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Abstract

The 2021 WHO classification of tumors of the central nervous system necessitates the inte-
gration of molecular and histologic profiling for a conclusive diagnosis of glioma. Molecular
profiling is time-consuming and may not always be available. We hypothesize that sub-
visual cues in whole slide images (WSI), not perceivable by the naked eye, carry a predic-
tive value of molecular characteristics and can allow categorization of the adult infiltrative
gliomas in one of three major types: i) oligodendroglioma, ii) astrocytoma, and iii) glioblas-
toma. Towards this end, we present a computational pipeline comprising patch analysis of
Hematoxylin and Eosin (H&E)-stained WSIs, feature encoding with ImageNet pretrained
ResNet50, and an attention-based multiple instance learning paradigm. We trained individ-
ual models at four distinct magnification levels (20x, 10x, 5x, 2.5x), and assessed the fusion
of various ensemble combinations to mimic the WSI assessment by expert pathologists, to
capture local and global context. Our results using a multi-scale approach demonstrate
3-9% improvement in classification accuracy when compared with models utilising a single
magnification level. This advancement underscores the efficacy of attention-based models
combined with multi-scale approaches in augmenting traditional assessment of WSIs. The
implications of our findings are significant in enhancing glioma diagnosis and treatment
planning in neuro-oncology, by enabling diagnostics in low-resource environments where
molecular profiling is not available.
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1 Introduction

Diffusely infiltrating gliomas are the most prevalent primary malignant adult brain tumors
within the central nervous system (CNS) (Ostrom et al., 2021). The recent guidelines from
World Health Organization (WHO) integrate histological features with molecular profiling
for conclusive glioma diagnosis. These guidelines identify three major types pivotal for
clinical stratification in gliomas: oligodendroglioma (IDH mutant and 1p/19q codeleted)
(Grade 2, 3)); astrocytoma (IDH mutant (Grade 2, 3, 4)); and glioblastoma, (IDH wildtype
(Grade 4)). Fig. 1 illustrates the simplified workflow of molecular features affecting the
staging and subtyping of gliomas. These distinct tumor subtypes exhibit disparities in
survival outcomes, clinical trial eligibility, and serve as crucial prognostic indicators guiding
therapeutic decisions (Louis et al., 2016b; Pekmezci et al., 2017). Though visual evaluation
of glass slides remains a gold standard for histologic assessment of adult infiltrating gliomas,
it is not sufficient for their diagnostic categorization. Moreover, molecular analysis of tumors
is not always feasible and can be time-consuming. Given the necessity of incorporating
molecular information with histologic assessment to obtain a conclusive diagnosis, there is
increasing evidence with advancements in deep learning (DL) based methods to directly
predict the predominant molecular alterations from Hematoxylin and Eosin (H&E)-stained
WSIs (Campanella et al., 2019; Louis et al., 2016a; Cifci et al., 2022; Innani et al., 2023).

The existing literature on analysis of gliomas based on WSI tends to concentrate on
specific molecular alterations like IDH1/2, ATRX (Hewitt et al., 2023; Liu et al., 2020;
Jin et al., 2021; Innani et al., 2023) or prognosis (Baheti et al., 2023a,b, 2024), and only
a few studies have focused on the WHO 2021 glioma classification (Jin et al., 2021; Pei
et al., 2021; Wang et al., 2023; Nasrallah et al., 2023). However, most of the WSI-based
approaches have primarily developed DL models at a single magnification level (Lu et al.,
2021; Baheti et al., 2023d), whereas tissue glass slides are digitized into WSI with pyramidal
resolutions, enabling quantitative analysis at multiple scales. Unlike pathologists who assess
tissue samples using a range of magnifications to capture detailed information at different
levels, these prior studies often combine features early in their multi-scale approaches, po-
tentially missing important context-specific details. Therefore, these methods fail to take
advantage of the rich information a digitized WSI has to offer and fully leverage the tissue
features across different fine-to-course resolutions from cellular to millimeter scale similar to
the expert pathologist. Consequently, existing algorithms only extract limited information
related to invasion, depth of tumors, and cell types, as they only assess a single magnifi-
cation level. While methods for analyzing multi-scale WSI have been explored in various
studies across different organs, including breast (Li et al., 2023), lung (Ding et al., 2023),
kidney (Hou et al., 2022), and bowel (Deng et al., 2024), gliomas present unique challenges
in this field due to their significant histologic heterogeneity (Sottoriva et al., 2013).

