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Abstract

In this paper, we introduce a novel deep-learning based method for virtual stain multiplex-
ing of immunohistochemistry (IHC) stains. Traditional IHC techniques generally involve
a single stain that highlights a single target protein, but this can be enriched with stain
multiplexing. Our proposed method leverages sequential staining to train a model to virtu-
ally stain multiplex additional IHC on top of a digitally scanned whole slide image (WSI),
without requiring a complex setup or any additional tissue sections and stains. To this end,
we designed a novel model architecture, guided by the physical sequential staining process
which provides superior performance. The model was optimized using a custom loss func-
tion that combines mean squared error (MSE) with semantic information, allowing the
model to focus on learning the relevant differences between the input and ground truth. As
an example application, we consider the problem of detecting macro-phages on PD-L1 IHC
22C3 pharmDx NSCLC WSIs. We demonstrated virtual stain multiplexing CD68 on top
of PD-L1 22C3 pharmDx stained slides, which helps to detect macrophages and distinguish
them from PD-L1+ tumor cells, which are often visually similar. Our pilot-study results
showed significant improvement in a pathologist’s ability to distinguish macrophages when
using the virtually stain multiplexed CD68 decision supporting layer.

Keywords: Immunohistochemistry, Virtual Stain, Multiplexing, Deep Learning, Macrophages,
NSCLC.

1 Introduction

”Tissue is the issue” is a theme that serves as a guideline in nowadays pathology practice,
that requires ever-growing information deduced from tissue samples, while their size keeps
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getting smaller. Extracting maximum information from tissue samples is a common chal-
lenge in pathology in the era of personalized medicine that necessitates the use of increasing
number of immunohistochemical (IHC) stains. Combined with the increasing use of small
biopsies as the main tissue material, this puts a significant limit on the number of different
IHC stains which can be run. While this challenge can be addressed in research using flu-
orescent IHC multiplexing or mass spectrometry IHC, in routine diagnostic pathology the
common practice is to stain multiple consecutive sections with different immunostains at
the cost of labor, reagents and tissue.

Digital pathology offers an array of alternative solutions as it enables to digitally unmix
(Ruifrok and Johnston, 2001) and superimpose staining from one section to another, to
create virtual multiplexed layers (Huss and Grunkin, 2022; Visiopharm, 2023) or otherwise
to project AI inferred specific cell density maps (Bloom et al., 2022). Virtual multiplex-
ing methods, however, suffer from the same two main draw-backs as traditional pathology.
First, the method requires additional tissue sections and reagents, adding to cost and com-
plexity. Second, the consecutive tissue sections are at least 3-5 microns apart resulting in
an increasingly growing distance between slides with each additional stained section. Thus,
sections do not contain the exact same cells.

With recent advances in deep learning based models, a different approach called virtual
staining has emerged (Owkin, 2020; de Haan et al., 2021). Virtual staining methods use
generative adversarial networks (GANs) to unlock information from existing Hematoxylin-
Eosin (HE) stained tissue patterns without the need for physically staining additional tis-
sues. Pushing this approach even further enables the inference of immunohistochemical
staining patterns using unlabeled tissue (Rivenson et al., 2019; Zhang et al., 2020; Pradhan
et al., 2021). For example, Bai et al. (2022) developed a method that generates a virtual
HER2 IHC whole slide image (WSI) by recording several auto-fluorescence images of an
unlabeled tissue section.

A prime example of the benefits of combining information from multiple stains is the
detection of macrophages in PD-L1 22C3 pharmDx stained non-small cell lung cancer
(NSCLC) tissues.

PD-L1 IHC 22C3 pharmDx (GE006) is an FDA approved qualitative immunohistochem-
ical assay intended for use in the detection of PD-L1 protein in formalin-fixed, paraffin-
embedded (FFPE) non-small cell lung carcinoma NSCLC tissue. PD-L1 protein expression
in NSCLC is determined by using Tumor Proportion Score (TPS) (Herbst et al., 2016),
which is the percentage of viable tumor cells showing partial or complete membrane staining
at any intensity. The TPS scoring protocol calls for the exclusion of the staining of immune
cells including macrophages (Technologies, 2021). Since macrophages may show morpholog-
ical similarity to NSCLC cells, differentiating positive PD-L1 staining of macrophage from
that of tumor cell is often challenging (Paces et al., 2022). Although some morphological
features distinguish macrophages from tumor cells, combined staining of PD-L1 IHC 22C3
pharmDx with a separate IHC stain such as CD68 can highlight the macrophages and assist
clinical pathologists in scoring more accurately.

