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Semi-Supervised Generative Models for Disease Trajectories

Abstract

We propose a deep generative approach using latent temporal processes for modeling and
holistically analyzing complex disease trajectories, with a particular focus on Systemic Scle-
rosis (SSc). We aim to learn temporal latent representations of the underlying generative
process that explain the observed patient disease trajectories in an interpretable and com-
prehensive way.
To enhance the interpretability of these latent temporal processes, we develop a semi-
supervised approach for disentangling the latent space using established medical knowledge.
By combining the generative approach with medical definitions of different characteristics
of SSc, we facilitate the discovery of new aspects of the disease.
We show that the learned temporal latent processes can be utilized for further data anal-
ysis and clinical hypothesis testing, including finding similar patients and clustering SSc
patient trajectories into novel sub-types. Moreover, our method enables personalized online
monitoring and prediction of multivariate time series with uncertainty quantification.

1. Introduction

Understanding and analyzing clinical trajectories of complex diseases, such as Systemic
Sclerosis (SSc), is crucial for improving diagnosis, treatment, and patient outcomes (Allam
et al., 2021). However, modeling such multivariate time series data poses significant chal-
lenges due to the high dimensionality of clinical measurements, low signal-to-noise ratio,
sparsity, and the complex interplay of various potentially unobserved factors influencing the
disease progression (Allam et al., 2021). Therefore, our primary goal is to develop a machine
learning (ML) model suited for the holistic analysis of temporal disease trajectories. More-
over, we aim to uncover meaningful temporal latent representations capturing the complex
interactions within the raw data while also providing interpretable insights, and potentially
revealing novel medical aspects of clinical disease trajectories. To achieve these goals, we
present a deep generative temporal model that captures both the joint distribution of all
observed longitudinal clinical variables and latent temporal variables (Figure 1).

Since inferring interpretable temporal representations in a fully unsupervised way is
very challenging (Locatello et al., 2020a), we propose a semi-supervised approach for dis-
entangling the latent space using known medical knowledge to enhance the interpretability.
Combining an unsupervised latent generative model with known medical labels facilitates
the discovery of novel medically-driven patterns in the data.

Deep probabilistic generative models (Tomczak (2022)) provide a more holistic approach
to modeling complex data than deterministic discriminative models. By learning the joint
distribution over all observed variables, they model the underlying data-generating mech-
anism. In contrast, discriminative models only learn the conditional distribution of the
target variable given the input variables.

While our method is general and can be applied to a wide range of high-dimensional
clinical datasets, in this paper, we demonstrate its effectiveness in modeling the progression
of systemic sclerosis (SSc), a severe and yet only partially understood autoimmune disease.
SSc triggers the immune system to attack the body’s connective tissues, causing severe
damage to the skin and multiple other internal organs. We seek to understand the evolution
of SSc by modeling the patterns of organ involvement and progression. In doing so, we aim
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to learn temporal hidden representations that distinctly capture the disentangled medical
disease processes related to each organ.

temporal latent processes 𝒛𝟏:𝑻clinical measurements 𝒙𝟏:𝑻 medical knowledge 𝒚𝟏:𝑻

conditioning features c

Figure 1: Temporal generative model for systemic sclerosis. The latent temporal process z
generates the observed x and y trajectories conditioned on data c.

Our approach offers several contributions:

• Interpretable Temporal Latent Processes: Our generative model allows the
non-linear projection of patient trajectories onto lower-dimensional temporal latent
processes, providing useful representations for the visualization and understanding of
complex medical time series data.

• Semi-Supervised Guided Latent Processes: To achieve more interpretable latent
temporal spaces, we propose a semi-supervised approach for disentangling the latent
space with respect to medical knowledge. By combining the generative approach with
medical domain knowledge, new aspects of the disease can be discovered.

• Online Prediction with Uncertainty Quantification: Our deep generative prob-
abilistic model facilitates personalized online monitoring and reliable predictions of
multivariate time series data with uncertainty quantification.

• Facilitating Clinical Hypothesis Testing: The learned temporal latent processes
can be inspected for further data analysis and clinical hypothesis testing, such as
finding similar patients and clustering the disease trajectories into new sub-types.

• Large-Scale Analysis of Systemic Sclerosis : We demonstrate the potential of
our ML model for comprehensively analyzing SSc for the first time at a large scale
including multiple organs and various observed clinical variables.

Generalizable Insights about Machine Learning in the Context of Healthcare

Our work offers contributions at the intersection of machine learning methodology and
clinical practice, by proposing a new deep generative approach to model patient disease
trajectories and conducting a large-scale ML analysis of organ involvement in SSc. We
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propose an approach to augment deep unsupervised generative models with medical knowl-
edge, resulting in models with more interpretable and disentangled latent processes, suited
for further downstream tasks like clustering. Our work also highlights the challenges of de-
veloping a holistic end-to-end approach to process high-dimensional, sparse, and temporal
clinical data. Moreover, we demonstrate that our approach facilitates meaningful pheno-
typing of SSc and offers a novel methodology for understanding the disease’s progression
across multiple organs, setting a foundational baseline for future machine learning research
on organ-specific disease modeling in SSc. While our expertise is suited to the modeling of
SSc, we are confident that enriching deep generative models with targeted clinical knowl-
edge holds potential for interdisciplinary collaborations between ML researchers and clinical
experts to study various complex chronic diseases.

2. Related Work

2.1. Generative Latent Variable Models

Learning latent representations from raw data has a long tradition in statistics and ML with
foundational research such as principal component analysis (Hotelling, 1933), factor analysis
(Lawley and Maxwell, 1962) or independent component analysis (Comon, 1994), which all
can be used to project high-dimensional tabular data to a latent space. For temporal
data, models with latent processes such as hidden Markov models (Baum and Petrie, 1966)
and Gaussian processes (Williams and Rasmussen, 2006) have extensively been used for
discrete and continuous time applications, respectively. Conceptually, all these models can
be viewed as probabilistic generative models with latent variables (e.g. Murphy (2022)),
however, these models only learn linear or simple relationships between the input data and
the latent space.

In their seminal work on Variational Autoencoders (VAEs), Kingma and Welling (2013)
proposed a powerful generalization for latent generative models. The key idea is to use deep
neural networks as function approximators to learn the moments of the data distribution,
enabling the representation of arbitrarily complex distributions. The parameters of the
neural networks are inferred using amortized variational inference (VI) (Blei et al., 2017), a
powerful Bayesian inference method for approximating intractable probability distributions.
There are various successors building and improving on the original model, for instance,
conditional VAE (Sohn et al., 2015), LVAE (Sønderby et al., 2016), or VQ-VAE (Van
Den Oord et al., 2017). Moreover, there are also several extensions that explicitly model
time in the latent space such as RNN-VAE (Chung et al., 2015), GP-VAE (Casale et al.,
2018; Fortuin et al., 2020), or longitudinal VAE (Ramchandran et al., 2021).

While these approaches have showcased remarkable efficacy in generating diverse objects
such as images or modeling time series, the interpretability of the resulting latent spaces or
processes remains limited for complex data. Moreover, the true underlying distributions of
known processes often cannot be recovered, and instead become entangled within a single
latent factor (Bengio et al., 2013). Thus, there is ongoing research in designing generative
models with disentangled latent factors, such as β−VAE (Higgins et al., 2016), factorVAE
(Kim and Mnih, 2018), TCVAE (Chen et al., 2018) or temporal versions including disen-
tangled sequential VAE (Hsu et al., 2017) and disentangled GP-VAE (Bing et al., 2021).

4
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However, learning interpretable and disentangled latent representations is highly dif-
ficult or even impossible for complex data without any inductive bias (Locatello et al.,
2020a). Hence, purely unsupervised modeling falls short, leading researchers to focus on
weakly supervised latent representation learning instead (Locatello et al., 2020b; Zhu et al.,
2022; Palumbo et al., 2023). In a similar spirit, we tackle the temporal semi-supervised
guidance of the latent space by using sparse labels representing established medical domain
knowledge. We model the progression of complex diseases in an unsupervised way using the
raw temporal clinical measurements, while augmenting the model with temporal medical
labels.

