Numbers in subscripts denote the 95% confidence interval
for the estimation of the respective evaluation score on the test set. Best results
are shown in bold face.

Model Enc Dec Train BP MSE MSE-SOFA Acc-Sepsis

1 Triplet DMS - - 7.326[7.320,7.332] 2.825[2.822,2.828] 90.11[88.08,92.14]
2 Triplet IMS TF - 12.371[12.360,12.382] 10.785[10.776,10.794] 75.14[72.19,78.08]
3 Triplet IMS SF No 6.881[6.875,6.887] 2.872[2.869,2.876] 89.56[87.48,91.64]
4 Triplet IMS SF Yes 7.065[7.058,7.073] 2.917[2.912,2.922] 89.29[87.18,91.39]
5 Triplet IMS SS-DI No 8.764[8.753,8.775] 3.466[3.457,3.475] 82.85[80.28,85.42]
6 Triplet IMS SS-DI Yes 8.993[8.982,9.004] 4.150[4.141,4.159] 80.43[77.73,83.14]
7 Triplet IMS SS-DD No 24.360[24.349,24.371] 16.345[16.336,16.353] 70.65[67.55,73.75]
8 Triplet IMS SS-DD Yes 22.046[22.035,22.057] 11.055[11.046,11.063] 63.53[60.25,66.81]
9 Triplet IMS SS-RI No 7.068[7.062,7.073] 2.689[2.685,2.693] 85.63[83.24,88.02]
10 Triplet IMS SS-RI Yes 6.967[6.960,6.973] 2.609[2.605,2.613] 86.47[84.14,88.80]
11 Triplet IMS SS-RD No 7.761[7.752,7.771] 3.092[3.085,3.100] 86.11[83.76,88.47]
12 Triplet IMS SS-RD Yes 7.389[7.382,7.395] 2.857[2.852,2.862] 86.71[84.40,89.03]

13 Dense DMS - - 8.789[8.780,8.798] 6.024[6.016,6.031] 85.87[83.50,88.24]
14 Dense IMS TF - 11.907[11.896,11.918] 9.242[9.233,9.251] 66.18[62.96,69.41]
15 Dense IMS SF No 7.456[7.447,7.466] 3.376[3.368,3.384] 88.96[86.66,91.25]
16 Dense IMS SF Yes 6.216[6.211,6.221] 2.497[2.495,2.500] 90.34[88.33,92.35]

17 Dense IMS SS-DI No 8.861[8.850,8.871] 3.598[3.590,3.607] 83.09[80.54,85.64]
18 Dense IMS SS-DI Yes 9.159[9.148,9.170] 4.008[3.999,4.017] 80.19[77.48,82.91]
19 Dense IMS SS-DD No 10.466[10.455,10.478] 6.392[6.382,6.401] 75.60[72.68,78.53]
20 Dense IMS SS-DD Yes 10.513[10.502,10.524] 6.422[6.413,6.431] 76.57[73.68,79.46]
21 Dense IMS SS-RI No 6.929[6.924,6.935] 2.830[2.826,2.834] 86.47[84.14,88.80]
22 Dense IMS SS-RI Yes 6.909[6.904,6.915] 2.770[2.766,2.773] 85.27[82.85,87.68]
23 Dense IMS SS-RD No 11.749[11.738,11.760] 9.667[9.658,9.676] 64.86[61.60,68.11]
24 Dense IMS SS-RD Yes 11.697[11.686,11.709] 9.525[9.516,9.534] 64.37[61.11,67.63]

Informer Dense DMS - - 6.354[6.350,6.358] 2.616[2.614,2.617] 85.75[83.37,88.13]
Autoformer Dense DMS - - 7.438[7.432,7.444] 3.352[3.348,3.356] 89.61[87.54,91.69]
DLinear Dense DMS - - 8.487[8.479,8.495] 5.019[5.012,5.025] 76.81[73.94,79.69]
Linear Dense DMS - - 8.486[8.477,8.494] 5.001[4.995,5.007] 77.29[74.44,80.15]

history. The gradient flow of teacher forcing, student forcing, and student forcing with
backpropagation through predictions is shown in Figure 4. As shown in our experiments,
this modified gradient flow improves the model further.
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Table 2: Evaluation results on MIMIC-III showing MSE at beginning 8 hours (MSE1:8)
and last 16 hours (MSE9:24) of 24 hour forecasting period. Numbers in subscript
in square brackets denote the 95% confidence interval for the estimation of the
respective evaluation score on the test set. Best results are shown in bold face.

Model Enc Dec Train BP MSE1:8 MSE9:24

1 Triplet DMS - - 7.687[7.676,7.697] 7.160[7.154,7.165]
2 Triplet IMS TF - 12.753[12.734,12.773] 12.203[12.195,12.212]
3 Triplet IMS SF No 6.686[6.676,6.696] 6.991[6.986,6.997]
4 Triplet IMS SF Yes 6.899[6.886,6.911] 7.162[7.156,7.168]
5 Triplet IMS SS-DI No 9.335[9.316,9.354] 8.495[8.487,8.503]
6 Triplet IMS SS-DI Yes 9.593[9.574,9.612] 8.710[8.702,8.718]
7 Triplet IMS SS-DD No 28.394[28.374,28.413] 22.390[22.382,22.399]
8 Triplet IMS SS-DD Yes 22.163[22.144,22.183] 22.033[22.024,22.041]
9 Triplet IMS SS-RI No 6.914[6.903,6.925] 7.158[7.153,7.162]
10 Triplet IMS SS-RI Yes 6.705[6.694,6.717] 7.110[7.104,7.116]
11 Triplet IMS SS-RD No 7.654[7.638,7.671] 7.829[7.822,7.837]
12 Triplet IMS SS-RD Yes 7.205[7.192,7.217] 7.494[7.488,7.500]

13 Dense DMS - - 9.116[9.099,9.133] 8.641[8.634,8.648]
14 Dense IMS TF - 12.627[12.608,12.646] 11.570[11.562,11.578]
15 Dense IMS SF No 7.427[7.410,7.445] 7.484[7.477,7.491]
16 Dense IMS SF Yes 6.117[6.109,6.124] 6.278[6.273,6.283]