Beck et al. (2019) developed an automatic PD-L1+ detection method for urothelial
carcinoma, achieving strong correlation (0.837) with pathologist consensus scores on tu-
mor cells. Although not required for clinical purposes, they found that the detection of
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macrophages is still a challenging task, with inter-observer agreement/correlation as low as
0.287.

In this paper, we present a novel method called virtual stain multiplexing, which com-
bines virtual staining and virtual multiplexing. We apply this method to the problem of
detecting macrophages on PD-L1 IHC 22C3 pharmDx NSCLC WSIs.

The novel architecture of our proposed method is guided by the physical sequential
staining process and is trained using a loss function that combines mean squared error
(MSE) with semantic information. Our approach of incorporating semantic information into
the training process proved to be a crucial component in achieving the desired performance.

We trained an AI-based model using sequentially stained NSCLC WSIs to infer virtual
CD68 IHC from an input stained with PD-L1 IHC 22C3 pharmDx. The inferred virtual
stain is then combined with the input to yield the virtual stain multiplexed output. As
a pilot-study, we tested the effectiveness of our model by comparing the performance of a
pathologist in detecting macrophages in PD-L1 IHC 22C3 pharmDx stained NSCLC with
and without using the CD68 virtual stain as a decision-supporting layer. We found that
the addition of the virtual stain significantly improved the performance of the pathologist
in detecting macrophages.

2 Methods

Sequential staining is a method for adding an additional immunohistochemical (IHC) stain
(stain 2), to tissues which were already stained (stain 1) Moreover, according to the Beer-
Lambert law for absorption of light passing through a medium [15], the optical density of
stained tissue is linearly dependent on the local concentration and absorption coefficient
spectrum of chromogen.

We designed a model architecture Figure1(a) which corresponds to these physical prop-
erties of sequentially stained tissues. First, the model is optimized using optical density.
Second, learning the virtual stain concentration map is separated from learning the virtual
stain color, determined by the absorption coefficient vector.

The first step of our model involves transforming an input patch stained with stain 1 to
the optical density domain, followed by a U-Net neural network (Ronneberger et al., 2015)
for inferring a single-channel stain 2 concentration map for the patch. Subsequently, the
concentration map is multiplied by a learnt absorption coefficient vector to derive an optical
density virtual stain. For brightfield (BF) WSIs, the absorption coefficient is length three
RGB vector, hence we call this model a 3x1 architecture. The optical density virtual stain
is then added to the optical density input patch, which yields an optical density virtually
stain-multiplexed patch. This patch is subsequently inverse-transformed to a virtually stain-
multiplexed bright-field-like output. It is important to note that although the RGB vector
is learnt during training, it is a global parameter vector and not dependent on the input
patch.

The physical properties of sequential staining have also informed the development of
our loss function for model optimization, as depicted in Figure. 1 (b). Given the additive
nature of sequential/virtual staining, semantic masks, denoted as MaskGT /Maskout, are
constructed for the ground-truth and output patches, respectively. These masks are ob-
tained by taking the difference between the optical density ground-truth/output patch and
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the input patch; any pixel with an optical density difference exceeding a threshold value
is considered positive for sequential/virtual stain. The semantic masks are then used to
compute a semantic pixel-wise binary cross entropy loss (BCE) between the corresponding
ground-truth and output patches.