2.2. Analyzing Disease Trajectories with ML

Recently, extensive research has focused on modeling and analyzing clinical time series
with machine learning – we refer to Allam et al. (2021) for an overview. However, most
approaches focus on deterministic time series forecasting, and only a few focus on inter-
pretable representation learning with deep models (Trottet et al., 2023) and irregularly
sampled times (Chen et al., 2023) or on online uncertainty quantification with generative
models (Schürch et al., 2020; Cheng et al., 2020; Rosnati and Fortuin, 2021).

A few approaches aim at uncovering disease stages from electronic health records in a
fully unsupervised way (Yang et al., 2014; Wang et al., 2014; Alaa and van der Schaar,
2019) or with a self-supervised approach (Raghu et al., 2023). However, as motivated in the
previous section, and by Chen et al. (2021), we rather develop a semi-supervised approach
to model latent disease stages using sparse medical labels.

Recent approaches for clustering time series (Lee and Van Der Schaar, 2020; Srivastava
and Rajan, 2023; Qin et al., 2023) focus on learning predictive embeddings for future events.
However, these techniques are not designed for semi-supervised environments with high-
dimensional, multi-labeled, and sparse temporal data. While Noroozizadeh et al. (2023)
and Holland et al. (2023) leverage contrastive learning to cluster time series, we rather
adopt a generative approach to fully model the complete patient trajectory.

Furthermore, prior research on data-driven analysis of systemic sclerosis is limited. In
their recent review, Bonomi et al. (2022) discuss the existing studies applying machine
learning for precision medicine in systemic sclerosis. However, all of the listed studies are
limited by the small cohort size (maximum of 250 patients), making the use of deep learning
models challenging. Deep models were only used for analyzing imaging data, mainly related
to nailfold capillaroscopy (Garaiman et al., 2022). Furthermore, most existing works solely
focus on the involvement of a single organ in SSc, namely interstitial lung disease (ILD),
and on forecasting methods (Bonomi et al., 2022). To the best of our knowledge, our work
is the first attempt at a comprehensive and large-scale (N=5673 patients) ML analysis of
systemic sclerosis involving multiple organs and a wide range of observed clinical variables
together with a systematic integration of the latest medical knowledge.

3. Methods

We analyze patient medical histories that consist of two main types of data: raw tempo-
ral clinical measurements x = x1:T ∈ RD×T , such as blood pressure, and sparse medical
knowledge labels y = y1:T ∈ RP×T , describing the medical definitions of selected aspects
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of the disease, such as the medical definition of severity staging of the heart involvement
in SSc (Figure 1). The medical knowledge definitions (Appendix A.2) are typically derived
from multiple clinical measurements using logical operations. For example, a patient may
be classified as having “lung involvement” if certain conditions are satisfied, for instance,
x(i) > ε OR x(j) = 1. Both the raw measurements and labels are irregularly sampled, and
we denote by τ 1:T ∈ RT the vector of observation time-points of x and y. Moreover, there
is non-temporal information denoted by s ∈ RS such as patient demographics, alongside
additional temporal covariates such as medications p1:T ∈ RP×T for each patient.

We condition our generative model on the context variable c = {τ ,p, s} to take into
account the heterogeneous patient preconditions. Furthermore, in the next sections, we
introduce our approach to learning unobserved multivariate latent processes denoted as
z = z1:T ∈ RL×T , responsible for generating both the raw clinical measurements x1:T

and the medical labels y1:T . Specifically, we use the different temporal medical labels to
disentangle the L dimensions of the latent processes by allocating distinct dimensions to
represent different medical knowledge labels.

We assume a dataset {xi1:Ti ,y
i
1:Ti

, ci1:Ti}
N
i=1 of N patients, and omit the dependency to

i and the time index when the context is clear. Note that the measurements and medical
labels are often partially observed, see more details in Appendix B.1.1. A table of the main
introduced symbols is provided in Table 2 in the appendix.

3.1. Generative Model

We propose the probabilistic conditional generative latent variable model

pψ(x,y, z|c) = pπ(x|z, c)pγ(y|z, c)pϕ(z|c),

with learnable prior network pϕ(z|c), measurement likelihood network pπ(x|z, c), and guid-
ance networks pγ(y|z, c), where ψ = {γ, π, ϕ} are learnable parameters (2(a)subfigure).
We assume conditional independence of x and y given z and c. Although the mea-
surements and the medical labels are conditionally independent, the marginal distribution
pψ(y,x|c) =

∫
pψ(y,x, z|c)dz allows arbitrarily rich correlations among the observed vari-

ables. For the sake of brevity, we do not include the time index explicitly.

3.2. Prior of Latent Process

We use a learnable prior network for the latent temporal variables z ∈ RL×T , that is,

pϕ(z|c) =
T∏
t=1

L∏
l=1

N
(
zlt|µlϕ(ct), σlϕ(ct)

)
,

conditioned on the context variables c = {τ ,p, s}, so that time-varying or demographic
effects can be learned in the prior (Appendix D.2.1). The means µlϕ(ct) and variances

σlϕ(ct) are parametrized by deep neural networks. We assume a factorized Gaussian prior
distribution per time and latent dimensions, however, many interesting extensions including
continuous-time priors are straightforward (Appendix B.2).
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Figure 2: Semi-supervised temporal latent variable model. The left panel shows the model
architecture with the inference and generative components, and the right panel
describes the guidance networks. We have independent guidance networks for
each medical label, taking as input a subset of the latent dimensions and predict-
ing the corresponding medical label.
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3.3. Likelihood of Measurements

The probabilistic likelihood network maps the latent temporal processes z ∈ RL×T together
with the context variables c to the clinical measurements x ∈ RD×T , i.e. we assume the
following factorization

pπ(x|z, c) =
T∏
t=1

∏
d∈G

N (xdt |µdπ, σdπ)
∏
d∈K

C(xdt |pdπ),

where we assume time and feature-wise conditional independence. We assume either Gaus-
sian N or categorical C likelihoods for the observed variables x, where G and K are the
corresponding indices. The moments of these distributions are parametrized by deep neural
networks, i.e. the mean µdπ = µdπ(zt, ct), variance σ

d
π = σdπ(zt, ct), and category probability

vector pdπ = pdπ(zt, ct). Although the likelihood is a parametric distribution, the posterior
distribution can be arbitrarily complex after marginalizing out the latent process z.

3.4. Semi-Supervised Guidance Network

We propose a semi-supervised approach to disentangle the latent process z with respect to
defined medical labels y = y1:T ∈ RP×T . In particular, we assume

pγ(y|z, c) =
T∏
t=1

G∏
g=1

C(yν(g)t |hν(g)γ (z
ε(g)
t , ct)),

where |G| is the number of different medical labels. We assume categorical distributions for

all medical labels, but the extension to continuous labels is straightforward. h
ν(g)
γ (z

ε(g)
t , ct)

is a deep parametrized category probability matrix, and ν(g) and ε(g) correspond to the
indices of the gth guided medical label, and the indices in the latent space defined for guided
label g, respectively (Figure 2(b)subfigure).

3.5. Posterior of Latent Process

We are mainly interested in the posterior distribution pψ(z|x,y, c) of the latent process
given the observations, which we approximate with an amortized variational distribution
(Section 3.6, Appendix B.1)

qθ(z|x, c) ≈ pψ(z|x,y, c).

