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Abstract

In the high-stakes realm of healthcare, ensuring fairness in predictive models is crucial.
Electronic Health Records (EHRs) have become integral to medical decision-making, yet
existing methods for enhancing model fairness restrict themselves to unimodal data and fail
to address the multifaceted social biases intertwined with demographic factors in EHRs. To
mitigate these biases, we present FairEHR-CLP : a general framework for Fairness-aware
Clinical Predictions with Contrastive Learning in EHRs. FairEHR-CLP operates through
a two-stage process, utilizing patient demographics, longitudinal data, and clinical notes.
First, synthetic counterparts are generated for each patient, allowing for diverse demographic
identities while preserving essential health information. Second, fairness-aware predictions
employ contrastive learning to align patient representations across sensitive attributes,
jointly optimized with an MLP classifier with a softmax layer for clinical classification
tasks. Acknowledging the unique challenges in EHRs, such as varying group sizes and
class imbalance, we introduce a novel fairness metric to effectively measure error rate
disparities across subgroups. Extensive experiments on three diverse EHR datasets on
three tasks demonstrate the effectiveness of FairEHR-CLP in terms of fairness and utility
compared with competitive baselines. FairEHR-CLP represents an advancement towards
ensuring both accuracy and equity in predictive healthcare models. Our code is available at
https://github.com/EternityYW/FairEHR-CLP.
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1. Introduction

The growing availability of Electronic Health Records (EHRs) holds significant potential
for enhancing healthcare delivery and patient outcomes (Zhao et al., 2021a; Wang et al.,
2022b). However, their use in predictive modeling raises substantial challenges, particularly
in ensuring algorithmic fairness and addressing inherent data biases (Chen et al., 2023;
Giovanola and Tiribelli, 2023). EHR data often mirror social and systemic biases, which if
unaddressed, can perpetuate inequalities in healthcare outcomes. For example, studies have
shown racial disparities in healthcare, such as Black patients being 40% less likely to receive
pain medication than White patients for similar conditions (Lee et al., 2019). Such biases,
when ingrained in training data, can lead models to perpetuate or even exacerbate these
inequalities, resulting in disparities in patient care based on race, gender, or socioeconomic
status. In a field where decisions can have life-altering consequences, it is crucial to ensure
that predictive tools do not inadvertently disadvantage marginalized patient groups (Vela
et al., 2022). Therefore, developing fair and effective predictive models is essential.

close

Contrastive Loss

fusion fusion

Real Synthetic

Synthetic 

Counterpart 

Generation

2

Fairness-aware 

Prediction  w/

Contrastive 

Learning

Complication 

Outcomes

Cross-entropy Loss

1

Figure 1: Overview of our FairEHR-CLP framework.
Existing methods to enhance fairness in EHR predictive models fall into three categories,

each with respective limitations. Pre-processing techniques that alter training data distribu-
tions, such as sampling (Iosifidis and Ntoutsi, 2018) and perturbation (Wang et al., 2022c)
can lead to overfitting or data distortion. Post-processing methods, involving modifications
after training (Du et al., 2021) or prediction relabeling (Lohia et al., 2019), are slow and
resource-intensive. In-processing strategies like loss function regularization (Kim et al., 2018)
and adversarial training (Yang et al., 2023), overlook the interplay and complex nature of
social biases (Wang et al., 2021; Boyd et al., 2023; Rajendran et al., 2024). The intricacy
involved in these techniques highlights a fundamental question: How can we develop a fair
prediction model that effectively addresses the varied social biases from demographic factors
in EHRs?
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To address this question, developing a fair prediction model that utilizes the value
of demographic data as predictors while minimizing associated social biases is essential.
Consider a scenario where a model assesses patients with similar health issues but from varied
demographics, such as two individuals with cardiovascular symptoms, differing in gender
and ethnicity. By applying contrastive analysis to these cases, the model can identify clinical
patterns that span across demographic lines, focusing on health similarities. This strategy
strengthens the model’s ability to make unbiased, clinically relevant recommendations,
prioritizing health factors over demographic differences. The above process aligns with the
principles of contrastive learning (CL), a prominent representation learning method that
differentiates similar and dissimilar instances within an embedding space (Chen et al., 2020;
Chuang et al., 2020; Zhang et al., 2022; Sun et al., 2023; Ge et al., 2023). We aim to harness
CL in balancing the use of demographics for informative predictions and the imperative for
bias mitigation.

To this end, we introduce a general framework for Fairness-aware Clinical Predictions
with Contrastive Learning in EHRs, which we call FairEHR-CLP. The framework involves
two distinct stages: first, synthetic counterpart generation creates synthetic instances for
each patient, representing varied demographics while preserving vital health data. The
second stage involves fairness-aware predictions using CL, which aims to minimize the
representation distance between real patients and their synthetic counterparts who share
similar health conditions but differ demographically, in tandem with a multi-layer perceptron
(MLP) classifier equipped with a softmax layer for downstream classification tasks. Figure 1
presents an overview of our FairEHR-CLP framework.

In our experiments, we incorporate patient demographics, longitudinal data, and clinical
notes into the FairEHR-CLP framework for clinical predictions. We focus on five sensitive
attributes linked to social biases: gender, race, ethnicity, age, and socioeconomic status
(represented by insurance type). We demonstrate the effectiveness of our method across
three diverse EHR datasets: STARR (Sun et al., 2021), MIMIC-III (Johnson et al., 2016),
and MIMIC-IV (Johnson et al., 2023), focusing on surgical patient outcomes, which are
often subject to social bias (Raso et al., 2023). We consider three binary classification tasks,
identifying delirium, opioid use disorder (OUD), and 30-day readmission, all of which have a
direct impact on postoperative care. Our extensive experiments show that FairEHR-CLP
not only outperforms existing debiasing methods in terms of fairness but also achieves
competitive predictive performance when compared to standard classification baselines.

To summarize, our contributions are three-fold:

(1) We develop FairEHR-CLP, a general fairness-aware clinical prediction framework that
employs contrastive learning in multimodal EHRs, aiming at mitigating social biases
arising from demographic factors.

(2) We propose a new fairness metric, the Error Distribution Disparity Index (EDDI), by
quantifying the deviation in error rates for each subgroup from the overall error rate,
particularly relevant in clinical settings with diverse group sizes and class imbalance.

(3) Extensive experiments on three large-scale EHR datasets across three classification
tasks illustrate the effectiveness of our proposed method in terms of fairness and utility
compared with multiple baselines.
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Generalizable Insights about Machine Learning in the Context of Healthcare

Healthcare data often contain biases due to incomplete records, inaccuracies, inconsistencies,
and an overrepresentation of individuals with structural privileges. These biases can be
perpetuated by machine learning models, leading to disparities in predictions across different
demographic groups. Additionally, healthcare data encompass a range of modalities like
clinical notes, lab measurements, and demographic details. Leveraging these diverse data
types can enhance model fairness by providing a more complete representation of patients.
Our study underscores the critical importance of fairness in healthcare predictive models by
proposing a framework, FairEHR-CLP, for fairness-aware clinical predictions that employs
contrastive learning (CL) in multimodal EHRs. This method effectively reduces social
biases related to demographics in the data through fairness evaluation while minimizing
performance loss. The CL-based framework can be applied across clinical domains and is
scalable to other types of biases in EHR data, offering a robust solution for fair machine
learning applications in healthcare.