The semantic loss is combined with a mean squared error (MSE) loss between the optical
density ground-truth and output patches. To focus the training on relevant differences,
MaskGT is used as a mask for the MSE loss. The parameter α allows for tunable weighting
of the relative strengths of these two loss functions, resulting in a combined loss function:

Loss = MSE(output,GT ;MaskGT ) + αBCE(Maskout,MaskGT ) + θ(−v)v2 (1)

Where the last term is a regularization term, reflecting the additive nature of sequential
staining, keeping the inferred virtual stain output positive,θ is the Heaviside step-function
and v denotes the virtual stain output. We evaluate the model’s performance using the
intersection over union (IOU) metric between MaskGT and Maskout, which is used for
both hyperparameter tuning and computational evaluation.

Figure 1: Model architecture and training loss structure. Stain 1 is PD-L1 22C3 pharmDx
and stain 2 is CD68 a. 3x1 model architecture guided by physical staining process;
virtual stain concentration inferred using a U-Net is combined with globally learnt
virtual stain absorption coefficients vector in optical density (OD) domain, in
accordance with Beer-Lambert law. b. Predicted virtually stained (output) and
sequentially stained ground truth (GT) patches are used to compute a weighted
combination of MSE and BCE losses. c. With the 3x1 architecture, the virtual
stain hue can be easily changed at inference time.
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3 Experimental Results

To demonstrate the utility of virtual stain multiplexing, we applied it to the problem of
detecting macrophages in PD-L1 IHC 22C3 pharmDx stained NSCLC WSIs.

3.1 Dataset Preparation

Out of 200 NSCLC PD-L1 IHC 22C3 stained slides, 49 slides were chosen based on their
TPS values, that were near to the clinically relevant thresholds of 1% and 50%. Following
selection, the tissues were sequentially stained with CD68 PG-M1 (GA613), yielding sequen-
tially stained paired WSIs. Each WSI pair was aligned; since paired WSIs are of the same
tissue section, the obtained alignment was pixel-perfect. The study pathologist annotated
tumor regions for each WSI pair which were used for model training. Of these, 26 regions
where macrophages were difficult to distinguish from tumor cells, or where macrophages
were identified as infiltrating PD-L1 positive tumor areas, were selected as validation-set
regions for method evaluation and excluded from model training. See full dataset curation,
preparation and annotation details in appendix A.

3.2 Training Details

We implemented the model described in section 2 using Pytorch. See full training and
implementation details in appendix B.

Figure 2: Left: comparison of virtual stain multiplexed and ground truth patches. Right:
a. PD-L1+ cells annotated as CD68+ based on sequential CD68 staining by
Pathologist 1 (ground truth). b. The virtual stain-multiplexed CD68 model cor-
rectly stains the tumor-infiltrating macrophages. c. Annotation of macrophages
by Pathologist 2, based on PD-L1 staining only. The results are compared to
ground-truth annotation and presented as True Positive (TP) and False Negative
(FN).
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3.3 Qualitative evaluation

To evaluate the performance of our proposed virtual stain-multiplexing method in whole-
slide images (WSIs), we conducted a qualitative assessment. We present several representa-
tive examples of our model outputs generated on challenging validation set regions in Figure
2(left), alongside the corresponding input and sequentially stained ground truth patches.
Notably, the virtual CD68 staining demonstrated a high degree of visual consistency with
the actual CD68 stain, as evaluated by an expert pathologist. Additionally, our virtual
stain method effectively highlighted macrophages, as evidenced by the staining of most
macrophages in the validation set regions.

Figure 2(right) presents several examples of macrophages correctly identified by the
model, despite the high variation in macrophage morphology and staining patterns. Not all
these macrophages were correctly identified by pathologist 2 without the model’s assistance.

Figure 3: Qualitative effect of combined loss. Comparing (left to right) input, ground-truth,
full model output and the output of an ablation model trained only using MSE
loss. Dashed rectangles indicate a macrophage with clear membranal staining,
which is partially stained in ground-truth patch, fully stained in full model out-
puts, and only faintly stained in the ablation model outputs.