We use the amortized variational distribution

qθ(z|x0:k, c) =
T∏
t=1

L∏
l=1

N (zlt|µlθ(x0:k, c), σ
l
θ(x0:k, c))

with variational parameters θ and 0 ≤ k ≤ T . Note that only the measurements x0:k until
observation k are part of the variational distribution, and not the medical labels y. If
k = T , there is no forecasting, whereas for 0 ≤ k < T , we can also forecast the future latent
variables zk+1:T from the first measurements x0:k.
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3.6. Probabilistic Inference

Since exact inference with the marginal likelihood pψ(x,y|c) =
∫
pγ(y|z, c)pπ(x|z, c)pϕ(z|c)dz

is not feasible (Appendix B.1), we apply amortized variational inference (Blei et al., 2017)
by maximizing a lower bound log pψ(x,y|c) ≥ L(ψ, θ;x,y, c) of the intractable marginal
log likelihood. For a fixed k, this leads to the following objective function

Lk(ψ, θ;x,y, c) = Eqθ(z|x0:k,c) [log pπ(x|z, c)]
+ α Eqθ(z|x0:k,c) [log pγ(y|z, c)]
− β KL [qθ(z|x0:k, c) || pϕ(z|c)] ,

(1)

where we introduce weights α and β inspired by the disentangled β−VAE (Higgins et al.,
2016). The first term Eqθ(z|x0:k,c) [log pπ(x|z, c)] is unsupervised, whereas the second

αEqθ(z|x0:k,c) [log pγ(y|z, c)]

is supervised and βKL [qθ(z|x0:k, c)||pϕ(z|c)] is a regularization term, ensuring that the
posterior is close to the prior with respect to the Kullback-Leibler (KL) divergence. Since
all dimensions in the latent space z are connected to all the measurements x through the
likelihood network, all the potential correlations between clinical measurement variables
can be exploited in an unsupervised fashion while disentangling the latent variables using
the guidance networks for y. The expectation over the variational distribution Eqθ(z|x0:k,c)

is approximated with a few Monte-Carlo samples (Appendix B.1).
Given a dataset with N iid patients {xi1:Ti ,y

i
1:Ti

, ci1:Ti}
N
i=1, the optimal parameters are

obtained by the maximization task

ψ∗, θ∗ = argmax
ψ,θ

N∑
i=1

Ti∑
k=0

Lk(ψ, θ;xi,yi, ci),

which is solved with stochastic optimization using mini-batches of patients and different
values for k (Appendix B.1.2). Since real-world time series data often contains many missing
values, the objective function can be adapted accordingly (Appendix B.1.1).

3.7. Online Prediction with Uncertainty Quantification

Our model can be used for online monitoring and continuous prediction of high-dimensional
medical label and clinical measurement distributions based on an increasing number of
available past clinical observations x0:k for k = 0, 1, . . . , T . The distributions

q∗(y|x0:k, c) =

∫
pγ∗(y|z, c)qθ∗(z|x0:k, c)dz

q∗(x|x0:k, c) =

∫
pπ∗(x|z, c)qθ∗(z|x0:k, c)dz

are approximated with two-stage Monte-Carlo sampling (Appendix B.1.3). The former can
be used to automatically label and forecast the multiple medical labels based on the raw
and partially observed measurements, whereas the latter corresponds to the reconstruction
and forecasting of partially observed clinical measurement trajectories. Note that these
distributions represent a complex class of potentially multi-modal distributions.
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3.8. Patient Similarity and Clustering

The learned posterior network qθ∗(z1:T |x1:T , c1:T ) can be used to map any observed patient
trajectory Ti = {xi1:Ti , c

i
1:Ti

} to their latent trajectory

Hi = h(Ti) = Eqθ(zi
1:Ti

|xi
1:Ti

,ci1:Ti
)

[
zi1:Ti

]
by taking the mean of the latent process. These temporal latent trajectories {Hi}Ni=1 of the
N patients in the cohort are used to define a patient similarity over the partially observed
and high-dimensional original disease trajectories {Ti}Ni=1. Through our semi-supervised
generative approach, the latent trajectories effectively capture the important components
from xi1:Ti and yi1:Ti , without explicitly depending on yi1:Ti . Indeed, all the information
related to the medical labels is learned by θ.

Since defining a patient similarity measure between two trajectories Ti and Tj in the
original space is very challenging, due to the missingness and high dimensionality of the
variables, we instead define it in the latent space, setting

dT (Ti, Tj) = dH (Hi,Hj) .

To measure the similarity dH (Hi,Hj) between latent trajectories, we employ the dynamic-
time-warping (dtw) measure to account for the different lengths of the trajectories as well as
the potentially misaligned disease progressions in time (Müller, 2007). We then utilize the
similarity measure to cluster the disease trajectories and identify similar patient trajectories
as discussed in Section 5.3.2.

3.9. Deep Probabilistic Networks

As shown in Figures 2(a)subfigure and 2(b)subfigure, our model combines several deep
probabilistic networks. For the posterior qθ(z|x0:k, c), we implemented a temporal network
with fully connected and LSTM layers (Hochreiter and Schmidhuber, 1997) and multilayer
perceptrons (MLPs) for the prior pϕ(z|c), guidance pγ(y|z, c) and likelihood pπ(x|z, c)
networks. Implementation details are provided in Appendix C.1.

By omitting the guidance pγ(y|z, c) or likelihood networks pπ(x|z, c), we recover well-
established temporal latent variable models. Specifically, removing the guidance networks
transforms the model into a deterministic predictive LSTM-Autoencoder, or probabilistic
predictive LSTM-VAE if we learn the latent space distribution. Moreover, if we exclude
the likelihood network pπ(x|z, c), the model operates in a fully supervised setting, focusing
solely on optimizing the latent space for the prediction of the medical labels y. Many
further architectural choices could be explored, such as a temporal likelihood network or a
Gaussian process prior (Appendix B.2), but they are beyond the scope of this paper.

4. Cohort

We evaluate our model on the European Scleroderma Trials and Research (EUSTAR)
database. The EUSTAR database extensively documents organ involvement in SSc for
about 20’000 patients. For a detailed description of the database, we refer the reader to
Meier et al. (2012); Hoffmann-Vold et al. (2021). We use this database because this work
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is part of a broader initiative aiming to find the optimal medical definitions for organ in-
volvement in SSc, leveraging data from the EUSTAR registry.

We included 5673 patients with at least 5 and at most 15 medical visits. We used 6
static variables related to the patients’ demographics and almost 40 clinical measurement
variables, mainly related to the lung, heart, and joint monitoring in SSc (Appendix A.3).

4.1. Data extraction and Feature Choices

The clinical measurement variables and patient demographics are directly available in the
EUSTAR database. We provide a list of the used clinical measurement variables in Ap-
pendix A.3. They were selected based upon clinical relevance for modeling SSc. Each
medical label is based on multiple EUSTAR variables (cf definitions in A.2) and created by
using logical operations. For instance, the lung is involved if ILD on HRCT1 = YES OR
FVC2 < 70%.

4.2. Missing values

Missingness is a common issue in medical records. We used mean value imputation for
missing clinical measurements. However, we did not train our model to reconstruct these
missing measurements, i.e. the imputed values are not part of the optimized loss (cf Ap-
pendix B.1.1), thus mitigating the bias induced by the missingness. Additionally, given that
the medical labels often rely on multiple EUSTAR variables, they are even sparser due to
a propagation of the missingness. The advantage of our semi-supervised approach is that
it relies solely on available labels for guidance, without necessitating any label imputation.

The code and examples using an artificial dataset are available as supplementary material.

5. Results on the EUSTAR Database

5.1. Study Design: Modeling Systemic Sclerosis

We aim to model the overall SSc disease trajectories as well as the distinct organ involvement
trajectories for patients from the EUSTAR database.

We focus on the involvement of three important organs in SSc, namely the lung, heart,
and arthritis in the joints. Each organ has two related medical knowledge labels: in-
volvement and stage. Based upon the medical definitions provided in Appendix A.2, for
each of the three organs, we created labels signaling the organ involvement (yes/no) and
severity stage (1 − 4), respectively. We write o(m), m ∈ {involvement, stage} := M,
o ∈ O := {lung, heart, joints}, to refer to the corresponding medical label for organ o. We
project the D = 34 and P = 11 input features to a latent process z of dimension L = 21.

For each organ, we guide a distinct subset of 7 latent processes (non-overlapping subsets),
thus all of the dimensions in z are guided (2(b)subfigure). Following the notations from

1. Interstitial Lung Disease on High-Resolution computed Tomography
2. Forced Vital Capacity
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Section 3.4, we assume the following guidance network structure

pγ(y|z, c) =
T∏
t=1

∏
o∈O

∏
m∈M

pγ(y
ν(o(m))
t |zε(o(m))

t , ct),

where ν(o(m)) and ε(o(m)) are the corresponding indices of the dimensions in the output
and latent process, respectively.