17 Dense IMS SS-DI No 9.328[9.309,9.347] 8.643[8.635,8.651]
18 Dense IMS SS-DI Yes 9.744[9.725,9.763] 8.884[8.876,8.892]
19 Dense IMS SS-DD No 11.258[11.239,11.278] 10.090[10.082,10.098]
20 Dense IMS SS-DD Yes 11.331[11.311,11.350] 10.124[10.116,10.133]
21 Dense IMS SS-RI No 6.752[6.742,6.763] 7.031[7.027,7.036]
22 Dense IMS SS-RI Yes 6.587[6.578,6.597] 7.084[7.078,7.089]
23 Dense IMS SS-RD No 12.554[12.535,12.574] 11.369[11.361,11.377]
24 Dense IMS SS-RD Yes 12.575[12.556,12.595] 11.281[11.272,11.289]

Informer Dense DMS - - 6.349[6.343,6.354] 6.369[6.365,6.373]
Autoformer Dense DMS - - 7.232[7.224,7.241] 7.556[7.550,7.561]
DLinear Dense DMS - - 8.360[8.346,8.373] 8.568[8.561,8.575]
Linear Dense DMS - - 8.359[8.345,8.372] 8.566[8.559,8.573]

4. Experiments

4.1. Datasets

In our experiments, we use the Medical Information Mart for Intensive Care III (MIMIC-III)
data (Johnson et al., 2016). The data were collected from the Beth Israel Deaconess Medical
Center between 2001 and 2012 and contain over 40k patients. After filtering for patients
with an ICU stay of at least 24 hours with reported gender and age of at least 18 years,
our dataset contains 44,858 ICU stays with 56 million data points. We split the data into
partitions for training (28,708), development (7,270), and testing (8,880). For our study,
we used 131 different clinical variables, including 15 clinical markers for the calculation of
SOFA and 13 for SAPS-II, and the demographic variables gender and age. This selection
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Table 3: SAPS-II evaluation results on MIMIC-III. Numbers in subscripts denote the 95%
confidence interval for the estimation of the respective evaluation score on the test
set. Best results are shown in bold face.

Model Enc Dec Train BP MSE MSE-SAPS-II

1 Triplet DMS - - 7.326[7.320,7.332] 222.426[222.417,222.435]
2 Triplet IMS TF - 12.371[12.360,12.382] 270.245[270.236,270.254]
3 Triplet IMS SF No 6.881[6.875,6.887] 187.826[187.817,187.835]
4 Triplet IMS SF Yes 7.065[7.058,7.073] 187.826[187.817,187.835]
5 Triplet IMS SS-DI No 8.764[8.753,8.775] 167.347[167.338,167.356]
6 Triplet IMS SS-DI Yes 8.993[8.982,9.004] 166.765[166.756,166.774]
7 Triplet IMS SS-DD No 24.360[24.349,24.371] 147.559[147.550,147.567]
8 Triplet IMS SS-DD Yes 22.046[22.035,22.057] 377.004[376.996,377.013]
9 Triplet IMS SS-RI No 7.068[7.062,7.073] 102.445[102.442,102.449]
10 Triplet IMS SS-RI Yes 6.967[6.960,6.973] 110.174[110.170,110.178]
11 Triplet IMS SS-RD No 7.761[7.752,7.771] 101.756[101.749,101.764]
12 Triplet IMS SS-RD Yes 7.389[7.382,7.395] 103.756[103.751,103.761]

13 Dense DMS - - 8.789[8.780,8.798] 132.819[132.811,132.826]
14 Dense IMS TF - 11.907[11.896,11.918] 183.693[183.684,183.702]
15 Dense IMS SF No 7.456[7.447,7.466] 109.381[109.373,109.389]
16 Dense IMS SF Yes 6.216[6.211,6.221] 89.115[89.112,89.117]

17 Dense IMS SS-DI No 8.861[8.850,8.871] 169.390[169.381,169.399]
18 Dense IMS SS-DI Yes 9.159[9.148,9.170] 175.625[175.616,175.634]
19 Dense IMS SS-DD No 10.466[10.455,10.477] 192.777[192.768,192.786]
20 Dense IMS SS-DD Yes 10.513[10.502,10.524] 166.208[166.199,166.217]
21 Dense IMS SS-RI No 6.929[6.923,6.934] 107.428[107.424,107.432]
22 Dense IMS SS-RI Yes 6.909[6.904,6.915] 105.098[105.095,105.101]
23 Dense IMS SS-RD No 10.466[10.455,10.478] 169.432[169.423,169.440]
24 Dense IMS SS-RD Yes 10.513[10.502,10.524] 206.098[206.089,206.107]

Informer Dense DMS - - 6.354[6.350,6.358] 92.008[92.006,92.010]
Autoformer Dense DMS - - 7.438[7.432,7.444] 95.306[95.302,95.310]
DLinear Dense DMS - - 8.487[8.479,8.495] 129.476[129.470,129.482]
Linear Dense DMS - - 8.486[8.477,8.494] 129.570[129.563,129.576]

comprises all vital signs and laboratory values used in the PhysioNet challenge for early
prediction of sepsis (Reyna et al., 2019). The full list of extracted MIMIC-III features
is given in Appendix A. As shown in Appendix D, the sparsity of the dataset is very
high, meaning that the average number of observations per patient per hour is at most 20
and rapidly declines with longer length of stay. Converting the data to a dense one hour
representation yields 89.08% missing data, changing per variable from under 15% (HR, RR,
SBP, DBP, MBP, and O2 Saturation) to more than 90% for 101 variables, and exceeding
99% for 42 variables. On the other side we are loosing 17.73% of the data points through
the densification procedure. Demoscopic data are complete for all patients.