3.4 Ablation Tests

Qualitative effect of combined loss
In Figure 3, we present an illustrative example that compares a ground truth patch and the
corresponding output of a full model trained with combined MSE and BCE loss, to the out-
put of an ablation model that is solely trained using MSE loss. The comparison shows that
the outputs of the ablation model possess two distinctive features in contrast to those of
the full model. Specifically, the ablation model acquires faint and non-specific background
staining artifacts that are present in the ground-truth patches but are not present in input
patches. Nevertheless, these non-specific stains do not appear in the outputs of the full
model. Moreover, the outputs of the ablation model exhibit fainter overall virtual staining
in comparison to the outputs of the full model and the ground truth patches. We observed
that for cells with explicit membranal staining, the full model tends to stain the entire
cell cytoplasm, while the ablation model often displays partial staining patterns, similar to
those found in the ground truth patches.
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Quantitative ablation tests
Several ablation tests were conducted to investigate the contributions of different parts of
our proposed method. For full ablation tests details see appendix C.

Figure 4: Cell classification model evaluation. Presented are confusion matrices comparing
pathologist 2 annotations to pathologist 1 ground truth annotations, with (right)
and without (left) the aid of virtual stain.

3.5 Cell-level evaluation

The aim of this evaluation was to directly test the potential of the suggested model as
an assistive tool for pathologists in detecting macrophages. This evaluation scheme differs
from a pixel-level evaluation, as it takes into account that the virtual stain may not always
match the sequential ground truth stain pixel for pixel, but may still accurately stain the
correct cells.

To carry out this evaluation, individual cells from 13 regions of interest, selected from
the validation set, were annotated as macrophage/not-macrophage. Pathologist 1 generated
cell-level ground-truth annotations based on matching pairs of PD-L1 & PD-L1 + sequen-
tially stained CD68. Pathologist 2 first generated baseline annotations, based on PD-L1
WSI only. Then, pathologist 2 generated annotations based on matching pairs of PD-L1 &
PD-L1 + virtually stain multiplexed CD68, viewed side-by-side. These annotations were
then compared to the ground truth annotations by pathologist 1. The model performance
was evaluated by measuring the change in pathologist 2’s precision, sensitivity, and accuracy
when assisted by the model com-pared to when not using the model.

Confusion matrices comparing the pathologist 2’s annotations are presented in Figure
4. The addition of virtually stained multiplexed CD68 improved the performance of pathol-
ogist 2’s annotations, increasing precision and sensitivity from 0.44 and 0.32 to 0.67 and
0.79, respectively, while specificity remained unchanged at 0.92. Paired McNemar’s test
(McNemar, 1947) yielded a p-value of less than 10−30.
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4 Conclusions

In this pilot-study, we propose the method of virtual stain multiplexing, which combines
virtual staining and virtual multiplexing. Virtual stain multiplexing of immunostains in the
same section offers a promising avenue for the development of more accurate and reliable
scoring methods for cancer diagnosis, without incurring additional reagents or tissue.

We presented a deep learning based model for CD68 virtual stain-multiplexing that
can identify and virtually stain macrophages on an internal validation set. By virtually
staining these cells, our model provides a useful tool for analyzing and interpreting PD-L1
22C3 pharmDx IHC WSI. Notably, we found that pathologist 2’s performance in detecting
macrophages improved significantly when assisted by the model.

In section 3.4, we demonstrated the importance of incorporating semantic loss in the
ablation test. This addition was essential in enabling the model to focus on learning the
relevant differences between the input and ground truth. The semantic BCE loss served as
a guide for the model by providing information on where to add virtual staining, while the
masked MSE loss directed the model on how to add it.

Interestingly, we observed that the addition of the semantic loss caused the model to
virtually stain the entire cell cytoplasm, at the expense of visual fidelity to the ground truth
staining patterns. However, this characteristic of the model was found to be advantageous in
the context of macrophage detection. The study pathologists found it easier to interpret the
virtual stain CD68 compared to the ground-truth sequential stain, owing to this behavior
of the model.

In Section 3.5, we presented a quantitative pilot-study evaluation of the use of our model
for macrophage detection. The results were encouraging, showing significant improvement
in both precision and sensitivity of pathologist 2 when assisted by the model. In an ongoing
study, building on this pilot-study, we will test the efficacy of the method with multiple
pathologists.