5.1.1. Evaluation

Given the conditioning data c and the clinical measurements x0:k up to a given time-step
k, our model learns the optimal parameters of the variational distribution of the complete
latent trajectory qθ(z|x0:k, c), of the likelihood pπ(x|z, c) and of the guidance networks
pγ(y|z, c). Thus given x0:k and c, our model predicts the complete trajectories of both x
and y.

We aim to propose a holistic model that prioritizes versatility over achieving cutting-
edge predictive performance. Thus, we evaluate the predictive trade-offs of our approach
versus well-established deterministic and probabilistic temporal deep latent variable models
optimized separately for each of the predictive tasks, i.e. predicting only x or y in a fully
supervised way.

We evaluate the interpretability and disentanglement of the latent processes in our model
against fully unsupervised methods. Furthermore, we evaluate and discuss the clinical
relevance of the trajectory clusters identified for SSc patients. Lastly, we follow an index
patient to showcase how our model enhances the understanding of their disease course,
including online patient monitoring, patient trajectory sampling, and visualizations in the
latent space. We refer the reader to the Appendix D.1 for additional results related to
patient similarity, adjustment of uncertainty quantification to out-of-distribution data, and
sampling of prior trajectories.

5.2. Predictive Performance Evaluation

5.2.1. Baselines

The temporal baselines follow a similar encoder-decoder architecture as our model and
are optimized to predict either x or y as targets. Similarly to our model, their temporal
encoders take as input x0:k and c and learn the distribution of the latent variables z.
The predictive decoders take as input a sampled z and predict the future targets. We
implemented probabilistic and deterministic versions of each baseline. The encoders of the
probabilistic models learn the mean and variance of the distributions of the latent variables,
and the encoders of the deterministic models only learn their mean.

Similarly to our model, the temporal encoders contain LSTM and fully connected layers,
and the decoders are MLPs. We denote LSTM-MLP-x and LSTM-MLP-y for the deter-
ministic supervised models trained to predict x or y, respectively, and LSTM-MLP-x* and
LSTM-MLP-y* for the probabilistic variants. We expect these models to generally outper-
form our approach, since they have a similar model capacity but learn simpler tasks. Their
training objective can be expressed as simplified versions of our model’s objective (Equation
(1)). The associated loss functions can be found in Appendix D.1.1.
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In addition to these temporal deep learning models, we also evaluated our approach
against a non-temporal MLP baseline taking as input the conditioning data and the last
available values of each clinical measurement x before the prediction time-point. We denote
this baseline as MLP-xy, as it predicts both x and y. Lastly, we also implemented a naive
cohort baseline drawing a value from the empirical distribution of the variable in the cohort
(assuming a Gaussian distribution for continuous variables and a categorical distribution
otherwise). We used 5−fold cross-validation to select the hyperparameters that achieved
the lowest validation loss for each model. Details about the inference process are provided
in subsection 3.6 and Appendix C.2.1.

5.2.2. Results

In Figure 3, we report the predictive performance of the different models for the prediction
of future x and y versus time to prediction. We report the average macro F1 score for
categorical variables and the mean absolute error (MAE) for continuous variables.

In the first panel of Figure 3, we evaluate the models’ performance for the prediction
of medical labels y. Both of the task-specific models, i.e. the LSTM-MLP-y (yellow) and
LSTM-MLP-y* (orange), slightly outperform our model (red), as expected since they only
have to learn one category of outcomes. Furthermore, our model outperforms the MLP-xy
(grey) and naive (green) baselines. We report the performance results separately for each
medical label in Appendix D.1.

The last two panels of Figure 3 show the prediction performance for categorical and
continuous x versus time to prediction. For categorical x, our model (red) performs similarly
or outperforms all of the models, except for the first time-step, where the MLP-xy baseline
(grey) performs the best. For continuous features, the LSTM-MLP-x (purple) outperforms
our model in terms of MAE. There is no significant difference between our model and the
LSTM-MLP-x* (brown), even though our model also learns the distribution of y. Lastly,
our model greatly outperforms the MLP-xy (grey) and naive (green) baselines.

As expected, the task-specific deterministic models generally slightly outperform our
model, when allowed a similar capacity in the latent space, since they have to learn simpler
tasks and fewer variables. In Figure 8 in Appendix D.1, we show that by decreasing the
capacity of the LSTM-MLP-x, via reduction of the latent space dimension, we recover a
similar performance to our multi-task holistic model.

To evaluate the uncertainty quantification, we computed the coverage of the forecasted
95% confidence intervals (CI) for continuous variables and the calibration for categorical
variables. Furthermore, we computed the average ratio between CI length and feature range
versus time to prediction. CIs are on average wider for long-term predictions and out-of-
distribution data points (Figure 10 in Appendix D.1). For continuous x forecasting, our
model and the LSTM-MLP-x* achieve coverage of 92± 1% both, and the LSTM-MLP-x of
98± 0%, thus all slightly diverging from the optimal 95%. All of the models have accurate
calibration for categorical x and y forecasting, as shown in Figure 9 in Appendix D.1.

5.2.3. Online Prediction with Uncertainty Quantification

To illustrate how the model allows a holistic understanding of a patient’s disease course,
we follow an index patient pidx throughout the experiments. This patient has a complex
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Figure 3: Model performances versus time to prediction for x and y forecasting.
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disease trajectory, with varying organ involvement and stages. We can use our model to
forecast the high-dimensional distributions of x1:T and y1:T given the past measurements
x0:k, as described in subsection 3.7. The plots in Figure 4 show the predicted probabilities
of organ involvement and predicted values of Forced Vital Capacity (FVC)3 at different time
points for pidx. The plots are overlaid with the ground truth labels in green. In particular,
Figure 4(b)subfigure shows how the predictions become more accurate when more prior
information is available to the model. We provide online prediction plots for additional x
and y in Appendix D.1.4.

In the next sections, we explore further applications and results of our model. While the
performance was computed on validation sets, the subsequent results are derived from ap-
plying our model to a separate withheld test set. Furthermore, all of the t−SNE projections
(Van der Maaten and Hinton, 2008) of the test set were obtained following the procedure
described in Appendix D.2.2.

5.3. Results: Cohort Analysis

By learning the joint distribution p(x,y, z), our model allows us to analyze disease patterns
in the cohort through the analysis of the latent process z. Furthermore, by learning p(z|c),
we estimate the average prior disease trajectories in the cohort. We analyze these prior
trajectories in Appendix D.2.1.

(a) Guided versus unguided latent spaces,
overlaid with heart stage medical label.

(b) Probabilities of lung and heart involve-
ment in the latent space.

Figure 5: Analysis of latent spaces.

5.3.1. Latent Space and Medical Labels

We aim to provide a method achieving semi-supervised disentanglement in the latent space.
In 5(a)subfigure, we compare the distribution of the ground truth medical labels (here heart
stage) in a guided versus an unguided model (i.e. without training any guidance networks).
The guided model clearly provides higher medical knowledge label disentanglement than
the unguided model and thus enhances the interpretability of the different subspaces in z.

In 5(b)subfigure, we visualize the latent space overlaid with the different predicted prob-
abilities of organ involvement. In red, we draw the latent space trajectory of pidx, thus
getting an understandable overview of their trajectory with respect to the different medical

3. FVC is the amount of air that can be exhaled from the lungs.
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labels. The solid line highlights the reconstructed trajectory, whereas the dotted lines are
forecasted sampled trajectories.

In the first panel of 5(b)subfigure, we leverage the model’s generative abilities to sample
forecasted z trajectories (dotted lines), providing estimates of future disease stages. The
model forecasts that pidx will move towards a region with higher probabilities of lung and
heart involvement. All of the sampled trajectories converge towards the same region in this
case. The second panel is overlaid with the complete reconstructed trajectory of pidx in the
latent space. The disentanglement in the latent space enables a straightforward overview of
the past and future patient trajectory. Additionally, Figure 14 in the appendix shows the
patient trajectory overlaid with the predicted organ stages.

5.3.2. Clustering and Similarity of Patient Trajectories

As described in subsection 3.8, we compute the dynamic-time-warping similarity measure for
the latent trajectories Hi = h(Ti), and subsequently apply k-means or k-nn to respectively
cluster the multivariate time series {Hi}Ni=1 or find similar patient trajectories. We used the
library implemented by Tavenard et al. (2020). We focus here on the trajectory clustering
results and refer the reader to Appendix D.2.3 for the patient similarity/nearest neighbor
analysis.