Furthermore, we conducted some experiments on the larger eICU dataset (Pollard et al.,
2018). These data were collected from over 200 US hospitals and comprise over 200,000 ICU
stays. After filtering for patients with an ICU stay of at least 48 hours, reported gender and
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aged 18 years or older, we arrived at 77,704 ICU stays with 415 million datapoints. This set
was partitioned in subsets for training (49,730), development (12,433), and testing (15,541).
As shown in Appendix A, we extracted 98 clinical variables and 17 demographic markers
for our experiments. As shown in Appendix D, the measurements in the eICU are denser
than in MIMIC-III since the number of observations per patient per hour is three times
higher than for MIMIC-III and decreases at a slower rate with length of stay. In a dense
encoding, this reduces to one sixth of the measurements (16.86%). To densify the data like
before yields even 89.85% missing data. The same six variables as before are quite complete
while 84 variables are missing more than 90% and 29 variables 99%. The demographic data
are almost complete.

4.2. Evaluation Measures

We use the following measures to evaluate our models for long-term TSF. Given N time
series in our dataset, with T hours prediction for TSF, the mean squared error (MSE) over
hourly prediction vectors ŷnt is defined as follows:

MSE =
1

NT

N∑
n=1

T∑
t=1

||(ynt − ŷnt ) ⊙mn
t ||22 (5)

where mn
t ∈ {0, 1}|F | is a mask indicating if the variables in ynt were observed or not, and

⊙ is a component-wise product. In our experiments, T is set to 24 hours.
For a closer inspection of the long-term TSF error, we compute MSE at the beginning

and at the end of the forecasting task. We calculate MSE1:8 for the first 8 hours, and
MSE9:24 for the last 16 hours of a 24 hour forecasting period:

MSE1:8 =
1

N · 8

N∑
n=1

8∑
t=1

||(ynt − ŷnt ) ⊙mn
t ||22, (6)

MSE9:24 =
1

N · 16

N∑
n=1

24∑
t=9

||(ynt − ŷnt ) ⊙mn
t ||22. (7)

Prediction of SOFA is evaluated by the MSE between the SOFA score computed on
the ground truth values and on the forecasted variable values relevant for the consensus
definition (Vincent et al., 1996). The SOFA score is defined as the sum of six organ system
subscores ranging from 0-4 depending for their part on thresholded fundamental clinical
variables observed during a 24h window (see Appendix B). We compared the sub-scores

obtained from forecasted data (ŜOFA6) to those obtained from the corresponding gold data
(SOFA6) masking forecasted values that have no corresponding observed gold value by the
following MSE calculation:

MSE-SOFA =
1

N

N∑
n=1

||SOFAn
6 − ŜOFA6

n
||22. (8)

Accuracy of sepsis prediction is evaluated based on the Sepsis-3 consensus definition
(Singer et al., 2016; Seymour et al., 2016). According to this definition, a patient is classified
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as septic if two criteria are met. Firstly, a patient must have a verified or suspected infection,
and secondly, a SOFA score showing an increase of 2 or more points in the following 24 hours
after the infection. Similar to Seymour et al. (2016), we identify a suspected infection by a
combination of antibiotics treatment and blood culture, starting within the first 24 hours
after admission, and gather all infected patients in the set I. For those patients, SOFA1:24

denotes the SOFA score for the first 24 hours. For the following 24 hours, SOFA25:48 denotes
the SOFA score based on the ground truth data, and ŜOFA25:48 denotes the SOFA score
based on the forecasted data. The accuracy of the predicted sepsis label is calculated as the
average match with the ground truth label, where labels are assigned by a check whether
a change in SOFA ≥ 2 happens between the first 24 hours and the prediction window of
24 hours. We use the following notation for indicator functions: [[a]] = 1 if a is true, 0
otherwise. Accuracy of Sepsis-labeling can then be defined as follows:

Acc-Sepsis =
1

|I|
∑
i∈I

[[χi = χ̂i]], (9)

where χi := [[(SOFAi
25:48 − SOFAi

1:24) ≥ 2]],

and χ̂i := [[(ŜOFAi
25:48 − SOFAi

1:24) ≥ 2]].

The new Simplified Acute Physiology Score (SAPS-II) (Gall et al., 1993) scores the
illness severity of an ICU patient based on a moderate number of routine clinical measure-
ments collected during a 24 hour period. Our implementation is reduced to all non-static
variables involved in the calculation of SAPS-II scores (see Appendix C). To evaluate predic-
tions for SAPS-II, we calculate the MSE between the integer point scores ranging between
0 and 120 for ground truth SAPS-II and predicted ̂SAPS-II scores:3

MSE-SAPS-II =
1

N

N∑
n=1

(SAPS-IIn − ̂SAPS-II
n
)2 (10)

4.3. Experimental Results

All training runs in our experiments used a 24 hour observation window, followed by a
24 hour prediction window. In order to best exploit the training data, we used sliding
windows of 24 hours observations and 24 hours prediction that were shifted in 4 hour steps
from admission time up to five days. The learning objective is to minimize the MSE by
applying Equation 5 to the training data. Extensive metaparameter search was conducted
on the MIMIC-III and eICU development sets (see Appendix B) where the best result on
the development set was chosen for final evaluation on the test set.

Table 1 shows the main results of our evaluation of various combinations of encoders and
decoders, and competing current approaches, on increasingly complex TSF tasks. The first
task is the standard evaluation of the MSE (Equation 5) for TSF of 131 clinical variables
on the MIMIC-III testset. The best result is obtained for model 16 — a dense encoder,
combined with an IMS decoder, trained with student forcing and backpropagation. In
general, student forcing is far better than teacher forcing (models 2 and 14) or scheduled

3. We ignore the standard probability conversion for the MSE calculation since the comparison of untrans-
formed scores provides a more accurate evaluation of the utility of the forecasted data.
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sampling, which underperforms especially when a decreasing schedule is used (models 7, 8,
19, 20, 23, 24), irrespective of the encoding method. Our evaluation progresses from MSE of
all clinical variables to a subset of 15 clinical variables that are relevant for the computation
of the SOFA score (see the variables marked with ∗ in Appendix A). MSE-SOFA is computed
according to Equation 8. Table 1 shows that MSE-SOFA is well correlated with MSE over
all variables, with similar rankings in both columns. Best results are again obtained for
the combination of a dense encoder with an IMS decoder, trained with student forcing and
backpropagation (model 16). The last column in Table 1 presents the accuracy of Sepsis
prediction. The best results are obtained again for model 16. Since Sepsis accuracy is
computed according to Equation 9, by filtering patients with infection, the data filtering
resulted in a small test set of only 345 patients. Because of the high variance in evaluation
scores, many confidence intervals overlap, so that we cannot conclude statistical significance
of result differences. In Table 10 in Appendix F, we report similar results on the larger eICU
dataset. There the number of patients with suspected infection is larger (3,789 patients),
and the confidence intervals are accordingly smaller. Furthermore, in Appendix G, we
report a breakdown of Sepsis prediction results according to true positives, false positives,
true negative, false negatives, and F1 score. Model 16 outperforms all competitors in these
tables as well. Out of the competing models shown in the last block of Table 1, the Informer
model achieves a competitive MSE and MSE-SOFA, however, these advantages do not carry
over to Sepsis accuracy comparable with model 16.