2. Related Work

In this section, we explore existing methods to mitigate bias and enhance fairness in EHRs,
review CL applications in EHRs, and discuss fairness evaluation approaches.
Bias and Fairness. EHRs, rich in patient data, often exhibit systemic biases, stemming
from demographic, socioeconomic, and access disparities (Zhao et al., 2021b; Chin et al.,
2023; Wang et al., 2023; Rajendran et al., 2024). Such biases in EHRs risk being reinforced
or exacerbated by algorithms trained on these datasets, potentially harming underrepre-
sented groups. To combat this, recent research has focused on reducing algorithmic bias.
Representative approaches include adversarial training (Yang et al., 2023), which involves
parallel training of a task-specific classifier and a bias-exploiting adversary model, and using
stacked denoising autoencoders with weighted reconstruction loss to enhance representation
of underrepresented classes (Sivarajkumar et al., 2023). However, these approaches fail to
account for the complex interactions between social biases that are embedded in demographic
features and the multimodal nature of EHR data (Wang et al., 2022a). In contrast, our
proposed method leverages multimodal EHRs and addresses a spectrum of social biases
through a unified framework.
Contrastive Learning. Contrastive learning (CL), originally developed for vision tasks,
employs the principle of contrasting samples to identify attributes common to and differenti-
ating between data classes (Khosla et al., 2020; Chen et al., 2020; Jaiswal et al., 2020). In
essence, CL generates varied views of original data through random augmentation, treating
views from the same source as positive pairs. The model then learns effective representations
by minimizing the distance between these positive pair representations. Recently, CL has
been adapted for patient representation in EHRs, applied in critical event prediction for
COVID-19 (Wanyan et al., 2021), clinical risk prediction (Zang and Wang, 2021), and survival
analysis (Nayebi Kerdabadi et al., 2023). However, existing CL applications in EHRs neglect
potential fairness issues. To address this oversight, our method introduces a fairness-oriented
contrastive loss for training models that learn fair representations, incorporating tailored
contrasting sample designs specific to EHRs.
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Fairness Evaluation. Traditional fairness metrics such as equalized odds, equal oppor-
tunity (Hardt et al., 2016), demographic parity (Jiang et al., 2022), and disparate impact
assess fairness are based on aggregate outcomes across diverse demographic groups (Feldman
et al., 2015). However, these metrics may not fully capture the heterogeneity and distinct
distribution patterns in EHR data, particularly when considering variability in subgroup
sizes. To address this gap, we propose the Error Distribution Disparity Index (EDDI), a
metric specifically designed for EHRs. EDDI measures fairness by evaluating the disparities
in error rates across subgroups relative to the overall error rate, which is crucial in clinical
settings characterized by imbalanced outcome labels and varying patient group sizes.

3. Methods

In this section, we begin by presenting an overview of the problem formulation and the
workflow of our FairEHR-CLP. Then, the process of generating synthetic counterparts
for each patient during the training phase is detailed. Finally, we discuss fairness-aware
predictions with CL, in conjunction with the outcome prediction with the MLP classifier.

3.1. Problem Formulation and Method Overview

We define a dataset as D = {(xk, yk, sk)}nk=1, where xk ∈ X corresponds to the input
features extracted from patient demographics, longitudinal health records, and clinical notes;
yk ∈ {0, 1} ⊆ Y denotes the binary target label; and sk ∈ S signifies the sensitive attribute
indicative of potential social bias. These attributes encompass gender (male, female), race
(White, Black, Asian, etc.), ethnicity (including categories such as Latino/Hispanic), age
(categorized into ranges like 50-60, 60-70, etc.), and socioeconomic status (SES), represented
by the type of insurance (private, government, etc.). The inclusion of insurance type as
a proxy for SES allows for the examination of disparities that may arise due to economic
barriers to healthcare access (Green et al., 2021). Our objective is to develop an effective
and fair prediction model f : X → Y that aims to accurately predict outcomes without
discriminating against the subgroups defined by sensitive attributes S from demographics.

Our approach unfolds in two primary stages: 1) Synthetic Counterpart Genera-
tion, where we generate synthetic demographic counterparts to represent a spectrum of
demographic identities. For creating corresponding synthetic longitudinal data, we employ
EHR-based Generative Adversarial Networks (GANs) (Li et al., 2023). Simultaneously,
Llama2-70b (Touvron et al., 2023) is used to synthesize clinical notes, thereby enriching our
dataset to mirror demographic diversity while maintaining clinical accuracy. An example
of a patient profile is illustrated in Appendix A. 2) Fairness-Aware Predictions with
CL, in which we align the representations of real and synthetic data to address biases. It
incorporates an MLP classifier with a softmax layer for downstream classification tasks,
leveraging aligned real data representations for final prediction.

3.2. Synthetic Counterpart Generation

Our initial step involves generating synthetic counterparts for sensitive attributes (i.e., gender,
age, race, ethnicity, and insurance), along with longitudinal data (including vital signs and
lab measurements), and clinical notes for patients during the training phase. This process
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creates pairs of patients with similar health conditions but distinct demographic factors.
For example, if the original patient is a 55-year-old diabetic White male, the corresponding
synthetic counterpart might be a 60-year-old diabetic Black female. This step enhances the
representation of diverse demographics while preserving the consistency of health-related
information. These synthetic samples are used alongside real data for contrastive training
but not in final predictions in full FairEHR-CLP experiments.
Sensitive Attributes. We consider five sensitive attributes, which range from binary to
multi-class subgroups for each attribute. Four of these attributes are categorical, except for
age, which is a continuous variable. For the categorical variables, we randomly assign a new
category to each patient to create their corresponding synthetic counterpart (e.g., male to
female). For age, we segment our patient cohort into 10-year age bins (e.g., 50-60, 60-70,
etc.). Then, we assign a random age within a different bin for each patient’s synthetic age.

Figure 2: Architecture of EHR-GAN. The green box indicates the output from an interme-
diate layer of the discriminator D.

Longitudinal Data. We generate synthetic longitudinal data, which is data collected
from the same individuals over a period of time, using the EHR-M-GAN model (Li et al.,
2023), focusing exclusively on continuous data streams, which we designate as EHR-GAN, as
shown in Figure 2. The architecture of EHR-GAN comprises a generator G, which includes
an encoder Ge, a decoder Gd, and a discriminator D. The encoder Ge transforms the
input x into a latent space representation z. Subsequently, the decoder Gd utilizes z, along
with random noise v, to generate synthetic data x̂. The discriminator D is responsible for
distinguishing between real and synthetic data. The training process involves optimizing
three joint losses: 1) The discriminative loss ldis, provided by the discriminator D, ensures
that the generated longitudinal data appear realistic. It is defined as:

ldis = − 1

n

n∑
i=1

[yi logD(xi) + (1− yi) log(1−D(Gd(zi)))],

where yi denotes the label indicating whether the data is real or synthetic. 2) The adversarial
loss ladv encourages the decoder Gd to produce data that the discriminator will classify as
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real:

ladv = −Ez∼pz(z) [logD(Gd(z))] ,

where pz(z) represents the prior distribution over the latent space representation z. 3) The
feature matching loss lfm ensures that the decoder Gd creates data with statistical properties
that are similar to real data:

lfm =

√
Ex∼px(x),z∼pz(z)

[
(f(D(x))− f(D(Gd(z))))

2
]
,

thereby minimizing the discrepancy between the discriminative features of the real and
synthetic data. Here, f(·) denotes the output of an intermediate layer of the discriminator
D, and px(x) is the distribution of the real data.