Table 1: Prevalence of cutaneous involvement and gender in the clusters versus cohort
prevalence. The arrows indicate the direction of the relative change compared
to the cohort prevalence.

Diffuse Cutaneous Involvement of SSc Male

Percentage in Cohort 33% 13%
Percentage in mild severity cluster 26% ↓ 13%
Percentage in medium severity cluster 31% 9% ↓
Percentage in high severity cluster 46% ↑ 21% ↑

6(a)subfigure shows the three mean cluster trajectories in the latent space overlaid with
the predicted medical labels. Moreover, we computed the predicted organ involvement prob-
abilities for the cluster mean trajectories using the guidance networks (6(b)subfigure). The
first found cluster corresponds to patients with no or little organ involvement. The second
mean trajectory starts close to the first but progresses towards regions with heart involve-
ment. The third cluster contains the most severely progressing patients. The identified
clusters show distinct patterns of organ involvement and disease severity (mild-medium-
high), showing that the model separates disease trajectories into further subtypes.

Clustering Evaluation We evaluated our clustering approach both quantitatively and
clinically. The optimal number of clusters k, was identified using the elbow method as shown
in Figure 15 in the Appendix. We compared two methods: clustering latent trajectories z
against direct clustering of raw trajectories x. As discussed in Appendix D.2.3, clustering
latent trajectories achieves higher separation with respect to the medical labels compared
to clustering the raw data. Lastly, contrarily to traditional clustering approaches, our
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(a) Mean cluster trajectories in the latent space (start-
ing at the cross x), overlaid with predicted proba-
bilities of organ involvement and severity stages.

(b) Probabilities of organ
involvement for cluster
means.

Figure 6: Clustering of latent trajectories and predicted probabilities of organ involvement
for the mean cluster trajectories.
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method also supports predictive clustering. Indeed, we can compare the cluster assignment
of a forecasted trajectory (illustrated by the dotted line in Figure 5) to the final cluster
assignment based on the complete patient history encoded in the model. This approach
achieved a macro F1 score of 0.78, indicating effective patient assignment to severity clusters
early in their diagnosis.

We further evaluated the clinical relevance of the found clusters. In Table 1, we compare
the prevalence of SSc subtypes (limited versus diffuse cutaneous SSc) and gender between
the clusters. For instance, the cluster with the mildest severity contains a higher proportion
of patients with limited cutaneous involvement at baseline, while the cluster with the high-
est severity includes a significantly larger number of patients with diffuse cutaneous SSc,
showing that the model can separate the trajectories based upon the widely accepted SSc
subtypes (Bains, 2017). Furthermore, the most severe cluster exhibits a significantly higher
proportion of male patients in comparison to the rest of the cohort. Recent studies also
found that males tend to experience more frequent and severe lung and heart involvement,
and concurrent organ involvement tends to result in poorer overall outcomes (Peoples et al.,
2016; Becker et al., 2019).

6. Discussion

In this paper, we present a novel deep semi-supervised generative latent variable approach
to model complex disease trajectories. By introducing the guidance networks, we propose a
method to augment unsupervised deep generative models with established medical knowl-
edge and achieve more interpretable and disentangled latent processes.

Our non-discriminative approach effectively addresses important desiderata for health-
care models such as forecasting, uncertainty quantification, dimensionality reduction, and
interpretability. Furthermore, we empirically show that our model is suited for a real-world
use case, namely the modeling of systemic sclerosis, and enables a holistic understanding
of the patients’ disease course. The disentangled latent space facilitates comprehensive
trajectory visualizations, straightforward analysis, and forecasting of patient trajectories.
Most importantly, learning medically informed latent processes allows the discovery of novel
clinically meaningful disease subtypes. We showed that the cluster separation is driven by
clinically relevant features that have also been recognized as important predictors of SSc
trajectories in recent studies.

Limitations and Future Work While we have presented the benefits of proposing a
multi-task “holistic” model, this approach also has limitations. Naturally, the model is less
performant at specific tasks compared to fine-tuned models, for instance, fully supervised
predictive models for prediction. However, our modular approach could be adapted to excel
in specific settings by removing certain components of the model.

Our current approach holds the potential to be extended and adapted in several ways.
We included only the most pertinent experiments and opted for a simple architecture suited
to the modeling of systemic sclerosis. For instance, the model could be explicitly trained
to reconstruct missing values, akin to denoising autoencoders. In future work, we intend
to extend our framework to handle continuous time (Appendix B.2), include medications
for generating future hypothetical conditional trajectories (Appendix B.3), include more
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organs in the modeling of SSc, and also include guidance networks to model additional
disease dynamics like long-term outcomes.
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Simon Bing, Vincent Fortuin, and Gunnar Rätsch. On disentanglement in gaussian process
variational autoencoders. arXiv preprint arXiv:2102.05507, 2021.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for
statisticians. Journal of the American statistical Association, 112(518):859–877, 2017.

19

https://github.com/uzh-dqbm-cmi/eustar_mlhc


Semi-Supervised Generative Models for Disease Trajectories

Francesco Bonomi, Silvia Peretti, Gemma Lepri, Vincenzo Venerito, Edda Russo, Cosimo
Bruni, Florenzo Iannone, Sabina Tangaro, Amedeo Amedei, Serena Guiducci, et al. The
use and utility of machine learning in achieving precision medicine in systemic sclerosis:
A narrative review. Journal of Personalized Medicine, 12(8):1198, 2022.

Francesco Paolo Casale, Adrian Dalca, Luca Saglietti, Jennifer Listgarten, and Nicolo Fusi.
Gaussian process prior variational autoencoders. Advances in neural information pro-
cessing systems, 31, 2018.

Clément Chadebec, Louis Vincent, and Stephanie Allassonniere. Pythae: Unifying gener-
ative autoencoders in python - a benchmarking use case. In S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information
Processing Systems, volume 35, pages 21575–21589. Curran Associates, Inc., 2022.

Irene Y Chen, Shalmali Joshi, Marzyeh Ghassemi, and Rajesh Ranganath. Probabilistic
machine learning for healthcare. Annual review of biomedical data science, 4:393–415,
2021.

Ricky TQ Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating sources of
disentanglement in variational autoencoders. Advances in neural information processing
systems, 31, 2018.

Xingyu Chen, Xiaochen Zheng, Amina Mollaysa, Manuel Schürch, Ahmed Allam, and
Michael Krauthammer. Dynamic local attention with hierarchical patching for irregu-
lar clinical time series, 2023.

Li-Fang Cheng, Bianca Dumitrascu, Gregory Darnell, Corey Chivers, Michael Draugelis,
Kai Li, and Barbara E Engelhardt. Sparse multi-output gaussian processes for online
medical time series prediction. BMC medical informatics and decision making, 20(1):
1–23, 2020.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and
Yoshua Bengio. A recurrent latent variable model for sequential data. Advances in
neural information processing systems, 28, 2015.

Pierre Comon. Independent component analysis, a new concept? Signal processing, 36(3):
287–314, 1994.

Vincent Fortuin, Dmitry Baranchuk, Gunnar Rätsch, and Stephan Mandt. Gp-vae: Deep
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Appendix A. Systemic Sclerosis

A.1. Clinical Insights for Systemic Sclerosis

In this paper, we present a general approach for modeling and analyzing complex disease
trajectories, for which we used the progression of systemic sclerosis as an example. The focus
of this paper is on the machine learning methodology, while clinically relevant insights and
data analysis regarding systemic sclerosis will be discussed in a clinical follow-up paper
where our model will be applied to investigate the involvement of multiple organs.

Since there is ongoing research and discussion towards finding optimal definitions of the
medical knowledge labels (involvement, stage, progression) for all impacted organs in SSc,
we used preliminary definitions for three organs.

A.2. Medical Labels Definitions

Defining the organ involvement and stages in SSc is a challenging task as varying and
sometimes contradicting definitions are used in different studies. However, there is ongoing
research to find the most accurate definitions. Since this work is meant as a proof of concept,
we used the following preliminary definitions of involvement and stage for the lung, heart,
and joints (arthritis). The medical labels are defined for the variables of the EUSTAR
database. There are 4 stages of increasing severity for each organ. If multiple definitions
are satisfied, the most severe stage is selected. Furthermore, there is missingness in the
labels due to incomplete clinical measurements. Our modeling approach thus also could be
used to label the medical labels when missing.