The results presented in Table 2 allow us to draw a more nuanced comparison between
student- and teacher-forcing. We see indications of error propagation for student-forcing,
shown by a slight MSE increase for later time-steps for models 3, 4, 15, and 16. How-
ever, this effect is magnitudes smaller than the beneficial consequences of student-forcing.
Teacher-forced models 2 and 14 does not suffer from error propagation. The interpolation
between pure student- and teacher-forcing that is done via scheduled sampling shows that
teacher forcing is exceedingly detrimental in the early stages of training and when applied
non-randomly. Thus, scheduled sampling cannot offer a way to mitigate the small error
propagation happening in student forcing.

An evaluation of the prediction of the SAPS-II prediction is given in Table 3. The
ranking of models according to MSE results for all variables is similar to the ranking in
Table 1, and consistent with the prediction of SOFA and Sepsis, the combination of a
dense encoder with an iterative multi-step decoder and backpropagation through predictions
achieves the best results.

Similar experiments were conducted on the eICU dataset (full result tables are given in
Appendix F). Consistent with the results on MIMIC-III, best results for MSE-SOFA and
accuracy of Sepsis prediction are obtained for the combination of a dense encoder with an
IMS decoder, trained with student forcing and backpropagation (model 16). This model
also achieves best results for SAPS-II prediction. Since eICU is larger than MIMIC-III,
confidence intervals are smaller, yielding increased significance of result differences.

Lastly, we performed an experiment where compared direct prediction of the SOFA score
(called effect prediction) our best TSF model (called prediction of causes). We conducted
this experiment by adding a regression head to our dense encoder, and trained this model on
automatically assigned SOFA scores (ranging from 0 to 24) in order to use the whole training
set. The evaluation was done by computing MSE of the predicted scores. The resulting MSE
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scores on eICU were 2.2869 for model 16 compared to 2.6748 for the regression model. On
MIMIC-III, we obtained MSE scores of 2.6973 for model 16 and of 2.5865 for the regression
model. This shows that prediction of causes is comparable to prediction of effects. A
possible explanation for the slightly worse result of direct effect prediction on eICU is the
high sparsity of target variables for prediction of causes, leading to many masked values
that are ignored in the evaluation of the latter approach. Masking for TSF is consistent
with the SOFA consensus definition where unobserved values are set to default values of 0,
and with clinical practice where data are collected in a panel-wise fashion with dedicated
time slots causing sparsity of observed data.

4.4. Cross-variate Effects of Cardio-vascular Medications

In order to assess the cross-variate effects of cardio-vascular drug administration for our
best model on MIMIC-III (model 16), we created synthetic inputs based on test data where
we separately altered the value of dopamine, dobutamine, and norepinephrine during de-
coding, keeping everything else unchanged. For each drug, we decoded an input two times,
setting the respective drug level to the first (Q1) and third quartile (Q3) of sampled drug
doses during decoding for each time step. For analysis, the resulting predictions were av-
eraged over 24 time points for all variables (except for the manipulated drug, which was
excluded from analysis), and the two groups (Q1 and Q3) were compared by t-tests and
Mann-Whitney-U-Test applying the Bonferroni correction (Bonferroni, 1935) to account for
multiple testing. There are only two statistically significant results in both tests and their
effect size according to Cohen’s d (Cohen, 1988) is reported. The results of this ablation
of drugs show that model 16 has learned that larger doses of dobutamine are associated
with lower doses of amidarone (d = .11). This result is in line with a contraindication
of dobutamine for patients that suffer from arrhythmia. We also observe a small positive
association (d = .09) between dobutamine dose and midazolam dose, gastric meds and fiber.

5. Discussion

Most machine learning approaches to early syndrome diagnosis define ground truth labels
as the effect of an application of a known medical consensus definition to future clinical
measurements. Knowledge of this construction of the ground truth suggests to predict the
clinical causes to which the known consensus definition can be deterministically applied.
This leads to a prediction that is straightforwardly interpretable by clinicians and can be
used for arbitrary consensus-based prediction tasks. The machine learning focus is then
shifted to accurate long-term TSF of clinical variables that are fundamental to consensus
definitions of syndromes. Since consensus definitions such as the SOFA-based Sepsis-3 and
SAPS-II scores are mostly based on sparsely observed laboratory measurements, a proper
encoding of sparse inputs together with a decoding strategy that exploits dependencies be-
tween multivariate inputs is key. Our experiments on two datasets show that a combination
of a standard dense encoder using data imputation with an iterative multi-step forecasting
outperforms specialized set function encoders and direct multi-step decoders. We conjecture
that the accuracy advantage of the dense encoder is attributable to the compression of long
input time series into 24 hourly bins that record the most important observations, while
the advantage of the IMS decoder lies in its ability to capture cross-variate dependencies.
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Limitations The experiments in our work were conducted by choosing the best metapa-
rameter setting on the development set for final evaluation on the test set, and reporting
confidence intervals for evaluation scores. This corresponds only to conservative signifi-
cance testing and hides the variance induced by metaparameter variation. Time constraints
prohibited the use of more sophisticated techniques for significance testing and variance
component analysis.
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Lévy. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock
from the first hour: results from a guideline-based performance improvement program.
Critical Care Medicine, 42(8):1749–1755, 2014. URL https://doi.org/10.1097/ccm.