The total loss is β0ldis+β1ladv+β2lfm, where β0, β1, and β2 are the weighting coefficients
that balance the importance of each loss component.
Clinical Notes. We utilize Llama2-70b-chat (Touvron et al., 2023) to generate synthetic
clinical notes. The model receives specific instructions to ensure the preservation of essential
elements in clinical documentation: “Please paraphrase the provided clinical notes, ensuring
no critical medical components such as medical history, diagnoses, and treatments are omitted
while maintaining the integrity of authentic documentation”. After generation, a random
subset of these synthetic notes undergoes manual review by clinical experts. This process is
crucial to confirm the fidelity and accuracy of the content, ensuring it aligns with authentic
clinical records in accordance with the given prompt. Details regarding the review guidelines
are in Appendix B.
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3.3. Fairness-Aware Predictions with Contrastive Learning

In our augmented dataset, which includes both real patient data and synthetic counterparts
spanning demographics, longitudinal records, and clinical notes during the training phase,
we implement fairness-aware predictions with contrastive learning. For each patient, positive
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samples (x+) are defined as their respective synthetic counterparts. These counterparts
differ in sensitive demographic attributes but are matched to share similar health conditions,
as determined by corresponding synthetic longitudinal and note data. In contrast, negative
samples (x−) are all other patients present in the same minibatch during training. To encode
features from both real and synthetic data during training, demographic characteristics are
processed using an MLP encoder, while longitudinal data are handled with a convolutional
layer followed by a standard Transformer encoder to capture temporal dynamics. Clinical note
embeddings are derived using RoBERTa-large (Liu et al., 2019). The encoded demographic,
longitudinal, and note data are denoted as ed, el, and en, respectively. Following this, an MLP-
based fusion combines these modality-specific representations into a unified representation
that captures inter-modal dependencies and interactions: Ffusion(·) = MLP(ed⊕el⊕en; θfusion),
where θfusion represents the set of trainable parameters within the fusion layer. Integrated
representations for real and synthetic data are labeled as e and esyn, respectively. To
dynamically address potential biases across different data types, we introduce a Dynamic
Relevance (DR) layer, defined as FDR(e) = σ(w) ⊙ e, using e as an example, where w
represents adjustable weights and σ is the sigmoid function. This gating mechanism
modulates the influence of each feature in the final representation. Post-DR, the adjusted
embeddings are referred to as eadj and eadj,syn for real and synthetic data, respectively. The
joint learning objective combines a fairness-oriented contrastive loss (lCF ) for bias mitigation
and cross entropy loss (lCE) to enhance classification performance. Formally,

lCF =

N∑
k=1

− log
exp(sim(eadjk , eadj,syn

k+
)/τ)∑N

j=1 exp(sim(eadjk , eadj,syn
j− )/τ)

+ γ

(
1

N

N∑
k=1

∥∥∥eadj,synk − µadj
syn

∥∥∥2
2

)
,

where N denotes the number of real embeddings (and corresponding synthetic counterparts)
in a minibatch, sim(u, v) calculates cosine similarity, τ is a temperature parameter, γ is

a regularization parameter, and µadj
syn is the mean of eadj,syn across a minibatch. The first

term is inspired by NT-Xent loss (Chen et al., 2020), while the second term encourages the
synthetic embeddings to cluster tightly around their mean, mitigating overfitting to outliers
in synthetic data. Additionally,

lCE(e, y) = −
N∑
k=1

yk log(C(eadjk )),

where yk corresponds to the true label for each of the N real embeddings and C(eadjk ) signifies
the softmax probability of the predicted class. The total loss is

∑
k(αlCF + (1 − α)lCE),

with α balancing fairness and performance. The detailed workflow of our second stage
(fairness-aware predictions with CL) is depicted in Figure 3. For clarity, all notations
used throughout this section can be found in Appendix C. Implementation details are in
Appendix D.

4. Experimental Setup

In this section, we outline the experimental setup, including the datasets used, the baseline
models for comparison, and the evaluation metrics employed.
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4.1. Datasets

We evaluate our proposed framework using three EHR datasets: STAnford medicine Research
data Repository (STARR) from Stanford Medicine, MIMIC-III, and MIMIC-IV. Our focus
is on surgical patients aged 50 years or older, a cohort often subject to social bias in
medical treatments and outcomes due to age-related factors like impaired cognition. For the
MIMIC-III and MIMIC-IV datasets, we specifically employ the MIMIC-III Clinical Database
CareVue subset (Johnson et al., 2022) to ensure there is no overlap of patient data. The study
targets three critical tasks: classifying delirium, OUD, and 30-day readmission. These tasks
are chosen for their direct impact on enhancing postoperative care, improving patient safety,
and reducing healthcare costs. Demographic indicators are excluded from clinical notes to
focus solely on health conditions. We extract patient data from a 24-hour postoperative
period and employ MICE imputation (Van Buuren and Groothuis-Oudshoorn, 2011) to
address missing values for all datasets. Each task is approached as a binary classification
problem. The class distribution for each task is summarized in Table 1 with more details in
Appendix E.

Table 1: Class distribution in three prediction tasks over all datasets.

Dataset
Delirium OUD 30-day Readmission
class 0 / 1 class 0 / 1 class 0 / 1

STARR 39,516 / 7,417 42,156 / 4,777 34,919 / 12,014
MIMIC-III 4,030 / 272 3,998 / 304 3,974 / 328
MIMIC-IV 7,956 / 7,962 14,169 / 1,749 9,136 / 6,782

4.2. Baselines

To assess our method in terms of performance and fairness, we compare it with a variety
of established methods. Our evaluation begins with the Demographic-free Classification
(DfC) approach, based on the premise that models, if unaware of demographic features often
central to socially sensitive biases, should demonstrate minimal differences in performance.
Additionally, we explore two notable debiasing strategies tailored for EHR: Adversarial
Debiasing (AdvDebias)(Zhang et al., 2018; Yang et al., 2023), a technique that simulta-
neously trains a classifier and an adversary model to neutralize bias, and Fair Patient
Model (FPM)(Sivarajkumar et al., 2023), which employs a Stacked Denoising Autoencoder
and a weighted reconstruction loss for equitable patient representations. Furthermore, we
include comparisons with embedding methods RoBERTa-large (Liu et al., 2019) and Clini-
calBERT (Alsentzer et al., 2019), widely used in general and healthcare-specific applications,
respectively. The embeddings generated by these models are utilized as inputs for an MLP
classifier equipped with a softmax layer for prediction.

4.3. Evaluation Metrics

For classification performance evaluation, we employ F1 and AUROC as metrics. Regarding
fairness metrics, we adopt a variant of the Equalized Odds (EO) metric (Hardt et al., 2016),
a widely recognized notion of group fairness (Dwork et al., 2012). Traditionally, EO suggests
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that a model achieves fairness when the True Positive Rates (TPR) and False Positive Rates
(FPR) are consistent across all subgroups defined by the sensitive attribute. However, this
conventional interpretation of EO may not fully account for practical challenges such as
data variability or differences in group sizes in clinical settings. Therefore, we employ the
Average Disparity in EO to measure the average deviation from the ideal EO condition:

EOTPR =
1(|S|
2

)∑
si

∑
sj>si

∣∣TPRsi − TPRsj

∣∣ ,
EOFPR =

1(|S|
2

)∑
si

∑
sj>si

∣∣FPRsi − FPRsj

∣∣ ,
where

TPRs =
TPs

TPs + FNs

and

FPRs =
FPs

FPs +TNs
.