We use the following abbreviations:

• Interstitial Lung Disease: ILD

• High-resolution computed tomography: HRCT

• Forced Vital Capacity: FVC

• Left Ventricular Ejection Fraction: LVEF

• Brain Natriuretic Peptide: BNP

• N-terminal pro b-type natriuretic peptide: NTproBNP

• Disease Activity Score 28: DAS28

A.2.1. Lung

Involvement At least one of the following must be present:

• ILD on HRCT

• FVC < 70%
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Severity staging

1. FVC > 80% or Dyspnea stage of 2

2. ILD extent < 20% or 70% < FVC ≤ 80% or Dyspnea stage of 3

3. ILD extent > 20% or 50% ≤ FVC ≤ 70% or Dyspnea stage of 4

4. FVC< 50% or Lung transplant or Dyspnea stage of 4

A.2.2. Heart

Involvement At least one of the following must be present:

• LVEF < 45%

• Worsening of cardiopulmonary manifestations within the last month

• Abnormal diastolic function

• Ventricular arrhythmias

• Pericardial effusion on echocardiography

• Conduction blocks

• BNP > 35 pg/mL

• NTproBNP> 125 pg/mL

Severity staging

1. Dyspnea stage of 1

2. Dyspnea stage of 2

3. Dyspnea stage of 3

4. Dyspnea stage of 4

A.2.3. Arthritis

Involvement At least one of the following must be present:

• Joint synovitis

• Tendon friction rubs

Severity staging

1. DAS28 < 2.7

2. 2.7 ≤ DAS28 ≤ 3.2

3. 3.2 < DAS28 ≤ 5.1

4. DAS28 > 5.1
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A.3. Model variables

Our model uses as temporal input features the following variables related to each organ and
collected during medical visits:

• Lung: Forced Vital Capacity, DLCO/SB, DLCOc/VA, Lung fibrosis, Dyspnea (NYHA-
stage), Worsening of cardiopulmonary manifestations within the last month, HRCT:
Lung fibrosis, Ground glass opacification, Honey combing, Tractions, Reticular changes,
PAPsys (mmHg), TAPSE: tricuspid annular plane systolic excursion in cm, Right
ventricular area (cm²) (right ventricular dilation), Tricuspid regurgitation velocity
(m/sec), Pulmonary wedge pressure (mmHg), Pulmonary resistance, 6 Minute walk
test (distance in m)

• Heart: Left ventricular ejection fraction, Worsening of cardiopulmonary manifesta-
tions within the last month, Diastolic function abnormal, Ventricular arrhythmias,
Arrhythmias requiring therapy, Pericardial effusion on echo, Conduction blocks, NT-
proBNP (pg/ml), Auricular Arrhythmias, BNP (pg/ml), Cardiac arrhythmias, Dys-
pnea (NYHA-stage)

• Arthritis: Joint synovitis, Joint polyarthritis, Swollen joints, Tendon friction rubs,
DAS 28 (ESR, calculated), DAS 28 (CRP, calculated)

Moreover, we use the following the following (static) demographic variables:

• Demographics: Sex, Height, Race, Subset of SSc according to LeRoy, Date of birth,
Onset of first non-Raynaud’s of the disease.

Appendix B. Details and Extensions for Generative Model

In this section, we provide more details and several possible extensions to the main temporal
generative model presented in Section 3.1.

B.1. Inference

In this section, we explain the inference process of the proposed generative model pψ(y,x, z|c) =
pγ(y|z, c)pπ(x|z, c)pϕ(z|c) in more detail. We are particularly interested in the posterior
of the latent variables z given y, x, and c, that is,

pψ(z|y,x, c) =
pψ(y,x, z|c)
pψ(y,x|c)

=
pψ(y,x, z|c)∫
pψ(y,x, z|c)dz

,

which is in general intractable due to the marginalization of the latent process in the
marginal likelihood pψ(y,x|c) =

∫
pψ(y,x, z|c)dz. Therefore, we resort to approximate

inference, in particular, amortized variational inference (VI) (Blei et al., 2017), where a
variational distribution qθ(z|x, c) close to the true posterior distribution pψ(z|x,y, c) ≈
qθ(z|x, c) is introduced. The similarity between these distributions is usually measured in
terms of KL divergence (Murphy, 2022), therefore, we aim to find parameters satisfying

θ∗, ψ∗ = argmin
θ,ψ

KL [qθ(z|x, c) || pψ(z|x,y, c)] .
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Table 2: Table of symbols
Symbol Description Domain

x = x1:T Clinical measurements (e.g., blood pressure). RD×T

y = y1:T Medical knowledge labels (e.g., disease severity). RP×T

τ = τ 1:T Observation time-points. RT
s Non-temporal info (e.g. patient demographics). RS

p = p1:T Additional temporal covariates (e.g. medications). RP×T

c Context variables (τ ,p, s).
z = z1:T Multivariate latent processes RL×T
pϕ(z|c) Prior network
ϕ Prior network parameters

pπ(x|z, c) Likelihood network
π Likelihood network parameters

pγ(y|z, c) Guidance network
γ Guidance network parameters

ψ = {γ, π, ϕ} Parameters of the generative model.
qθ(z|x0:k, c) Variational distribution

θ Variational parameters
α, β Weights in the training objective for balancing terms. R+

T Observed patient trajectory (clinical measurements over time). Sequence in RD×T

H Latent patient trajectory (latent space representation). Sequence in RL×T

This optimization problem is equivalent (Murphy, 2022) to maximizing a lower bound
L(ψ, θ;x,y, c) ≤ pψ(y,x|c) to the intractable marginal likelihood, that is,

θ∗, ψ∗ = argmax
θ,ψ

L(ψ, θ;x,y, c).

In particular, this lower bound equals

L =

∫
qθ(z|x, c) log

pψ(y,x, z|c)
qθ(z|x, c)

dz

=

∫
qθ(z|x, c) log

pγ(y|z, c)pπ(x|z, c)pϕ(z|c)
qθ(z|x, c)

dz,

which can be rearranged to

L = Eqθ(z|x,c) [log pπ(x|z, c)]
+ Eqθ(z|x,c) [log pγ(y|z, c)]
− KL [qθ(z|x, c) || pϕ(z|c)] .

For the Gaussian prior and approximate posterior described in Section 3.2 and 3.5, respec-
tively, the KL-term can be computed analytically and efficiently (Tomczak, 2022). On the
other hand, the expectations Eqθ can be approximated with a few Monte-Carlo samples
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z1, . . . ,zs, . . . ,zS ∼ qθ(z|x, c) leading to

Eqθ(z|x,c) [log pπ(x|z, c)pγ(y|z, c)]

≈ 1

S

S∑
s=1

log pπ(x|zs, c)pγ(y|zs, c).

B.1.1. Partially Observed Data

The measurements x ∈ RD×T and the labels y ∈ RP×T contain many missing values.
We define the indices ox ∈ RD×T and oy ∈ RP×T for which the observations are actu-
ally measured. Therefore, we compute the lower bound only on the observed variables,
i.e. log pψ(x

ox ,yoy |c) ≥ L(ψ, θ;xox ,yoy , c), as is similarly done by Fortuin et al. (2020);
Ramchandran et al. (2021). This then leads for instance to

Eqθ(z|x,c) [log pπ(x
ox |z, c)pγ(yoy |z, c)] ,

where the related log-likelihood log pπ(x
ox |z, c) = log

∏
t,d∈ox

pπ(x
d
t |zt, ct) =

∑
t,d∈ox

log pπ(x
d
t |zt, ct)

is only summed over the actually observed measurements. The same can be derived for the
medical labels yoy .