Our proposed method can be extended to virtually multiplex additional stains, including
those for other types of immune cells. As shown in Figure 1(c), the 3x1 architecture allows
for arbitrary hue settings at inference time, facilitating such multiplexing. Moreover, our
method opens up avenues for detailed exploration of the spatial arrangement of tumor
infiltrating immune cells within the tumor microenvironment. Since our model utilizes the
same input as the standard PD-L1 IHC 22C3 pharmDx stained tissue scans that are used
in clinical practice, such investigations can be retrospective, employing clinically obtained
data. This could lead to valuable insights into the relationship between immune cells and
tumor cells, ultimately aiding in the development of new cancer therapies.
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Appendix A. Dataset Preparation

Figure 5: 200 NSCLC slides were stained with PD-L1 IHC 22C3 PharmDx (GE006). 49
selected tissues were sequentially stained with CD68 PG-M1 (GA613) and vi-
sualized with Envision FLEX HRP Magenta chromogen (GV925) on top of the
PD-L1 IHC 22C3 pharmDx. An additional section was prepared for each case,
stained with Hematoxylin and Eosin (H&E). All stained slides were scanned using
a high-resolution scanner at 40x magnification. The sequentially stained whole-
slide images (WSIs) were aligned with their matching WSIs to near pixel-perfect
alignment. The H&E WSI were also aligned with their matching WSI pair using
rough global alignment.
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Figure 6: Tumor regions annotation: each case was annotated by the study pathologist,
marking tumor and tumor-adjacent regions. Tumor identification was done by
aligning the H&E and PD-L1 IHC 22C3 pharmDx stains. Regions were qualita-
tively classified according to common pathology practice: negative PD-L1 tumor
(0 blue), weakly positive PD-L1 tumor (1+ green), and strongly positive PD-L1
tumor (2+, 3+ red). 1000x1000px regions from 26 WSIs, where macrophages
were difficult to distinguish from tumor cells, or where macrophages were identi-
fied as infiltrating PD-L1 positive tumor areas, were annotated as validation-set
regions for method evaluation and excluded from model training (brown)

10



Deep-Learning Based Virtual Stain Multiplexing Immunohistochemistry Slides – a Pilot Study

Appendix B. Architecture and Training Details

Parameter Value

Pytorch version 1.13.1
Input patch size 512x512 pixels
Concentration network U-Net
Depth 7
Min/Max channels 64/1024
Initialization Xavier normal, with 0.01 gain
Semantic loss weight α 0.1
Optimizer Adam
Learning Rate 0.0002
Betas 0.9, 0.999
Scheduler ReduceLROnPlateau
Drop factor 0.5
Patience 4 epochs
Early stopping grace period 12 epochs

Table 1: The model optimized using Adam optimizer and a reduce-on-plateau learning-
rate scheduler, with early stopping. All hyperparameters were manually tuned;
the hyperparameter choice used for cell-classification evaluation was guided by
visual inspection of the produced virtual stain by pathologist 1 and validation set
IoU. The additional initialization gain was required due to input transformation
to optical density. Scheduler and early stopping were based on validation IoU
metric. Data sampling was balanced using the region annotations, ensuring each
batch included the same number of patches from each region class
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Appendix C. Quantitative Ablation Tests

Architecture Validation IoU mean (std)

Baseline 0.617 (0.0015)
No semantic loss (α = 0, unmasked MSE) 0.631 (0.0015)
No OD transform 0.608 (0.002)
No 3x1 architecture (simple U-Net) 0.618 (0.0012)
No OD transform & No 3x1 architecture 0.58 (0.0023)

Table 2: Each test repeated five times, with different random seeds. Validation IoU values
were averaged over last 10 epochs of each run, after convergence. To ensure stable
evaluation, the learning schedule was fixed and early stopping disabled. The learn-
ing rate schedule was 0.0002 for 167 epochs and then linearly reduced by a factor
of 100 over additional 84 epochs. Although removing semantic loss improved IoU,
the visual qualities of the resultant stain were difficult for pathologists to inter-
pret. Removing the OD transformation has a strong effect, which is amplified by
replacing the 3x1 architecture with a simple U-Net.
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