In this paper, we introduce a multi-scale late fusion approach aimed at capturing hi-
erarchical diagnostic information across various magnification levels, such as cellular-scale
(e.g., nucleus and micro-environment), tissue-scale (e.g., vessels and glands), and global-
scale structures from heterogeneous pyramidal WSIs. Our objective is to achieve a more
comprehensive slide-level classification of WHO 2021 glioma subtypes through a weakly su-
pervised algorithm based on Multiple Instance Learning (MIL) (Maron and Lozano-Pérez,
1997). Our approach successfully identifies the WHO 2021 adult infiltrating gliomas classes
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Figure 1: Simplified workflow for 5 edition of WHO classification of CNS tumors for adult
infiltrating gliomas. MVP - microvascular proliferation, WT - wildtype, MUT -
mutant, ND - not deleted. The three major glioma classes considered in this study
(oligodendroglioma, astrocytoma, and glioblastoma) are highlighted in black.

purely from patient WSI with a weakly supervised approach, thereby avoiding the annota-
tion burden and potentially obviating the current need for molecular profiling.

2 Materials and Methods
2.1 Data

The evaluation of our proposed work is based on multi-institutional data from the TCGA
Low-Grade Glioma Collection (TCGA-LGG)(Pedano et al., 2016) and The Cancer Genome
Atlas Glioblastoma Multiforme (TCGA-GBM) (Scarpace et al., 2016) data collections, both
publicly available via The Cancer Imaging Archive (TCIA) (Clark et al., 2013). To assign
slide-level labels of glioma categories to WSI for our approach, reclassification information as
per WHO 2021 was obtained from (Zakharova et al., 2022) and was verified with our board-
certified neuropathologist. Our analysis focuses on a subset of these datasets, specifically
targeting 654 out of 1,122 TCGA-GBM and TCGA-LGG patients for which both molecular
alterations and formalin-fixed paraffin-embedded (FFPE) H&E-stained WSI are available,
leading to a total of 1,320 H&E-stained WSIs either having 40x (mpp range: 0.2456 -
0.2533) or 20x (mpp range: 0.4993 - 0.504) maximum apparent magnification. To ensure
consistency across analyses, 20x magnification was considered as the standard reference
level, facilitating uniform processing and comparison in subsequent analyses. To rigorously
assess model performance, we adopt a 10-fold cross-validation (CV) strategy partitioning
the data into training (80%), validation (10%), and test (10%) sets. Importantly, this
CV approach is conducted while stratifying at the patient level to account for cases where



S INNANI et al.

multiple WSIs belong to the same patient. Data Distribution for each subgroup is presented
in Table 1.
Table 1: Distribution of data as per WHO 2021 classification

Class WSIs (Patients)
Oligodendroglioma, IDH-mutant and 1p/19g-codeleted (grade 2,3) 301 (141)
Astrocytoma, IDH-mutant (grade 2,3,4) 403 (224)
Glioblastoma, IDH-wildtype (grade 4) 616 (289)

2.2 Approach

The overall pipeline of the proposed multi-scale architecture is presented in Fig. 2. Initially,
each WSI of variable size is divided into non-overlapping patches (N) of 256 x 256 pixels
at different scales corresponding to apparent magnification levels of 20x, 10x, 5x, 2.5x. At
each magnification level, comprehensive patch-level curation is applied to retain the patches
with informative tissue and discard patches with artifactual content (such as background,
blurriness, pen markings, and dirt on the glass) by the approach proposed in (Baheti et al.,
2023c). Each retained patch is encoded by an ImageNet pretrained ResNet-50 (He et al.,
2016) to obtain a 1024-dimensional feature representation. We further employ a Multiple
Instance Learning (MIL) approach using attention mechanisms (Ilse et al., 2018), specifically
adapted for three-class glioma classification. Following the MIL assumption (Maron and
Lozano-Pérez, 1997), where each patch within a WSI is treated as an instance and the WSI
itself as a bag, our model processes WSIs represented as feature vectors of size N x 1024.
Initially, each 1024 dimensional feature vector undergoes dimensionality reduction to size
of 512, through a trainable fully connected (FC) layer. This reduced feature vector is then
forwarded to the attention network, which consists of two parallel FC layers employing
Tanh and Sigmoid (Dubey et al., 2022) activations respectively. The outputs of these layers
each of size N x 256, are elementwise multiplied to derive attention scores for each patch
and passing through another linear layer resulting in an output of size N x 1. A separate
FC layer with softmax activation (Liu et al., 2016) is used to predict a class probability
for each patch based on the 512-dimensional features, resulting in an output of size N x 3.
The attention scores (N X 1) are used as weights to aggregate the patch-level predictions
into a single prediction for the entire WSI, ensuring that more important patches have
a greater influence on the final classification. Weighted loss is implemented to mitigate
the class inbalance problem. The model is trained for 200 epochs with early stopping,
Adam optimizer and dropout rate of 0.25. We introduce a late fusion paradigm designed
to capture the inter-scale relationships employed by the pathologist while examining the
tissue slide. Note that late fusion in this work is following the definition given by Lipkova
et al. (2022), where it refers to the aggregation of individual model predictions to generate
the final prediction. We perform experiments on individual magnification levels, as well
as their different combinations, where separate models are trained for each scale, and are
ensembled at the output stage by averaging the probabilities of each class predicted by
individual models.