B.1.2. Lower Bound for N Samples

Given a dataset with N iid patients D = {Di}Ni=1 = {xi1:Ti ,y
i
1:Ti

, ci1:Ti}
N
i=1, the lower bound

to the marginal log-likelihood is

log pψ(D) = log
N∏
i=1

pψ(Di) ≥
N∑
i=1

L(ψ, θ;xi,yi, ci),

which is maximized through stochastic optimization with mini-batches (subsection 3.6).
Moreover, suppose we have T + 1 iid copies of the whole dataset {Dk}Tk=0, then

log pψ({Dk}Tk=0) = log
N∏
i=1

T∏
k=0

pψ(Dk
i )

≥
N∑
i=1

T∑
k=0

Lk(ψ, θ;xi,k,yi,k, ci,k),

where Lk(ψ, θ;xi,k,yi,k, ci,k) is the lower bound obtained by plugging in the corresponding
approximate posterior qθ(z|x0:k, c).

B.1.3. Predictive Distributions

The predictive distributions for the measurement x1:T and label trajectories y1:T in sub-
section 3.7 can be obtained via a two-stage Monte-Carlo approach. For instance, we can
sample from the distribution of the measurements

q∗(x1:T |x0:k, c)

=

∫
pπ∗(x1:T |z1:T , c)qθ∗(z1:T |x0:k, c)dz
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by first sampling from the latent trajectories

z1
1:T , . . . ,z

s
1:T , . . . z

S
1:T ∼ qθ∗(z1:T |x0:k, c)

given the current observed measurements x1:k. In a second step, for each of the samples,
we compute

x1
1:T , . . . ,x

u
1:T , . . .x

U
1:T ∼ pπ∗(x1:T |zs1:T , c)

to represent the overall uncertainty of the measurement distribution.

B.2. Different Prior

The factorized prior described in subsection 3.2 can be extended to continuous time with
Gaussian processes (GPs) (Williams and Rasmussen, 2006; Schürch et al., 2020, 2023a;
Schürch, 2022), as introduced by Casale et al. (2018); Fortuin et al. (2020) in the unsuper-
vised setting. In particular, we can replace

pϕ(z|c) = pϕ(z1:T |c1:T ) =
T∏
t=1

L∏
l=1

pϕ(z
l
t|ct)

=
T∏
t=1

L∏
l=1

N
(
zlt|µlϕ(ct), σlϕ(ct)

)
,

with

pϕ(z1:T |c1:T ) =
L∏
l=1

GP
(
zl|ml

ϕ(c), k
l
ϕ(c, c

′)
)

with a mean function ml
ϕ(c) and kernel klϕ(c, c

′), to take into account all the probabilistic
correlations occurring in continuous time. This leads to a stochastic dynamic process, which
theoretically matches the assumed disease process more adequately than a deterministic
one. A further advantage is the incorporation of prior knowledge via the choice of the
particular kernels for each latent process so that different characteristics such as long and
small lengthscales, trends, or periodicity can be explicitly enforced in the latent space.

B.3. Conditional Generative Trajectory Generation

Our generative approach is also promising for conditional generative trajectory sampling, in
a similar spirit as proposed by Schürch et al. (2023b). In particular, if we use medications
as additional covariates p = p1:T = {p0:k,pk+1:T } in our approximate posterior distribution
qθ(z|x0:k, c) = qθ(z|x, τ , s,p0:k,pk+1:T ) with c = {τ , s,p}, the model can be used to sample
future hypothetical trajectories xk+1:T with

q∗(xk+1:T |x0:k, τ , s,p0:k,pk+1:T )

=

∫
pπ∗(xk+1:T |z, τ , s,p0:k,pk+1:T )

qθ∗(z|x0:k, τ , s,p0:k,pk+1:T )dz

based on future query medications pk+1:T .
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Appendix C. Model Implementation

C.1. Model Architecture

We describe the architecture and inputs/outputs of the different neural networks in our final
model for SSc. For a patient with measurement time points τ 1:T of the complete trajectory,
the model input at time t ∈ τ are the static variables s, the clinical measurements x0:t,
and the trajectory time points τ . Thus for SSc modeling, we have that c = {τ , s}. The
model M outputs the distribution parameters of the clinical measurements and the organ
labels for all trajectory time points τ . Without loss of generality, we assume that x1:M are
continuous variables and xM+1:D categorical, so that the model can be described as

M : (c,x0:t) −→(
µ̂x

1:M

1:T (t), σ̂x
1:M

1:T (t), π̂x
M+1:D

1:T (t), π̂y1:T (t)
)
.

We explicitly include the dependencies to t to emphasize that the parameters of the whole
trajectory are estimated given the information up to time t.

• Prior network: The prior is a multilayer perceptron (MLP). It takes as input c and
outputs the estimated mean and variance of the prior latent distribution µ̂prior1:T and

σ̂prior1:T .

• Encoder network (posterior): The encoder contains LSTM layers followed by fully
connected feed-forward layers. It takes as input x0:t and c and outputs the esti-
mated mean and standard deviation of the posterior distribution of the latent vari-
ables µ̂post1:T (t) and σ̂post1:T (t), from which we sample the latent variables z1:T (t) (complete
temporal latent process) given the information up to t.

• Decoder network (likelihood): The decoder is an MLP and takes as input the
sampled latent variables z1:T (t) and c and outputs the estimated means and stan-

dard deviations µ̂x
1:M

1:T (t) and σ̂x
1:M

1:T (t) of the distribution of the continuous clinical

measurements and class probabilities π̂x
M+1:D

1:T (t) of the categorical measurements.

• Guidance networks: For each organ, we define one MLP guidance network per
related medical label (involvement and stage). A guidance network for organ o ∈
O := {lung, heart, joints} and related medical label m ∈ {inv, stage}, takes as input
the sampled latent variables z

ϵ(o(m))
1:T (t) and outputs the predicted class probabilities

π̂y
ν(o(m))

1:T (t) of the labels, where ν(o(m)) are the indices in y related to the medical
label o(m), and ϵ(o(m)) the indices in the latent space.

C.2. Training Objective

We follow the notation introduced in Section 3 and Appendix B. To train the model to
perform forecasting, for each patient, we augment the data by assuming T +1 iid copies of
the data x and y (see also B.1.2) and recursively try to predict the last T − t, t = 0, ..., T
clinical measurements and medical labels. The total loss for a patient p is

Lp =
T∑
t=0

L(t), (2)
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where

L(t) := NLL
(
µ̂x

1:M
(t), σ̂x

1:M
(t),x1:M

)
+CE

(
π̂x

M+1:D
(t),xM+1:D

)
+α ∗ CE (π̂y(t),y)

+β ∗KL
(
µ̂prior, σ̂prior, µ̂post(t), σ̂post(t)

)
,

where NLL, CE and KL are the negative log-likelihood, cross-entropy and KL divergence,
respectively. Further, α and β are hyperparameters weighting the guidance and KL terms.

C.2.1. Model Optimization

We only computed the loss with respect to the available measurements. We randomly split
the set of patients P into a train set Ptrain and test set Ptest and performed 5−fold CV with
random search on Ptrain for hyperparameter tuning. Following the principle of empirical
risk minimization, we trained our model to minimize the objective loss over Ptrain, using
the Adam (Kingma and Ba, 2014) optimizer with mini-batch processing and early stopping.

C.2.2. Architecture and Hyperparameters

We tuned the dropout rate and the number and size of hidden layers using 5-fold CV, and
used a simple architecture for our final model. The posterior network contains a single
lstm layer with hidden state of size 100, followed by two fully connected layers of size 100.
The likelihood network contains two separate fully connected layers of size 100, learning
the mean and variances of the distributions separately. The guidance networks contain a
single fully connected layer of size 40 and the prior network a single fully connected layer
of size 50. We used batch normalization, ReLU activations, and a dropout rate of 0.1. We
set α = 0.2 and β = 0.01.

Appendix D. Results

D.1. Model Evaluation

D.1.1. Baselines

As discussed in subsubsection 5.2.1, we evaluated our model against temporal latent variable
models optimized to predict either only x or y in a fully supervised way. We implemented
probabilistic and deterministic variants of these models. Following the notations introduced
in subsection 3.1 for the encoder networks (posterior), decoder and guidance networks, we
can rewrite the objectives of the baselines as variants of the objective of our model objective
described in Equation (1).