0000000000000330.

Jean-Roger Le Gall, Stanley Lemeshow, and Fabienne Saulnier. A new simplified acute phys-
iology score (SAPS II) based on a european/north american multicenter study. JAMA,
270(24):2957–2963, 1993. URL https://doi.org/10.1001/jama.270.24.2957.

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A. Wichmann. Shortcut learning in deep neural networks.
Nature Machine Intelligence, 2:665–673, 2020.

Borjan Geshkovski, Cyril Letrouit, Yury Polyanskiy, and Philippe Rigollet. A mathematical
perspective on transformers. arXiv, abs/2312.10794, 2023. URL https://doi.org/10.

48550/arXiv.2312.10794.

Michael Hagmann, Shigehiko Schamoni, and Stefan Riezler. Validity problems in clini-
cal machine learning by indirect data labeling using consensus definitions. In Extended
Abstract presented at Machine Learning for Health (ML4H) symposium, New Orleans,
United States, 2023. URL https://doi.org/10.48550/arXiv.2311.03037.

Max Horn, Michael Moor, Christian Bock, Bastian Rieck, and Karsten Borgwardt. Set
functions for time series. In Proceedings of the 37th International Conference on Ma-
chine Learning (ICML), Online, 2020. URL https://proceedings.mlr.press/v119/

horn20a.html.

Katsuma Inoue, Soh Ohara, Yasuo Kuniyoshi, and Kohei Nakajima. Transient chaos
in bidirectional encoder representations from transformers. Phys. Rev. Res., 4, 2022.
doi: 10.1103/PhysRevResearch.4.013204. URL https://link.aps.org/doi/10.1103/

PhysRevResearch.4.013204.

Alistair E.W. Johnson, Tom J. Pollard, Lu Shen, Li wei H. Lehman, Mengling Feng, Mo-
hammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G.
Mark. MIMIC-III, a freely accessible critical care database. Scientific Data, 3(1):160035,
2016. URL https://doi.org/10.1038/sdata.2016.35.

17

https://papers.nips.cc/paper_files/paper/2019/file/455cb2657aaa59e32fad80cb0b65b9dc-Paper.pdf
https://papers.nips.cc/paper_files/paper/2019/file/455cb2657aaa59e32fad80cb0b65b9dc-Paper.pdf
https://doi.org/10.48550/arXiv.2011.11347
https://doi.org/10.48550/arXiv.2011.11347
https://doi.org/10.1097/ccm.0000000000000330
https://doi.org/10.1097/ccm.0000000000000330
https://doi.org/10.1001/jama.270.24.2957
https://doi.org/10.48550/arXiv.2312.10794
https://doi.org/10.48550/arXiv.2312.10794
https://doi.org/10.48550/arXiv.2311.03037
https://proceedings.mlr.press/v119/horn20a.html
https://proceedings.mlr.press/v119/horn20a.html
https://link.aps.org/doi/10.1103/PhysRevResearch.4.013204
https://link.aps.org/doi/10.1103/PhysRevResearch.4.013204
https://doi.org/10.1038/sdata.2016.35


Early Prediction of Causes (not Effects) in Healthcare

Shachar Kaufmann, Saharon Rosset, and Claudia Perlich. Leakage in data mining:
Formulation, detection, and avoidance. In Proceedings of the Conference on Knowl-
edge Discovery and Data Mining (KDD), San Diego, CA, USA, 2011. URL http:

//dx.doi.org/10.1145/2020408.2020496.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural con-
trolled differential equations for irregular time series. In Proceedings of the
34th Conference on Neural Information Processing Systems (NeurIPS), Vancou-
ver, Canada, 2020. URL https://proceedings.neurips.cc/paper/2020/file/

4a5876b450b45371f6cfe5047ac8cd45-Paper.pdf.

Holger A. Lindner, Shigehiko Schamoni, Thomas Kirschning, Corinna Worm, Bianka Hahn,
Franz-Simon Centner, Jochen J. Schoettler, Michael Hagmann, Jörg Krebs, Dennis Man-
gold, Stephanie Nitsch, Stefan Riezler, Manfred Thiel, and Verena Schneider-Lindner.
Ground truth labels challenge the validity of sepsis consensus definitions in critical ill-
ness. Journal of Translational Medicine, 20(27), 2022. URL https://doi.org/10.1186/

s12967-022-03228-7.

Michael Moor, Bastian Rieck, Max Horn, Catherine Jutzeler, and Karsten Borgwardt. Early
prediction of sepsis in the ICU using machine learning: A systematic review. Frontiers
in Medicine, 8, 2021. URL https://doi.org/10.3389/fmed.2021.607952.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series
is worth 64 words: Long-term forecasting with transformers. In Proceedings of the 11th
International Conference on Learning Representations (ICLR), Kigali, Rwanda, 2023.
URL https://openreview.net/forum?id=Jbdc0vTOcol.

Tom J. Pollard, Alistair E. W. Johnson, Jesse D. Raffa, Leo A. Celi, Roger G. Mark,
and Omar Badawi. The eICU collaborative research database, a freely available multi-
center database for critical care research. Scientific Data, 5(180178), 2018. URL https:

//doi.org/10.1038/sdata.2018.178.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level
training with recurrent neural networks. In Proceedings of the International Conference
on Learning Representation (ICLR), San Juan, Puerto Rico, 2016. URL https://doi.

org/10.48550/arXiv.1511.06732.

Matthew A. Reyna, Christopher S. Josef, Russell Jeter, Supreeth P.B. Shashikumar,
M. Brandon Westover, Shamim Nemati, Gari D. Clifford, and Ashish Sharma. Early
prediction of sepsis from clinical data: The physionet/computing in cardiology challenge
2019. Critical Care Medicine, 48(2):210–217, 2019. URL https://doi.org/10.1097/

CCM.0000000000004145.

Stefan Riezler and Michael Hagmann. Validity, Reliability, and Significance: Empirical
Methods for NLP and Data Science. Springer, second edition, 2024. URL https://doi.

org/10.1007/978-3-031-57065-0.