Here, for each subgroup s ∈ S, where S is the set of subgroups determined by a sensitive
attribute (e.g., race), TPs, FNs, FPs, and TNs represent the counts of true positives, false
negatives, false positives, and true negatives for each subgroup s, respectively. We adopt
the pairwise comparison approach, averaging the differences in TPR and FPR across all
pairs of subgroups (e.g., White, Black, etc.) within a sensitive attribute (e.g., race). We
then compute the arithmetic mean of EOTPR and EOFPR to establish a singular EO metric.

A critical limitation of the traditional EO metric is its tendency to oversimplify fairness
across subgroups that are diverse and unevenly represented, failing to adequately capture
subgroup-specific error rate disparities. To overcome this, we introduce the Error Distribution
Disparity Index (EDDI), a new fairness metric designed to address the complexities of
clinical settings, especially those with significant data variability and diverse group sizes. It
is formulated as:

EDDI =
1

|S|
∑
s∈S

ERs −OER

max(OER, 1−OER)
,

where

ERs =
1

Ns

∑
i∈s

I(yi ̸= ŷi)

represents the error rate for each subgroup s and

OER =
1

N

N∑
i=1

I(yi ̸= ŷi)

denotes the overall error rate across the dataset. Here, yi and ŷi denote the true and
predicted labels, respectively. Ns and N indicate the number of instances within each
subgroup and the total number of instances in the dataset, respectively. EDDI quantifies the
error rate deviation for each subgroup from the overall error rate. We contend that a model
is fair if it maintains consistent error rates across all demographic subgroups. In general,
reduced values of EO and EDDI signify enhanced fairness in the model.
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Table 2: Performance and fairness evaluation across three Datasets: STARR, MIMIC-III,
and MIMIC-IV. We report average results and standard deviations over five runs.
EO and EDDI results are averaged over five sensitive attributes. For each dataset
and each task, results highlighted in bold indicate the highest performance, while
those underlined denote the optimal fairness outcomes. Our method demonstrates
superior classification performance and fairness in the majority of settings.

Model
Delirium OUD 30-Day Readmission

F1 (↑) AUROC (↑) EO (↓) EDDI (↓) F1 (↑) AUROC (↑) EO (↓) EDDI (↓) F1 (↑) AUROC (↑) EO (↓) EDDI (↓)

Dataset 1: STARR

DfC 79.6±1.4 81.8±1.2 5.2±0.8 2.6±0.5 85.7±1.8 89.2±1.5 3.4±0.6 2.8±0.7 80.9±1.6 83.4±1.5 0.2±0.6 3.7±0.5

AdvDebias 81.5±1.7 83.8±1.4 6.6±0.9 4.2±0.5 83.6±2.0 87.3±1.6 3.8±0.8 2.9±0.6 81.2±1.8 84.2±1.4 0.8±0.4 4.8±0.6

FPM 80.2±1.7 82.6±1.4 7.0±0.9 4.4±0.6 84.3±2.1 88.1±1.8 3.8±0.9 3.0±0.8 80.6±1.2 83.1±1.0 0.9±0.3 4.7±0.6

RoBERTa 83.6±1.5 86.2±1.3 8.7±1.0 5.2±0.8 87.5±1.8 91.3±1.5 4.8±0.7 4.0±0.8 82.3±1.7 85.9±1.6 1.4±0.3 5.9±0.9

ClinicalBERT 82.8±1.6 84.1±1.4 8.0±1.1 4.6±0.7 85.2±1.4 88.9±1.2 4.2±0.8 3.5±0.7 81.6±1.9 84.7±1.3 1.1±0.4 5.6±0.8

FairEHR-CLP (Ours) 84.1±1.3 87.3±1.0 5.7±0.7 3.4±0.5 86.3±1.6 90.6±1.4 3.5±0.6 2.8±0.5 83.2±1.3 87.8±1.5 0.4±0.2 4.4±0.6

Dataset 2: MIMIC-III

DfC 82.9±1.4 85.8±1.3 5.8±0.7 3.6±0.6 86.8±1.5 88.3±1.6 3.3±0.5 1.8±0.5 83.7±1.2 86.6±1.0 2.1±0.3 1.3±0.4

AdvDebias 74.5±1.6 77.6±1.7 7.0±0.9 4.9±0.8 85.2±1.5 87.1±1.3 3.9±0.7 2.4±0.5 85.4±1.3 88.1±1.0 5.1±0.3 3.8±0.2

FPM 75.8±1.6 79.2±1.8 6.6±0.8 4.3±0.6 83.7±1.3 86.4±1.5 4.5±0.3 2.6±0.4 84.3±1.4 87.2±1.2 5.4±0.5 4.0±0.4

RoBERTa 83.7±1.4 86.9±1.6 7.2±0.7 4.0±0.6 87.2±1.3 89.7±1.5 4.6±0.6 2.9±0.6 86.1±1.4 89.5±1.2 5.6±0.2 4.5±0.3

ClinicalBERT 85.1±1.5 87.6±1.7 6.7±0.8 4.2±0.7 86.9±1.4 88.5±1.3 4.2±0.5 3.5±0.7 85.3±1.4 87.9±1.6 5.3±0.6 4.8±0.8

FairEHR-CLP (Ours) 85.5±1.2 89.7±1.1 6.2±0.3 3.8±0.5 89.4±1.4 91.9±1.5 3.7±0.5 2.0±0.4 88.2±1.3 91.4±1.1 3.3±0.4 2.1±0.6

Dataset 3: MIMIC-IV

DfC 76.1±1.6 79.4±1.3 4.9±0.6 3.5±0.4 75.2±1.9 79.5±1.8 1.3±0.6 2.1±0.5 76.9±1.5 79.3±1.4 2.2±0.6 4.5±0.7

AdvDebias 73.6±1.8 76.6±1.6 5.3±0.7 4.0±0.8 74.7±1.5 78.6±1.3 5.8±0.5 3.0±0.6 77.8±1.3 80.6±1.2 3.1±0.3 5.9±0.3

FPM 70.4±2.0 73.1±1.8 5.6±0.8 4.2±0.9 72.9±1.5 76.0±1.3 5.0±0.8 2.6±0.7 79.2±1.4 82.7±1.5 3.0±0.5 5.6±0.7

RoBERTa 77.9±1.4 81.1±1.6 5.7±0.5 4.3±0.7 86.3±1.9 89.6±1.7 4.2±0.8 2.3±0.9 81.3±1.4 85.7±1.5 3.6±0.6 5.6±0.5

ClinicalBERT 78.2±1.7 81.7±1.5 6.0±0.6 4.6±0.8 84.2±2.1 87.6±1.8 4.9±0.9 3.1±0.9 80.4±1.2 83.7±1.1 3.9±0.5 5.7±0.6

FairEHR-CLP (Ours) 78.8±1.2 82.4±1.0 6.1±0.4 3.5±0.3 84.8±1.6 88.9±1.5 1.5±0.3 3.0±0.6 81.6±1.8 86.4±1.6 2.8±0.7 5.2±0.9

5. Results

In this section, we present a comprehensive comparison of our method with baselines
across all datasets in Section 5.1, explore the effects of data modalities, model components,
and hyperparameters in Section 5.2, provide visualizations of learned representations in
Section 5.3, and analyze the model’s impact on each sensitive attribute in Section 5.4.