For the prediction of the clinical measurements, the LSTM-MLP-x* optimizes the ob-
jective

Eqθ(z|x0:k,c) [log pπ(x|z, c)]
−β KL [qθ(z|x0:k, c) || pϕ(z|c)] ,
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and the LSTM-MLP-x

Eqθ(z|x0:k,c) [log pπ(x|z, c)]

respectively. Similarly, for the prediction of the medical labels, the LSTM-MLP-y* opti-
mizes

Eqθ(z|x0:k,c) [log pγ(y|z, c)]
−β KL [qθ(z|x0:k, c) || pϕ(z|c)] ,

and the LSTM-MLP-y

Eqθ(z|x0:k,c) [log pγ(y|z, c)] .

D.1.2. Results

Figure 7 shows the prediction performance of the different models for each of the medical
labels. The supervised models generally slightly outperform our model, and all temporal
models greatly outperform the MLP and cohort baselines.

As discussed in the model evaluation, given the same model capacity, the LSTM-MLP
baselines are expected to outperform our approach since they learn simpler tasks and fewer
variables. Figure 8 shows the effect of reducing the dimension of the latent space of the
deterministic LSTM-MLP-x baseline. Contrarily to our model, this baseline learns neither
the variance of the latent variables nor the distribution of y. For continuous x, the LSTM-
MLP-x with five dimensions in the latent space performs similarly to our model.

D.1.3. Uncertainty quantification

To evaluate the uncertainty quantification of the models, we computed the coverage of
the continuous predictions and calibration of the predicted probabilities for categorical
measurements. The coverage is the probability that the confidence interval (CI) predicted
by the model contains the true data point. Since the likelihood distribution is Gaussian,
the 95% CI is µpred ± 1.96σpred. To achieve perfect coverage of the 95% CI, the predictions
should fall within the predicted CI 95% of the time. We computed the coverage over all
forecasted data points. Figure 10 shows the average ratio between CI length and feature
range versus time to prediction. CIs are on average wider for long-term predictions and
out-of-distribution data points, showing that the model predicts higher uncertainty for data
points that are more difficult to predict. For categorical measurements, the calibration curve
is computed to assess the reliability of the predicted class probabilities. They are computed
in the following way. We grouped all of the forecasted probabilities (for one-hot encoded
vectors) into n = 20 bins dividing the 0-1 interval. Then, for each bin, we compared the
observed frequency of ground truth positives (aka “fraction of positive”) with the average
predicted probability within the bin. Ideally, these two quantities should be as close as
possible, i.e. close to the line of “perfect calibration” in Figure 9. The calibration curves in
Figure 9 show that all of the temporal models are well calibrated both in their categorical
x and medical label y forecasts (averaged over all forecasted data points in the respective
validation sets).
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Figure 7: Performance for y prediction.
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Figure 8: Effect of latent space dimension.

Figure 9: Calibration curves for our model and the LSTM-MLPs.
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Figure 10: Average ratio between CI length and feature range versus time to prediction.
Out-of-distribution data points have wider CIs on average.

D.1.4. Online Prediction with Uncertainty

We provide additional online prediction results for the index patient pidx.
Figure 11(a)subfigure shows the evolution in the predicted mean and 95% CI of DLCO(SB)4

for pidx. The values after the dashed line are forecasted. As more prior information becomes
available to the model, the forecast becomes more accurate and the CI shrinks. Moreover,
in Figure 12 we contrast the predicted uncertainty for a patient with an out-of-distribution
(OOD) number of swollen joints (i.e. an unusually high number of swollen joints), and for
the index patient. The model predicts significantly larger CIs for the OOD data point.

D.2. Cohort Analysis

We present here additional cohort-level experiments using our model.

D.2.1. Prior z Distributions

By learning p(x,y|s, τ ), we estimate the average prior disease trajectories in the cohort.
This allows the comparison of trajectories, conditioned only on the simple subset of vari-
ables s and τ and thus without facing any confounding in the trajectories, for instance,
due to past clinical measurements x. For example, in Figure 13(a)subfigure we overlaid
the predicted prior trajectories of Forced Vital Capacity (FVC)5 for a subset of patients in
Ptest with a static variable corresponding to the SSc subtype. Overall, the FVC values are
predicted to remain quite stable over time, but with different average values depending on
the SSc subtype. In Figure 13(b)subfigure, the prior predicted N-terminal pro b-type natri-
uretic peptide (NTproBNP)6 trajectories overlaid with age, show that the model predicts
an overall increase in NTproBNP over time, and steeper for older patients.

4. DLCO(SB) stands for single breath (SB) diffusing capacity of carbon monoxide (DLCO).
5. FVC is the amount of air that can be exhaled from the lungs. Low levels indicate lung malfunction.
6. They are substances produced by the heart. High levels indicate potential heart failure.
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Figure 11: DLCO(SB) and organ stage probabilities for pidx.

(a) Swollen joints for index patient (b) Swollen joints for out of distribution
patient

Figure 12: Comparison between in and out-of-distribution predictions of swollen joints.
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(a) Prior FVC trajectories overlaid with dif-
ferent SSC subsets.

(b) Prior natriuretic peptides trajectories
overlaid with date of birth.

Figure 13: Prior predicted x trajectories conditioned on time and static variables.

D.2.2. Latent Space and Medical labels

Figure 14: Predicted organ stages in the latent space. The red line highlights the trajectory
of pidx.

t−SNEs: The t-SNE (Van der Maaten and Hinton, 2008) graphs were obtained by com-
puting the two-dimensional t-SNE projection of the latent variables z1:T | (x1:T , c) (i.e.
only using reconstructed z) of a subset of Ptrain and then transforming and plotting the
projected latent variables (reconstructed or forecasted) from patients in Ptest (Poličar et al.,
2019).

In 5(b)subfigure, we showed the trajectory of pidx overlaid with the predicted organ
involvement probabilities. In 14, we additionally show the trajectory overlaid with the
organ stages, showing for instance in the first panel that the model predicts an increase

38



Semi-Supervised Generative Models for Disease Trajectories

in the lung stage and in the last panel that pidx undergoes many different heart stages
throughout the disease course.

D.2.3. Clustering of Patient Trajectories and Trajectory Similarity

We discuss additional results obtained through clustering and similarity analysis of latent
trajectories (subsubsection 5.3.2). In 18(a)subfigure, we show the different predicted prob-
abilities of the medical labels y for the mean trajectories within the three found clusters.
This reveals which medical labels are most differentiated by the clustering algorithm. For
instance, cluster one exhibits low probabilities of organ involvement, while cluster two shows
increasing probabilities of heart involvement and low probabilities of lung involvement. In
contrast, cluster three shows increasing probabilities for both heart and lung involvement.
We compared our approach of clustering latent trajectories z to clustering the raw trajec-
tories x directly. In Figure 16, we compare the average medical label trajectories in the
clusters obtained using both approaches. We see that clustering latent trajectories achieves
more separation with respect to the medical labels than clustering the raw data. This indi-
cates that our approach is better suited to uncover new subtypes with respect to medical
knowledge. Furthermore, in Table 1, we compare the prevalence of SSc subtypes (limited
versus diffuse cutaneous SSc) and gender between the clusters. For instance, the most severe
cluster contains an increased proportion of males compared to the cohort prevalence.

Figure 15: Clustering: elbow plot for choice of optimal k. We set k to 3.

Additionally, we apply a k-nn algorithm with the dtw distance in the latent space to
find patients with similar trajectories to pidx. Figure 17 shows the trajectory of pidx and
its three nearest neighbors in the latent space. We can see that the nearest neighbors also
have an evolving disease, going through various organ involvements and stages. Similarly,
in 18(b)subfigure, the medical label trajectories of pidx and its nearest neighbors reveal
consistent patterns.
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Figure 16: Cluster separation with respect to medical labels. Comparison between cluster-
ing of raw x trajectories versus clustering of latent trajectories z. Our approach,
where we cluster the latent trajectories, shows a higher separation with respect
to the medical labels.

40



Semi-Supervised Generative Models for Disease Trajectories

Figure 17: Trajectory of pidx and their 3 nearest neighbors in the latent space.
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(a) Medical label trajectories for cluster
means.

(b) Medical label trajectories for pidx and its
3 nearest neighbors.

Figure 18: Medical label trajectories.
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