Kristina E Rudd, Sarah Charlotte Johnson, Kareha M Agesa, Katya Anne Shackelford,
Derrick Tsoi, Daniel Rhodes Kievlan, Danny V Colombara, Kevin S Ikuta, Niranjan

18

http://dx.doi.org/10.1145/2020408.2020496
http://dx.doi.org/10.1145/2020408.2020496
https://proceedings.neurips.cc/paper/2020/file/4a5876b450b45371f6cfe5047ac8cd45-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/4a5876b450b45371f6cfe5047ac8cd45-Paper.pdf
https://doi.org/10.1186/s12967-022-03228-7
https://doi.org/10.1186/s12967-022-03228-7
https://doi.org/10.3389/fmed.2021.607952
https://openreview.net/forum?id=Jbdc0vTOcol
https://doi.org/10.1038/sdata.2018.178
https://doi.org/10.1038/sdata.2018.178
https://doi.org/10.48550/arXiv.1511.06732
https://doi.org/10.48550/arXiv.1511.06732
https://doi.org/10.1097/CCM.0000000000004145
https://doi.org/10.1097/CCM.0000000000004145
https://doi.org/10.1007/978-3-031-57065-0
https://doi.org/10.1007/978-3-031-57065-0


Early Prediction of Causes (not Effects) in Healthcare

Kissoon, Simon Finfer, Carolin Fleischmann-Struzek, Flavia R Machado, Konrad K Rein-
hart, Kathryn Rowan, Christopher W Seymour, R Scott Watson, T Eoin West, Fatima
Marinho, Simon I Hay, Rafael Lozano, Alan D Lopez, Derek C Angus, Christopher J L
Murray, and Mohsen Naghavi. Global, regional, and national sepsis incidence and mortal-
ity, 1990–2017: analysis for the global burden of disease study. The Lancet, 395(10219):
200–211, 2020. URL https://doi.org/10.1016/S0140-6736(19)32989-7.

Shigehiko Schamoni, Holger A. Lindner, Verena Schneider-Lindner, Manfred Thiel, and
Stefan Riezler. Leveraging implicit expert knowledge for non-circular machine learning
in sepsis prediction. Journal of Artificial Intelligence in Medicine, 100:1–9, 2019. URL
https://doi.org/10.1016/j.artmed.2019.101725.

Christopher W. Seymour, Vincent X. Liu, Theodore J. Iwashyna, Frank M. Brunkhorst,
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Appendix A. Features for Prediction Task

Table 4: Feature list for MIMIC-III: Besides the following 131 dynamic variables, only age
and gender were extracted. The 15 variables marked with an asterisk are directly
used for calculating the SOFA score.

ALP Epinephrine* LDH Packed RBC
ALT Famotidine Lactate Pantoprazole
AST Fentanyl Lactated Ringers Phosphate
Albumin FiO2* Levofloxacin Piggyback
Albumin 25% Fiber Lorazepam Piperacillin
Albumin 5% Free Water Lymphocytes Platelet Count*
Amiodarone Fresh Frozen Plasma Lymphocytes (Absolute) Potassium
Anion Gap Furosemide MBP Pre-admission Intake
BUN GCS eye* MCH Pre-admission Output
Base Excess GCS motor* MCHC Propofol
Basophils GCS verbal* MCV RBC
Bicarbonate GT Flush Magnesium RDW
Bilirubin (Direct) Gastric Magnesium Sulfate (Bolus) RR
Bilirubin (Indirect) Gastric Meds Magnesium Sulphate Residual
Bilirubin (Total)* Glucose (Blood) Mechanically ventilated SBP*
CRR Glucose (Serum) Metoprolol SG Urine
Calcium Free Glucose (Whole Blood) Midazolam Sodium
Calcium Gluconate HR Milrinone Solution
Calcium Total Half Normal Saline Monocytes Sterile Water
Cefazolin Hct Morphine Sulfate Stool
Chest Tube Heparin Neosynephrine TPN
Chloride Hgb Neutrophils Temperature
Colloid Hydralazine Nitroglycerine Total CO2
Creatinine Blood* Hydromorphone Nitroprusside Ultrafiltrate
Creatinine Urine INR Norepinephrine* Urine*
D5W Insulin Humalog Normal Saline Vancomycin
DBP* Insulin NPH O2 Saturation Vasopressin
Dextrose Other Insulin Regular OR/PACU Crystalloid WBC
Dobutamine* Insulin largine PCO2 Weight
Dopamine* Intubated PO intake pH Blood
EBL Jackson-Pratt PO2* pH Urine
Emesis KCl PT
Eoisinophils KCl (Bolus) PTT
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Table 5: Feature list for eICU: Besides the following 98 dynamic variables, there are 17
static variables covering age, gender, admission information, and ICU type. The
15 variables marked with an asterisk are directly used for calculating the SOFA
score.
On the right column, there are 35 drug-related variables. Some of them seem
redundant due to different hospitals but can not be merged because of different or
not standardized concentrations.

ALP Lactate Amiodarone
ALT Lymphocytes Dobutamine dose
AST MBP Dobutamine ratio*
Albumin MCH Dopamine dose
Anion Gap MCHC Dopamine ratio*
BUN MCV Epinephrine dose
Base Deficit MPV Epinephrine ratio*
Base Excess Magnesium Fentanyl 1
Basophils Monocytes Fentanyl 2
Bedside Glucose Neutrophils Fentanyl 3
Bicarbonate O2 L/% Furosemide
Bilirubin (Direct) O2 Saturation Heparin 1
Bilirubin (Total)* PT Heparin 2
Bodyweight (kg) PTT Heparin 3
CO2 (Total) PaCO2 Heparin vol
Calcium PaO2* Insulin 1
Chloride Phosphate Insulin 2
Creatinine (Blood)* Platelets* Insulin 3
Creatinine (Urine) Potassium Midazolam 1
DBP* Protein (Total) Midazolam 2
Eoisinophils RBC Milrinone 1
EtCO2 RDW Milrinone 2
FiO2* RR Nitroglycerin 1
Fibrinogen SBP* Nitroglycerin 2
GCS eye* Sodium Nitroprusside
GCS motor* Stool Norepinephrine 1
GCS verbal* Temperature Norepinephrine 2
Glucose Troponin - I Norepinephrine ratio*
HR Urine* Pantoprazole
Hct WBC Propofol 1
Hgb pH Propofol 2
INR Propofol 3

Vasopressin 1
Vasopressin 2
Vasopressin 3
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Appendix B. SOFA score

The Sepsis-related Organ Failure Assessment (SOFA) is calculated by summing six subscores
ranging from 0 to 4. In our setting, we had to recalculate MAP (mean arterial pressure) by
SBP and DBP (systolic and diastolic blood pressure), the Horowitz coefficient PaO2/FiO2
by PaO2 and FiO2, but ignored the kind of mechanical ventilation. If no value for calculation
in a SOFA subsystem was available, we took a value of 0.