3 Results

Table 2 shows the performance results of the 10-fold CV on the test set at different mag-
nification levels. The table includes metrics like Balanced Accuracy, Area Under the ROC
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Figure 2: Schematic of our proposed multi-scale attention-MIL pipeline. (A) Tissue Seg-
mentation followed non-overlapping patch extraction with curation. (B) Patches
are encoded into features using ResNet-50. (C) Attention-MIL model is trained
for each scale independently that outputs probabilities of each class. (D) Fusion
is a late ensemble technique combining the results of each scale. (E) Final pre-
diction of the underlying glioma type.

Curve (AUC), Sensitivity, and Specificity macro-averaged across 10-folds for various com-
binations of magnification level. These metrics collectively demonstrate the robust model
performance in classifying the WHO 2021 subtypes WSI. Among the 10-CV results, the
performance metrics vary across different magnifications, showcasing the model varying
performance on different combination of scales. Notably, the results from combining all
scales stand out as delivering the best performance among all the other combinations. Fig.
3 (A-C) represents separate ROC curves for each glioma subtype across 10-fold CV test
cohorts. These plots are from the best-performing model, which is a fusion of all mag-
nifications (20x, 10x, 5x, 2.5x). Fig. 3 D presents the confusion matrix of the 10-fold
results.
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Figure 3: A-C. Receiver Operating Characteristic (ROC) Curves of the three classes.
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Table 2: Multi-scale classification results averaged across 10-folds on test dataset in terms
of Area Under Curve (AUC), Balanced Accuracy, Sensitivity and Specificity. Each
row represents model trained on single or fusion of different magnifications and
corresponding metrics with mean =+ standard deviation. The ordered rank of
performance is based on DELPHI-based recommendations for image analysis val-

idation.

Magnification AUC Bal. Acc. Sensitvity Specificity
2.5x (o) 0.8579 + 0.0332 0.6876 + 0.0598 0.6876 + 0.0598 0.8488 + 0.0261

5x (n) 0.8793 + 0.0327 0.7001 + 0.0521 0.7001 + 0.0521 0.86 + 0.0295
2.5x.5x (m) 0.8916 + 0.0306 0.7334 + 0.0495 0.7334 + 0.0495 0.8744 + 0.0277
20x (1) 0.9023 + 0.0325 0.7312 + 0.0525 0.7312 + 0.0525 0.8763 + 0.0242
2.5x.10x (k) 0.9034 + 0.0267 0.7499 + 0.0572 0.7499 + 0.0572 0.8815 + 0.0303
10x (j) 0.8956 + 0.0343 0.7585 + 0.0656 0.7585 % 0.0656 0.8844 + 0.0333
2.5x_5x_10x (i) 0.909 + 0.0262 0.7544 + 0.0623 0.7544 + 0.0623 0.8851 + 0.0348
5x_10x (h) 0.9061 + 0.0279 0.7556 + 0.0611 0.7556 + 0.0611 0.8861 + 0.032
5x.20x (g) 0.9103 + 0.0328 0.7462 + 0.0472 0.7462 + 0.0472 0.8848 + 0.023
10x-20x (f) 0.9126 + 0.0298 0.7576 + 0.046 0.7576 + 0.046 0.8894 + 0.0212

2.5x_20x (e)
2.5x_5x-20x (d)
2.5x.10x-20x (c)
5x_10x-20x (b)