5.1. Main Results

We report the classification and fairness results from the test set in the second stage of
our approach (see Figure 1) across three tasks and three datasets (9 settings in total) in
Table 2. We use F1 and AUROC as performance metrics, as well as EO and EDDI as
fairness metrics, with EO and EDDI results averaged over five sensitive attributes. There
are several key takeaways. Firstly, FairEHR-CLP consistently outperforms DfC in F1 and
AUROC by 4.8% and 5.8% on average, respectively, highlighting the benefit of demographic
features in enhancing predictive accuracy, despite potential bias risks. In terms of fairness,
FairEHR-CLP achieves EO and EDDI levels comparable to DfC, affirming the effectiveness of
our bias mitigation approach. Moreover, when compared with specialized debiasing methods
like AdvDebias and FPM, FairEHR-CLP excels in both predictive accuracy and fairness in
most settings. This superior performance can be attributed to its comprehensive integration
of multimodal EHR data and concurrent bias mitigation across multiple sensitive attributes,
in contrast to the single-attribute focus of AdvDebias and FPM. Lastly, against classification
methods using embeddings such as RoBERTa and ClinicalBERT, FairEHR-CLP shows
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superior performance in 7 out of 9 tasks, along with consistently lower EO and EDDI scores
across all settings, demonstrating its robustness in balancing bias management with minimal
performance loss.

5.2. Ablation Study

We conduct ablation studies on the STARR dataset to evaluate: (1) the effectiveness of
various data modalities; (2) the impact of the main components of FairEHR-CLP; and (3)
the influence of the key hyperparameter α, which balances fairness and performance. For
additional results on other datasets, please refer to Appendix F.

Data Modalities. We study the effectiveness of different data modalities (demographics
D, longitudinal L, and notes N ) within the full FairEHR-CLP framework. Considering
our objective of mitigating social bias, often rooted in D, we keep it constant in our
ablation experiments. We then explore all combinations involving D and present the results
on the STARR dataset in Table 3. We observe that the D + L combination marginally
outperforms the D +N combination. Utilizing the full dataset (D + L+N ) results in a
2.2% improvement in F1 and a 2.5% increase in AUROC compared to the second-best
results (D + L). From a fairness perspective, the complete data combination consistently
demonstrates a reduction in bias, indicating a more nuanced understanding and representation
of patient profiles, leading to more equitable outcome predictions.

Table 3: Effects of different data modalities as inputs for FairEHR-CLP on the STARR
dataset. Here, D, L, and N represent demographics, longitudinal data, and clinical
notes, respectively.

Data
Modalities

Delirium OUD 30-Day Readmission

F1 (↑) AUROC (↑) EO (↓) EDDI (↓) F1 (↑) AUROC (↑) EO (↓) EDDI (↓) F1 (↑) AUROC (↑) EO (↓) EDDI (↓)

D 78.5±1.7 80.2±1.6 7.8±0.9 5.5±0.6 81.2±1.5 85.0±1.3 4.7±0.8 4.1±0.7 79.3±1.4 82.1±1.2 6.0±0.5 6.2±0.6

D + L 82.3±1.4 85.5±1.2 6.2±0.8 4.2±0.5 84.1±1.6 88.3±1.4 3.9±0.7 3.0±0.6 81.8±1.3 85.4±1.1 1.1±0.3 4.9±0.5

D +N 81.7±1.5 84.8±1.3 6.7±0.7 4.8±0.6 83.7±1.7 87.6±1.5 4.1±0.6 3.5±0.7 81.5±1.2 85.2±1.0 1.6±0.4 5.0±0.7

D + L+N 84.1±1.3 87.3±1.0 5.7±0.7 3.4±0.5 86.3±1.6 90.6±1.4 3.5±0.6 2.8±0.5 83.2±1.3 87.8±1.5 0.4±0.2 4.4±0.6

Model Components. We investigate the key model components in the FairEHR-CLP,
namely the CL approach and the DR layer. We maintain synthetic counterparts for data
augmentation during the training phase when CL is not applied. Results from the STARR
dataset, as shown in Table 4, reveal that removing both CL and DR results in the most
significant performance degradation, averaging a 2.6% drop in F1 and 4.1% in AUROC
across three tasks. This setup also yields the most biased predictions. The absence of either
CL or DR (full w/o CL or full w/o DR) leads to only a slight decline in performance but
shows a tendency towards more biased outcomes compared to those from the full model.
This can be attributed to the complementary roles of CL and DR in balancing accurate
predictions with fairness.

Effect of α. We investigate the effect of α on the trade-off between fairness and utility
across a range from 0.0 to 1.0. Figure 5 demonstrates that, generally, a lower α prioritizes
utility, resulting in higher F1 scores at the expense of fairness, as reflected by increased
EO and EDDI values. Conversely, a higher α enhances fairness, evidenced by lower EO
and EDDI, but leads to decreased F1 scores. The figure indicates that the optimal α = 0.6,
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Table 4: Effects of different model components for FairEHR-CLP (full) on the STARR
dataset (D + L+N ). Here, ‘w/o CL’ and ‘w/o DR’ represent the full model
without contrastive learning and without the Dynamic Relevance layer, respectively.

Model
Components

Delirium OUD 30-Day Readmission

F1 (↑) AUROC (↑) EO (↓) EDDI (↓) F1 (↑) AUROC (↑) EO (↓) EDDI (↓) F1 (↑) AUROC (↑) EO (↓) EDDI (↓)

Full w/o CL + DR 80.3±1.4 82.1±1.1 7.2±0.8 5.3±0.5 85.9±1.7 89.7±1.3 5.1±0.7 4.3±0.6 81.2±1.2 83.5±1.3 1.9±0.3 5.6±0.5

Full w/o CL 81.1±1.3 83.0±1.0 6.7±0.7 4.5±0.4 86.0±1.5 89.9±1.2 4.7±0.6 3.8±0.5 81.7±1.1 84.6±1.2 1.6±0.2 5.1±0.4

Full w/o DR 82.5±1.2 85.4±0.9 6.4±0.6 4.1±0.3 86.2±1.3 90.3±1.1 3.9±0.5 3.2±0.4 82.1±1.0 86.2±1.1 1.2±0.2 4.8±0.3

Full 84.1±1.3 87.3±1.0 5.7±0.7 3.4±0.5 86.3±1.6 90.6±1.4 3.5±0.6 2.8±0.5 83.2±1.3 87.8±1.5 0.4±0.2 4.4±0.6

positioned at the top-left corner of both plots, signifies an equitable compromise between
fairness and utility.

FairEHR-CL (w/o CL + DR)
White
Asian
Black

Hawaiian or Pacific Islander
Native American
Others

White
Asian
Black

Hawaiian or Pacific Islander
Native American
Others

FairEHR-CL (full)
White
Asian
Black

Hawaiian or Pacific Islander
Native American
Others

White
Asian
Black

Hawaiian or Pacific Islander
Native American
Others

Figure 4: t-SNE visualization of learned representations from FairEHR-CLP with and
without bias mitigation components CL and DR on the STARR dataset w.r.t. the
sensitive group race.