Table 6: SOFA score (Vincent et al., 1996). Abbreviations: CNS = Central nervous system;
GCS = Glasgow Coma Scale; MV = mechanically ventilated including CPAP;
MAP = mean arterial pressure, UO = Urine output.

CNS Cardiovascular Respiratory Coagu-
lation

Liver Renal

S
co

re

GCS MAP
or vasopressors

PaO2/FiO2
(mmHg)

Platelets
(×103/µl)

Bilirubin
(mg/dl)

Creatinine
(mg/dl) or
UO

+0 15 MAP ≥ 70 mmHg ≥ 400 ≥ 150 < 1.2 < 1.2
+1 13–14 MAP < 70 mmHg < 400 < 150 1.2–1.9 1.2–1.9
+2 10–12 dopamine ≤ 5 µg/kg/min OR

dobutamine (any dose)
< 300 < 100 2.0–5.9 2.0–3.4

+3 6–9 dopamine > 5 µg/kg/min OR
epinephrine ≤ 0.1 µg/kg/min
OR
norepinephrine ≤ 0.1 µg/kg/min

< 200 AND MV < 50 6.0–11.9 3.5–4.9 OR
< 500
ml/day

+4 < 6 dopamine > 15 µg/kg/min OR
epinephrine > 0.1 µg/kg/min
OR
norepinephrine > 0.1 µg/kg/min

< 100 AND MV < 20 > 12.0 > 5.0 OR
< 200
ml/day

Appendix C. SAPS-II score
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Appendix D. Dataset densities

Figure 5: Comparison of the length of stay of patients (lines) and observations per hour per
patient (bars) for MIMIC-III and eICU.
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Appendix E. Metaparameter settings

Table 8: Metaparameter settings for training runs on MIMIC-III. Best settings chosen on
development data are shown in bold face.

MIMIC-III

Parameter Triplet Dense

Embedding Size 25, 50, 100 128, 256, 512
Hidden Size Encoder 25, 50, 100 128, 256, 512
Hidden Size DMS Decoder 50, 100, 200 128, 256, 512
Hidden Size IMS Decoder Output Dimensionality Output Dimensionality
# Encoder Layers 1, 2 1, 2
# DMS Decoder Layers 1, 2 1, 2
# IMS Decoder Layers 1, 2 1, 2
Learning Rate 0.0001, 0.0005, 0.001 0.0001, 0.0005, 0.001
Batch Size 8, 16, 32 8, 16, 32
Attention Heads Encoder 2, 4, 8 2, 4, 8
Attention Heads DMS Decoder Prediction Timesteps Prediction Timesteps
Attention Heads IMS Decoder 1, 2, 4 1, 2, 4
Dropout 0.05, 0.1, 0.2 0.05, 0.1, 0.2
Epochs 100 100
Patience 6 6
Random Seed Unixtime variation Unixtime variation
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Table 9: Metaparameter settings for training runs on eICU. Best settings chosen on devel-
opment data are shown in bold face.

eICU

Parameter Triplet Dense

Embedding Size 25, 50, 100 256, 512, 1024
Hidden Size Encoder 25, 50, 100 256, 512, 1024
Hidden Size DMS Decoder 25, 50, 100 256, 512, 1024
Hidden Size IMS Decoder Output Dimensionality Output Dimensionality
# Encoder Layers 1, 2, 3 1, 2, 3
# DMS Decoder Layers 1 1
# IMS Decoder Layers 1 1
Learning Rate 0.0005 0.0005
Batch Size 32 32
Attention Heads Encoder 2, 4, 8 8
Attention Heads DMS Decoder Prediction Timesteps Prediction Timesteps
Attention Heads IMS Decoder 1,2,4 1,2,4
Dropout 0.2 0.05
Epochs 600 600
Patience 6 6
Random Seed Unixtime variation Unixtime variation
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Appendix F. Experiments on eICU

Table 10: Main evaluation results on eICU for combinations of sparse and dense encoders
with direct multi-step (DMS) and iterative multi-step (IMS) decoders, trained by
teacher forcing (TF), student forcing (SF), or scheduled sampling (SS), with or
without backpropagation (BP) through predictions. Only curricula for random-
ized increasing (RI) scheduling are shown. Evaluation is done according to MSE
of all variables (Equation 5), MSE for SOFA (Equation 8), and Accuracy for
Sepsis (Equation 9). Numbers in subscripts denote the 95% confidence interval
for the estimation of the respective evaluation score on the test set. Best results
are shown in bold face.