2.5x_5x_10x_20x (a)

0.907 £ 0.0288
0.913 + 0.0295
0.9172 + 0.0249
0.917 & 0.0285

0.7627 + 0.029
0.7584 + 0.0328
0.7684 £ 0.0508
0.7681 £ 0.0492

0.9185 + 0.0254 0.7693 + 0.0539

0.7627 + 0.029
0.7584 + 0.0328
0.7684 £ 0.0508
0.7681 £ 0.0492

0.8894 + 0.0176
0.8884 + 0.0222
0.8927 + 0.0254
0.8937 + 0.0239

0.7693 + 0.0539 0.8948 + 0.0283

4 Discussion

In this study, we have demonstrated the effectiveness of integrating multi-scale features with
MIL to directly identify the WHO 2021 classification of adult infiltrating diffuse gliomas
from WSI. By leveraging information across different magnification levels, our approach
enhances the diagnostic yield of WSIs, aiding clinicians with a robust approach for pre-
cise glioma diagnosis. The incorporation of multi-scale tissue analysis has shown superior
performance compared to single-scale algorithms, highlighting the importance of capturing
spatial context at various resolutions.

We sought a computational deep learning-based diagnostic workflow for infiltrating adult
gliomas, utilizing H&E-stained WSI as the sole input. This approach addresses the insuffi-
ciency of visual inspection of glass slides alone in meeting the diagnostic criteria for tumor
categorization set by WHO 2021. We utilized the reclassified TCGA-GBM and TCGA-
LGG dataset and demonstrate the effectiveness of computational approaches for tumor
classification as per WHO 2021 criteria. We further hypothesized that our model training
and outcome is magnification-level dependent and accurate prediction is achieved by the
ensemble of various magnifications to mimic the pathologist’s behavior while examining
WSIs. Pathologists usually use low magnification to identify features visible on a larger
scale and to locate regions of interest for detailed examination at higher magnification. Our
results demonstrates that the multi-scale approach achieves impressive performance with
AUC scores being above 0.8 for each of the subtype of glioma for the best performing fusion
model (the combination of 20x, 10x, 5%, 2.5%).

Our study stands out as one of the pioneering endeavors to systematically explore the
permutation and combination of different magnification levels, offering a comprehensive
evaluation of multi-scale features in glioma classification. The observed differences in AUC
performance with regard to fusion of various ensemble combinations highlight the relation-
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Table 3: Pairwise statistical comparison of models based on permutation testing across
different magnifications. The first column lists the magnification combinations,
and the ”"Ranking” column indicates their overall rank. The ”Statistical Group”
column groups models that are not statistically different from each other.

Statistical

Magnification Ranking Group a b c d e f g h i i k 1 m

1 1 0.3303 0.1656 0.0586 0.0584 0.0301 0.0141 0.0044 0.0003 0.0028 0.0003 0.0003 0.0001
0.3218 0.1614 0.1300 0.0354 0.0207 0.0035 0.0038 0.0050 0.0026 0.0006 0.0005
0.2105 0.1398 0.1171 0.0904 0.0359 0.0102 0.0103 0.0007 0.0012 0.0014

0.4188 0.3541 0.2066 0.1392 0.0835 0.0607 0.0230 0.0066 0.0026

0.4010 0.2791 0.1956 0.1393 0.0819 0.0325 0.0030 0.0134 0.0001

coool =

2.5

T0x_20x (T)
5%-20x (g)
5x%-10x (h)

2.5x_5x-10x (i)

0.3453 0.2043 0.2004 0.0798 0.0525 0.0058 0.0299 0.0001
0.3002  0.3001  0.1703  0.1210 | 0.0275  0.0394 0
0.4765 0.2531 0.2183 0.1094 0.0651 0
0.2728 0.1522 0.1115 0.0335 0
0.4064 | 0.2287  0.1931 | 0.0028  0.0001
0.2660 0.2127 0.0009 0