5.3. Visualization

To assess the quality of the learned representations and the effectiveness of our method, we
employ t-SNE (Van der Maaten and Hinton, 2008) to visualize projections of 1000 patient
records from the STARR test set, focusing on the sensitive attribute race, as shown in
Figure 4. The left panel depicts a vanilla model lacking the CL and DR components, which
are integral to bias mitigation in FairEHR-CLP. We observe that the vanilla model learns
information about race, as the representations given by vanilla exhibit distinct clusters along
racial lines. It suggests that the model may be disproportionately weighting race when
forming representations. In contrast, our full FairEHR-CLP model on the right shows a
more homogeneous distribution across racial groups, suggesting a reduced impact of race
on the representations, thereby diminishing reliance on biased attributes and advancing
towards more equitable predictions.
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Figure 5: Effect of α on fairness-utility trade-off in the STARR dataset (delirium task). Left:
EO vs. F1; Right: EDDI vs. F1.

5.4. Sensitive Attributes Analysis

We investigate the impact of our method on each sensitive attribute from a fairness per-
spective. Table 5 presents the EO and EDDI values for each sensitive attribute across three
datasets. Our approach consistently demonstrates the least bias in gender, with EO as low
as 1.7% and EDDI at 1.8%, followed by a slightly increasing bias in SES. The most biased
sensitive attribute is race, exhibiting up to 5.9% in EO and 4.7% in EDDI. Similarly, age bias
is also pronouncedly high. The variability in bias levels across different sensitive attributes
and datasets underscores the impact of dataset-specific characteristics on model fairness.

Table 5: Fairness evaluation of FairEHR-CLP across individual sensitive attributes in three
datasets, averaged over three tasks. Bold values represent the least bias, while
underlined values indicate the most bias among sensitive attributes.

Attributes
STARR MIMIC-III MIMIC-IV

EO (↓) EDDI (↓) EO (↓) EDDI (↓) EO (↓) EDDI (↓)

Gender 1.7±0.5 2.4±0.5 3.3±0.3 1.8±0.3 2.8±0.4 3.3±0.4

Race 5.2±0.8 4.7±0.7 5.9±0.6 3.2±0.4 3.8±0.6 4.2±0.7

Ethnicity 3.0±0.5 3.6±0.3 4.4±0.4 2.6±0.6 3.5±0.3 3.9±0.6

Age 3.5±0.3 3.7±0.4 4.6±0.4 3.0±0.7 4.1±0.8 4.4±0.8

SES 2.6±0.4 3.1±0.6 3.8±0.3 2.4±0.5 3.3±0.4 3.7±0.5
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6. Discussion

In this paper, we have presented a novel approach to address the challenges of fairness in
clinical predictions using EHRs. Our findings suggest that the FairEHR-CLP framework,
which integrates patient demographics, longitudinal data, and clinical notes through a unique
two-stage process: synthetic counterpart generation and fairness-aware predictions with
CL, significantly reduces disparities in error rates across different demographic subgroups.
This improvement is critical in the context of healthcare, where equitable treatment and
diagnosis are paramount. The integration of contrastive learning in fairness-aware predictions,
combined with our novel fairness metric, represents a substantial advancement in the pursuit
of equitable healthcare outcomes.

Limitations and Future Work. A concern in our study is the quality of synthetic data
generated. Inaccuracies in capturing the complexity of real patient data could limit the
model’s effectiveness in mitigating biases. Future research should explore diverse synthetic
data generation techniques, especially for longitudinal data and notes, to identify those that
most accurately mirror the statistical characteristics of real data. Additionally, our approach
encounters challenges with ambiguous categories in sensitive attributes, such as ‘Unknown’
or ‘Other’. Refining categorization strategies is crucial to address biases more precisely.
We will also extend our experiments to various clinical contexts, thereby enhancing the
robustness and adaptability of our approach.

7. Broader Impacts

This paper introduces a general framework aimed at enhancing fairness in clinical predictions
using multimodal EHRs by addressing social biases from demographic factors. Our approach
highlights the potential for more equitable healthcare outcomes through ethically conscious
AI, underscoring the importance of responsible usage. FairEHR-CLP offers a promising
avenue to close the disparities gap in health outcomes by ensuring more accurate and
unbiased healthcare predictive models, paving the way for a more inclusive future in medical
decision-making.
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Appendix A. EHR Data Examples

We provide a sample of EHR data from MIMIC-IV for one patient, including both real and
synthetic data, encompassing static demographic features, longitudinal data, and clinical
notes.
Demographics. Figure 6 provides an example of real and synthetic demographic features
for a patient.

(a) Real demographic features. (b) Synthetic demographic features.

Figure 6: Demographic examples (real and synthetic) from an EHR data sample. NHPI
denotes Native Hawaiians and Pacific Islanders.

Longitudinal Data. Figure 7 presents an example of real and synthetic longitudinal data
for a patient.
Notes. We provide the following examples of real and synthetic clinical notes for the
patient described earlier. The texts in bold indicate the patient’s primary medical or health
conditions.

Real: The patient exhibited a progressive exacerbation of dyspnea and edema
over four days, ultimately found in a tripod position with a resting arterial oxygen saturation
of 90%. Initially managed as a COPD exacerbation and later excluding non-ST-elevation
myocardial infarction (NSTE-ACS), the patient was stabilized in the ICU with BiPAP
support. Subsequent cardiac catheterization identified multivessel coronary artery
disease, including in-stent stenosis in the left anterior descending artery. Despite these
complications, the patient remained hemodynamically stable in normal sinus rhythm and
was subsequently shifted for revascularization evaluation.

Synthetic: The patient arrived with an escalating severity in breathing difficulty
and swelling over four days, observed in a respiratory distress posture with an oxygen
saturation level at 90%. Initially treated for a chronic obstructive pulmonary disease flare-up,
myocardial infarction without ST-elevation was later ruled out. The patient was maintained
in a stable condition under BiPAP respiratory support in the intensive care unit. Cardiac
catheterization conducted recently revealed a complex coronary artery disease, notably
including a narrowed segment within a stent in the left anterior descending artery.
Notwithstanding these heart-related complexities, the patient’s hemodynamic status was
stable with a normal heart rhythm, leading to a transfer for further assessment and
planning for revascularization therapy.
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(a) Real longitudinal features.
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(b) Synthetic longitudinal features.

Figure 7: Longitudinal feature examples (real and synthetic) from an EHR data sample.

Appendix B. Synthetic Notes Review Guidelines

For quality assurance, we randomly select 100 synthetic patient notes from each of the three
datasets. The manual review process adheres to the following principles:

(1) Exclusion of Demographic Factors: Demographic identifiers such as gender, race,
age, ethnicity, and socioeconomic status (SES) associated with insurance type are
excluded to ensure the notes primarily focus on health conditions, aligning with
our objective to mitigate social bias stemming from demographic factors in clinical
predictions.

(2) Inclusion of Major Treatments and Diagnoses: We verify the presence and
accuracy of essential health information, including diagnoses, treatments, and medical
history, to ensure the synthetic notes retain critical medical content for predictive
modeling relevance.
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(3) Consistency with Real Records: The synthetic notes are compared against authen-
tic clinical records to ascertain their fidelity in mirroring the structure, terminology,
and clinical reasoning typical of real medical documentation.