Model Enc Dec Train BP MSE MSE-SOFA Acc-Sepsis

1 Triplet DMS - - 5.748[5.747,5.749] 2.673[2.672,2.673] 87.59[86.54,88.64]
2 Triplet IMS TF - 9.175[9.174,9.176] 4.429[4.429,4.429] 83.97[82.80,85.14]
3 Triplet IMS SF No 5.134[5.133,5.135] 2.113[2.113,2.114] 87.05[86.09,88.00]
4 Triplet IMS SF Yes 5.160[5.159,5.161] 2.295[2.295,2.295] 87.40[86.42,88.38]
9 Triplet IMS SS-RI No 5.256[5.255,5.257] 2.233[2.232,2.233] 86.98[86.02,87.94]
10 Triplet IMS SS-RI Yes 5.331[5.330,5.332] 2.044[2.243,2.244] 86.27[85.28,87.26]

13 Dense DMS - - 5.352[5.351,5.353] 2.321[2.321,2.321] 87.88[87.18,88.58]
14 Dense IMS TF - 9.104[9.102,9.105] 4.292[4.291,4.292] 84.92[83.92,85.91]
15 Dense IMS SF No 5.528[5.527,5.529] 2.125[2.125,2.126] 90.02[89.07,90.98]
16 Dense IMS SF Yes 5.395[5.394,5.396] 2.024[2.024,2.024] 90.66[89.73,91.58]

21 Dense IMS SS-RI No 5.322[5.321,5.323] 2.273[2.273,2.274] 88.34[87.45,89.24]
22 Dense IMS SS-RI Yes 5.399[5.398,5.300] 2.208[2.208,2.209] 88.95[88.03,89.86]

Informer Dense DMS - - 5.578[5.677,5.679] 2.305[2.304,2.305] 87.99[87.29,88.68]
Autoformer Dense DMS - - 5.984[5.983,5.986] 2.254[2.254,2.255] 85.21[84.22,86.19]
DLinear Dense DMS - - 5.974[5.973,5.975] 3.340[3.340,3.340] 85.10[84.11,86.09]
Linear Dense DMS - - 5.975[5.974,5.976] 3.331[3.330,3.331] 85.07[84.08,86.07]
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Table 11: SAPS-II evaluation results on eICU for combinations of sparse and dense encoders
with direct multi-step (DMS) and iterative multi-step (IMS) decoders, trained by
teacher forcing (TF), student forcing (SF), or scheduled sampling (SS), with or
without backpropagation (BP) through predictions. Only curricula for random-
ized increasing (RI) scheduling are shown. Evaluation is done according to MSE
of all variables (Equation 5), MSE for SOFA (Equation 8), and Accuracy for
Sepsis (Equation 9). Numbers in subscripts denote the 95% confidence interval
for the estimation of the respective evaluation score on the test set. Best results
are shown in bold face.

Model Enc Dec Train BP MSE MSE-SAPS-II

1 Triplet DMS - - 5.748[5.747,5.749] 93.799[93.799,93.799]
2 Triplet IMS TF - 9.175[9.174,9.176] 123.362[123.362,123.363]
3 Triplet IMS SF No 5.134[5.133,5.135] 91.337[91.337,91.337]
4 Triplet IMS SF Yes 5.160[5.159,5.161] 94.379[94.379,94.380]
9 Triplet IMS SS-RI No 5.256[5.255,5.257] 96.613[96.613,96.614]
10 Triplet IMS SS-RI Yes 5.331[5.330,5.332] 91.571[91.571,91.571]

13 Dense DMS - - 5.352[5.351,5.353] 89.429[89.429,89.429]
14 Dense IMS TF - 9.104[9.102,9.105] 121.478[121.478,121.479]
15 Dense IMS SF No 5.528[5.527,5.529] 87.598[87.598,87.599]
16 Dense IMS SF Yes 5.395[5.394,5.396] 86.279[86.279,86.280]

21 Dense IMS SS-RI No 5.322[5.321,5.323] 92.525[92.525,92.526]
22 Dense IMS SS-RI Yes 5.399[5.398,5.300] 91.827[91.827,91.828]

Informer Dense DMS - - 5.578[5.577,5.579] 89.139[89.138,89.139]
Autoformer Dense DMS - - 5.984[5.983,5.985] 89.513[89.513,89.514]
DLinear Dense DMS - - 5.974[5.973,5.975] 94.177[94.176,94.177]
Linear Dense DMS - - 5.975[5.974,5.976] 93.743[93.743,93.743]
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Appendix G. Detailed Results for Sepsis Prediction

Table 12: F1 score and the values of the confusion matrix (TP, FP, FN, TN) used to
compute it for the MIMIC-III dataset.

Model Enc Dec Train BP TP FP FN TN F1

1 Triplet DMS - - 84 41 41 662 67.2
2 Triplet IMS TF - 84 165 41 538 44.92
3 Triplet IMS SF No 84 46 41 657 65.88
4 Triplet IMS SF Yes 84 48 41 655 65.37
9 Triplet IMS SS-RI No 84 78 41 625 58.54
10 Triplet IMS SS-RI Yes 84 71 41 632 60.0
13 Dense DMS - - 84 76 41 627 58.95
14 Dense IMS TF - 81 236 44 467 36.65
15 Dense IMS SF No 80 46 45 656 63.75
16 Dense IMS SF Yes 85 40 40 663 68.0
21 DENSE IMS SS-RI No 85 72 40 631 60.28
22 DENSE IMS SS-RI Yes 85 82 40 621 58.22
Informer Dense DMS - - 77 70 48 633 56.62
Autoformer Dense DMS - - 89 50 36 653 67.42
DLinear Dense DMS - - 77 149 48 554 43.87
Linear Dense DMS - - 77 140 48 563 45.03

Table 13: F1 score and the values of the confusion matrix (TP, FP, FN, TN) used to
compute it for the eICU dataset.

Model Enc Dec Train BP TP FP FN TN F1

1 Triplet DMS - - 83 181 289 3236 26.1
2 Triplet IMS TF - 46 281 326 3136 13.16
3 Triplet IMS SF No 71 190 301 3227 22.43
4 Triplet IMS SF Yes 75 180 297 3237 23.92
9 Triplet IMS SS-RI No 71 192 301 3215 22.36
10 Triplet IMS SS-RI Yes 76 194 326 3223 22.62
13 Dense DMS - - 84 171 288 3246 26.79
14 Dense IMS TF - 69 269 303 3148 19.44
15 Dense IMS SF No 98 104 274 3313 34.15
16 Dense IMS SF Yes 90 72 282 3345 33.71
21 Dense IMS SS-RI No 75 145 297 3272 25.34
22 Dense IMS SS-RI Yes 86 132 286 3285 29.15
Informer Dense DMS - - 84 167 288 3250 26.97
Autoformer Dense DMS - - 72 260 300 3157 20.45
DLinear Dense DMS - - 57 249 315 3168 16.81
Linear Dense DMS - - 57 250 315 3167 16.79
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