coocolocococoo o

0.4899 0.0332 0.0010
0.0003 0

0.0896

S R

3
4
5
6
7
8
9
10x (j) 10
11
12
13
12
15

ship between spatial resolution and diagnostic accuracy, underscoring the need for a subtle
approach in leveraging multi-scale features for computational pathology tasks. The per-
formance comparison across multiple magnification scales, as depicted in Table 2, reveals
fascinating insights into the impact of input magnification on model efficacy. Notably, our
findings indicate that the choice of magnification significantly influences model performance,
with the highest levels of accuracy observed when all magnification levels are combined. Ta-
ble 3 summarizes the statistical significance across all the considered multi-scale approaches,
following the DELPHI-based recommendations for image analysis validation (Reinke et al.,
2024; Maier-Hein et al., 2024), incorporating i) algorithmic ranking, and ii) statistical sig-
nificance testing. For this analysis we divided the test data into multiple non-overlapping
subsets, ensuring balanced class representation. We then computed an average rank for
each of the subsets across all multi-scale approaches, and aggregated these average rank-
ings to produce a conclusive overall ranking. All approaches were then placed in a ranked
order and their average rankings were randomly permuted (i.e., 100,000 permutations), in
a pair-wise manner. Corresponding pairwise p-values shown in Table 3 were computed to
determine the pair-wise statistical significance and report actual differences between the or-
dered ranked approaches. These p-values are reported in an upper triangular matrix (Table
3) revealing the statistical insignificance of the first five approaches (p > 0.05), and hence
clustered together as ‘group 1°. This group is significantly better than the sixth approach
(p = 0.0301), indicated by a vertical and horizontal line. We note that the top-performing
approaches of group 1 (a, b, ¢, d, & e) involve the combination of multiple magnification
levels, while the last group (n & o) captures information in coarse magnification levels.

We also observe that the result obtained at intermediate magnification level (5x, 10x)
is comparable to the ensemble of all magnifications. One plausible interpretation of this
observation is that low magnification levels offer a broader field of view, providing enhanced
architectural information and facilitating comprehensive tissue sampling. Conversely, high
power levels have increased cytologic detail capturing key diagnostic features but with a
narrower field of view and intermediate magnification levels may strike a balance, capturing
both low-power and high-power information effectively. Subsequently, our hypothesis of de-
signing models to mimic the pathologist’s behavior of examining tissue at low magnification
and subsequently focusing on regions of interest at higher magnification levels leads to more
robust performance.
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While our study demonstrates promising advancements in predicting WHO 2021 classifi-
cation subtypes directly from WSI utilizing an Attention-MIL approach with late ensemble
technique, several limitations should be acknowledged. Despite efforts to mitigate class
imbalance after reclassification, inherent disparities in subtype distribution may persist,
potentially biasing the model towards more prevalent classes. Furthermore, the reliance
on relatively small patch sizes of 256 x 256 pixels might restrict the model’s capacity to
capture broader spatial context and architectural patterns present in larger tissue regions
within WSI. A solution to this approach could be offered by leveraging a WSI based ap-
proach such as Streaming CLAM (Dooper et al., 2023). Addressing these limitations is
crucial for optimizing the applicability and accuracy of our model in real-world clinical
scenarios. Moving forward, several avenues present themselves for further enhancing the
robustness and applicability of our model. Firstly, the evaluation of our model on multi-
site datasets is paramount to assess the generalizability across diverse patient populations
and acquisition systems. Additionally, we aim to assess the interpretability of the obtained
decisions by analysing attention scores as heatmaps derived from MIL model. Further-
more, extending similar methods to other tasks in oncology, such as tumor grading and
prognostic prediction, could provide valuable insights into the decision-making processes of
advanced Al systems in clinical practice. Lastly, there exist opportunities for refining our
methodology to leverage the latest advancements in self-supervised learning models, par-
ticularly those based on Vision Transformers (ViTs)(Chen et al., 2024). Unlike the present
approach, which relies on feature embeddings generated from pre-trained ImageNet mod-
els, incorporating ViTs pretrained on large scale WSIs can potentially yield contextually
rich representations, thereby improving the model’s discriminative power. Complementary
information from different modalities like MRI and clinical data could also be leveraged
by our model to gain a more holistic understanding of the tumor, thereby enhancing its
diagnostic capabilities. Lastly, by generating heatmaps from the attention scores, model
interpretability can be enhanced (Baheti et al., 2023c). By pursuing these future directions,
we aim to further advance the state-of-the-art in computational pathology and contribute
towards more accurate and reliable diagnostic tools for precision oncology.

This work contributes to advancing the field of computational pathology and also holds
promise for improving clinical decision-making and patient outcomes in the realm of glioma
management, ultimately paving the way towards improved healthcare outcomes and en-
hanced patient care.
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