Appendix C. Notations

All the notations corresponding to the FairEHR-CLP framework are summarized in Table 6
and Table 7.

Table 6: Notation definitions in FairEHR-CLP (Part 1).

Reference Notation Description

Section 3.1
Problem

Formulation

D Dataset with patient data, labels, and sensitive attributes
xk ∈ X Input features from demographics, longitudinal data, and clinical notes

yk ∈ {0, 1} ⊆ Y Binary target label for patient outcomes
sk ∈ S Sensitive attributes from demographic features

S Set of sensitive attributes including gender, race, ethnicity, age, and SES
f : X → Y Prediction model from features to outcomes

Section 3.2
Longitudinal Data

EHR-GAN

G Generator
Ge Encoder component of generator
Gd Decoder component of generator
D Discriminator in EHR-GAN
x Input data to encoder
z Latent space representation from encoder
v Random noise input to decoder
x̂ Synthetic data generated by decoder
ldis Discriminative loss by discriminator
ladv Adversarial loss for generator
lfm Feature matching loss for generator

β0, β1, β2 Weighting coefficients for loss components
pz(z) Prior distribution over latent space
px(x) Distribution of real data
f(·) Output of intermediate layer in discriminator
yi Label indicating real or synthetic data

Continued on next page

Appendix D. Implementation Details

All of the experiments are conducted on four NVIDIA A100 GPUs. We apply a random
train/test split in an 80%/20% ratio for each dataset. In training our EHR-GAN, we
primarily adhere to the experimental settings of the baseline EHR-M-GAN as described in Li
et al. (2023), omitting the discrete-valued time-series data and focusing solely on continuous
longitudinal data. Maximum Mean Discrepancy (MMD) is employed to assess the similarity
between real and synthetic data, aiding in the adjustment of hyperparameters in EHR-GAN
for quality control. For detailed implementation specifics, please refer to Li et al. (2023).
Based on the results in the original paper and our experiments, we set the MMD threshold
at 0.68 to ensure a reasonable quality of synthetic longitudinal data. After the first stage
of FairEHR-CLP, which involves synthetic counterpart generation, and considering that
we have both synthetic and real data for each patient in the training set (demographics,
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Table 7: Notation definitions in FairEHR-CLP (Part 2).

Reference Notation Description

Section 3.3
Fairness-aware
Prediction with

Contrastive Learning

x+ Positive samples: synthetic counterparts
x− Negative samples: other patient data in minibatch
ed Encoded demographic data
el Encoded longitudinal data
en Encoded clinical notes

Ffusion MLP-based fusion function
θfusion Trainable parameters in fusion layer
e, esyn Integrated representations for real and synthetic data
FDR Dynamic Relevance (DR) layer function
w Adjustable weights in DR layer
σ Sigmoid function

eadj , eadj,syn Adjusted embeddings post-DR layer
lCF Fairness-oriented contrastive loss
lCE Cross entropy loss
N Number of embeddings in minibatch
τ Temperature parameter
γ Regularization parameter

µadj
syn Mean of adjusted synthetic embeddings
yk True label for each real embedding

C(eadjk ) softmax probability of predicted class
α Parameter balancing fairness and performance

longitudinal, and notes), we employ fairness-aware predictions with CL. The Adam optimizer
is utilized with its default parameters for optimization. The hyperparameter search space for
all datasets is detailed in Table 8. Hyperparameter optimization is conducted via random
search.

Table 8: Hyperparameter search space of FairEHR-CLP on three datasets.

Hyperparameters Search Space

Batch size [16, 32, 64, 128, 256]
Learning rate [1e−5, 5e−5, 1e−6, 5e−6]
# of epochs [20, 30, 50]

τ [0.1, 0.3, 0.5, 0.7]
λ [0.3, 0.4, 0.5, 0.6, 0.7]

Appendix E. Datasets

We summarize the clinical predictors, including vital signs and laboratory measurements,
used in the MIMIC-III/IV and STARR datasets, in Table 9 and Table 10, respectively.
These predictors are used for all three prediction tasks: classifying delirium, OUD, and
30-day readmission. Due to the absence of explicit codes for identifying surgical patients
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in the MIMIC-III/IV datasets, we extract patient data from the Surgical Intensive Care
Unit (SICU). Delirium refers to a condition characterized by confusion and a reduced ability
to maintain attention and clear awareness, with its incidence increasing with age (Wilson
et al., 2020). Bias could arise from healthcare professionals’ age-related stereotypes, leading
to underdiagnosis in older patients or overdiagnosis in those with pre-existing cognitive
impairments, which could affect treatment decisions and ultimately patient recovery. OUD
is a medical condition characterized by the problematic use of opioid medications, commonly
prescribed for pain relief, and can lead to a high risk of dependence and misuse. OUD can
be influenced by biases related to prescribing practices, such as biases based on patients’
race or socioeconomic status, which might affect the likelihood of being prescribed opioids,
the dosage, or the duration of use, potentially leading to disparities in the risk of developing
OUD. Lastly, 30-day readmission is defined as the rehospitalization of a patient within
30 days following their discharge from a hospital, serving as an important indicator of
the quality of care and patient outcomes. For example, elderly patients might receive less
comprehensive discharge planning or follow-up care due to assumptions about their support
systems or ability to manage their own care, leading to higher readmission rates.

Table 9: Summary of clinical predictors in longitudinal data for MIMIC-III/IV datasets.

Category Predictors

Vital Signs
Heart Rate, Systolic Blood Pressure, Diastolic Blood Pressure, Mean Blood Pressure,

Respiratory Rate, Body Temperature, Oxygen Saturation

Blood Gases
Arterial Base Excess, Arterial Carbon Dioxide Pressure,

Arterial Oxygen Pressure, Arterial pH

Renal Function Blood Urea Nitrogen, Creatinine

Metabolic Panel
Ionized Calcium, Serum Chloride, Serum Glucose, Fingerstick Glucose, Anion Gap,
Serum Bicarbonate, Magnesium, Phosphorus, Serum Potassium, Serum Sodium

Hematology
Serum Hematocrit, Hemoglobin,

Platelet Count, White Blood Cell Count

Table 10: Summary of clinical predictors in longitudinal data for the STARR dataset.

Category Predictors

Vital Signs
Heart Rate, Pulse, Respiratory Rate, Oxygen Saturation,

Body Temperature, Systolic Blood Pressure, Diastolic Blood Pressure

Blood Gases CO2, Anion Gap

Renal Function Blood Urea Nitrogen, Creatinine

Metabolic Panel Calcium, Chloride, Glucose, Potassium, Sodium

Hematology

Hematocrit, Hemoglobin, Mean Corpuscular Volume,
Mean Corpuscular Hemoglobin, White Blood Cell Count,

Platelet Count, Red Blood Cell Count, Red Cell Distribution Width,
Mean Corpuscular Hemoglobin Concentration

Liver Function ALT (SGPT), Albumin
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Appendix F. Ablation Study

Data Modalities. Table 11 and Table 12 demonstrate the impact of different data modalities
on the performance of our FairEHR-CLP method for the MIMIC-III and MIMIC-IV datasets,
respectively. Similar to the trends observed in the STARR dataset, combining demographic
(D) and longitudinal (L) data surpasses the mix of D with clinical notes. In MIMIC-III, using
the complete dataset (D + L+N ) results in a 5.8% increase in F1 and a 4.9% improvement
in AUROC compared to the second-best combination (D + L). Likewise, for MIMIC-IV,
employing the full dataset (D + L+N ) leads to a 2.0% enhancement in F1 and a 2.4%
increase in AUROC over the second-best results (D + L). In terms of fairness metrics, the
full dataset consistently yields lower EO and EDDI values compared to the use of partial
data. This highlights the effectiveness of comprehensive patient representation in achieving
more equitable predictions.

Table 11: Effects of different data modalities as inputs for FairEHR-CLP on the MIMIC-III
dataset.

Data
Modalities

Delirium OUD 30-Day Readmission

F1 (↑) AUROC (↑) EO (↓) EDDI (↓) F1 (↑) AUROC (↑) EO (↓) EDDI (↓) F1 (↑) AUROC (↑) EO (↓) EDDI (↓)

D 77.3±1.8 79.6±1.7 8.1±1.0 5.8±0.7 80.5±1.6 84.3±1.4 5.0±0.9 4.4±0.8 80.6±1.5 83.4±1.3 6.1±0.6 6.3±0.7

D + L 81.0±1.5 85.3±1.3 6.5±0.8 4.5±0.6 83.8±1.7 87.9±1.5 4.2±0.7 3.3±0.6 83.9±1.4 87.1±1.2 5.3±0.5 5.0±0.6

D +N 79.8±1.6 83.3±1.4 7.0±0.7 5.1±0.6 82.4±1.8 86.5±1.6 4.6±0.6 3.8±0.7 80.7±1.3 84.5±1.1 5.7±0.4 5.1±0.8

D + L+N 85.5±1.2 89.7±1.1 6.2±0.3 3.8±0.5 89.4±1.4 91.9±1.5 3.7±0.5 2.0±0.4 88.2±1.3 91.4±1.1 3.3±0.4 2.1±0.6

Table 12: Effects of different data modalities as inputs for FairEHR-CLP on the MIMIC-IV
dataset.

Data
Modalities

Delirium OUD 30-Day Readmission

F1 (↑) AUROC (↑) EO (↓) EDDI (↓) F1 (↑) AUROC (↑) EO (↓) EDDI (↓) F1 (↑) AUROC (↑) EO (↓) EDDI (↓)

D 75.6±1.8 77.8±1.7 8.5±1.0 6.2±0.7 81.9±1.6 84.9±1.4 5.4±0.8 4.7±0.6 76.3±1.7 79.5±1.5 6.7±0.7 6.9±0.8

D + L 78.2±1.5 81.6±1.3 7.0±0.8 5.1±0.6 83.7±1.7 87.8±1.6 4.7±0.7 3.6±0.5 78.5±1.6 82.4±1.4 6.0±0.6 5.7±0.7

D +N 76.9±1.6 80.3±1.5 7.8±0.9 5.6±0.7 82.5±1.8 86.7±1.5 5.1±0.6 4.2±0.6 77.1±1.5 80.7±1.3 6.4±0.8 6.1±0.9

D + L+N 78.8±1.2 82.4±1.0 6.1±0.4 3.5±0.3 84.8±1.6 88.9±1.5 1.5±0.3 3.0±0.6 81.6±1.8 86.4±1.6 2.8±0.7 5.2±0.9
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Model Components. Table 13 and Table 14 demonstrate the impact of different model
components on FairEHR when employing the full dataset for the MIMIC-III and MIMIC-IV
datasets, respectively. During the training phase, synthetic counterparts are maintained
for data augmentation when CL is not applied. For both datasets, the removal of both CL
and DR leads to the most significant performance decline. Specifically, for MIMIC-III, the
configuration without CL and DR (Full w/o CL + DR) results in a performance decrease of
2.7% in F1 and 3.3% in AUROC. For MIMIC-IV, the same configuration leads to a decrease
of 4.2% in F1 and 4.4% in AUROC. In this case, it yields the most biased predictions with
higher EO and EDDI values, while removing CL or DR moderately reduces performance
but slightly increases fairness metrics.

Table 13: Effects of different model components for FairEHR-CLP (full) on the MIMIC-III
dataset (D + L+N ).

Model
Components

Delirium OUD 30-Day Readmission

F1 (↑) AUROC (↑) EO (↓) EDDI (↓) F1 (↑) AUROC (↑) EO (↓) EDDI (↓) F1 (↑) AUROC (↑) EO (↓) EDDI (↓)

Full w/o CL + DR 83.2±1.3 86.4±1.2 7.0±0.8 5.1±0.6 87.1±1.6 89.4±1.4 4.4±0.7 3.9±0.5 85.8±1.2 88.6±1.3 4.8±0.5 3.9±0.6

Full w/o CL 83.4±1.1 86.9±1.0 6.6±0.7 4.7±0.4 88.3±1.5 90.6±1.3 4.1±0.6 3.4±0.4 86.9±1.1 89.8±1.2 4.3±0.4 3.6±0.5

Full w/o DR 84.2±1.0 87.5±0.9 6.3±0.6 4.3±0.3 88.9±1.6 91.1±1.2 3.9±0.5 3.1±0.3 87.5±1.0 90.2±1.3 3.4±0.3 2.9±0.4

Full 85.5±1.2 89.7±1.1 6.2±0.3 3.8±0.5 89.4±1.4 91.9±1.5 3.7±0.5 2.0±0.4 88.2±1.3 91.4±1.1 3.3±0.4 2.1±0.6

Table 14: Effects of different model components for FairEHR-CLP (full) on the MIMIC-IV
dataset (D + L+N ).

Model
Components

Delirium OUD 30-Day Readmission

F1 (↑) AUROC (↑) EO (↓) EDDI (↓) F1 (↑) AUROC (↑) EO (↓) EDDI (↓) F1 (↑) AUROC (↑) EO (↓) EDDI (↓)

Full w/o CL + DR 76.4±1.3 79.8±1.2 7.5±0.9 6.3±0.7 80.5±1.7 84.9±1.6 5.2±0.8 4.5±0.6 78.3±1.7 82.2±1.5 3.5±0.6 6.6±0.8

Full w/o CL 76.8±1.1 80.9±1.1 6.9±0.8 5.7±0.5 83.3±1.5 87.1±1.4 4.8±0.7 3.9±0.5 80.6±1.6 84.7±1.4 3.1±0.5 6.2±0.7

Full w/o DR 77.6±1.0 81.7±1.0 6.4±0.7 5.1±0.4 84.1±1.4 87.6±1.3 4.3±0.6 3.6±0.4 81.1±1.5 85.8±1.3 2.9±0.4 5.5±1.0

Full 78.8±1.2 82.4±1.0 6.1±0.4 3.5±0.3 84.8±1.6 88.9±1.5 1.5±0.3 3.0±0.6 81.6±1.8 86.4±1.6 2.8±0.7 5.2±0.9

26


	Introduction
	Related Work
	Methods
	Problem Formulation and Method Overview
	Synthetic Counterpart Generation
	Fairness-Aware Predictions with Contrastive Learning

	Experimental Setup
	Datasets
	Baselines
	Evaluation Metrics

	Results
	Main Results
	Ablation Study
	Visualization
	Sensitive Attributes Analysis

	Discussion
	Broader Impacts
	EHR Data Examples
	Synthetic Notes Review Guidelines
	Notations
	Implementation Details
	Datasets
	Ablation Study

