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Abstract

Integrating Whole Slide Images (WSIs) and patient-specific health records (PHRs) can
facilitate survival analysis of high-risk neuroblastoma (NB) cancer patients. However,
this integration is challenging due to extreme differences in data dimensionality. Specifi-
cally, while PHRs are at the patient level and contain sparse information, WSIs are highly
information-dense and processed at high resolution. Adjacent to this challenge, specifically
in the context of survival analysis under the Multiple Instance Learning (MIL) framework,
there are limitations with approximating the hazard function because of varying size WSIs
and implicitly limited batch sizes. To address these challenges, we propose SURVIVMIL, a
late fusion MIL model that integrates multimodal prognostic data for predicting NB pa-
tient outcomes. Our approach fuses predictions from both modalities and incorporates
a novel concordance-based loss function via a specifically designed buffer branch, which
mitigates the batch size limitation by accumulating survival predictions. Our model is
evaluated on an in-house pediatric NB patient dataset, providing insights into the con-
tributions of each modality to predictive performance. The code will be available at:
https://github.com/reednaidoo/SurvivMIL_COMPAYL.git

Keywords: Multiple Instance Learning, Multimodal Fusion, Digital Pathology, Survival
Analysis

1 Introduction

The analysis of hematoxylin and eosin (H&E) stained Whole Slide Images (WSIs) has
become indispensable in digital pathology, playing a pivotal role in extracting meaningful
features for the precise diagnosis (Lu et al., 2021; Campanella et al., 2019; Wang et al., 2016)
and treatment (Litjens et al., 2016; Yao et al., 2020; Pinckaers et al., 2020) of patients.
Notably, we have witnessed the refined development of AI-based models geared towards
the analysis of H&E stained WSIs, with techniques often surpassing expert pathologists’
performance (Srinidhi et al., 2021; Wang et al., 2021; Das et al., 2018; Tong et al., 2014;
Melendez et al., 2015; Quellec et al., 2016). Weakly supervised Multiple Instance Learning
(MIL) classifiers have gained prominence as prevalent methodologies for handling this type
of data, with innovative approaches now incorporating vision and graph transformers, along
with considerations for tile relationships (Fourkioti et al., 2024; Shao et al., 2021; Zheng
et al., 2022).
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In addition to histological data, high-throughput technologies have drastically increased
the volume of genomic, proteomic, and transcriptomic data available for cancer research.
This ‘omics’ data offers a granular view of the molecular underpinnings of heterogeneous
cancers, which are driven by numerous genomic alterations. Analysis of this data could
sub-type patients, moving towards more precise diagnosis and prognosis in cancers such as
neuroblastoma (NB).

NB is a prevalent pediatric malignancy, representing the most frequent cancer diag-
nosis within the first year of life and contributes to over 15% of pediatric cancer-related
deaths (Watanabe et al., 2022). Presently, patients categorised as ‘high-risk’ receive uni-
form intensive clinical treatment, disregarding the inherent heterogeneity observed across
high-risk patient profile modalities (Moreno et al., 2021). Creating a methodology capa-
ble of accurately classifying a subset of high-risk NB patients who are particularly prone
to unfavourable outcomes holds the potential to enhance precision in diagnosis at an ear-
lier stage. This could facilitate timely access to innovative therapies for these patients
(Moreno et al., 2021). Presently, the International Neuroblastoma Risk Group Staging
System (INRG) (Monclair et al., 2009) identifies age and MYCN amplification status of
a patient as predictive biomarkers for NB patient outcomes. Leveraging histological data
with these patient-specific biomarkers in NB survival outcome prediction could further refine
patient stratification into risk subgroups.

Integrating such modalities under the framework of multimodal oncology often centres
around data fusion strategies (Stahlschmidt et al., 2022). This aims to leverage complemen-
tary information from different modalities to improve decision-making and interpretability.
These strategies involve the concatenation, element-wise sum, multiplication, or Kronecker
product of various modalities at different stages, classifiable as early, intermediate, or late
fusion (Huang et al., 2020). Because of the heterogeneous nature of biomedical data modal-
ities, current early fusion strategies have investigated co-attention modules to model the
attention of histology patches towards gene sets (Chen et al., 2021). Extending on cross-
attention modelling that evaluated WSI patch-to-gene interactions, authors have also stud-
ied dual patch-to-pathway and pathway-to-patch interactions for effective survival analysis
(Jaume et al., 2024).

These dense multimodal early fusion approaches, particularly those employing cross-
attention techniques, have effectively integrated WSIs and dense omic modalities for patient
risk stratification due to the closer data alignment between these two modalities. However,
in our study, we encountered clinically relevant prognostic biomarkers in NB, specifically age
and MYCN status, that exhibit extreme data dimensionality gaps compared to WSIs. This
disparity complicates the integration of such diverse data types, making early fusion data
alignment impractical in this setting. Consequently, there is limited research on integrating
such disparate data types to enhance survival analysis in NB.

This paper proposes a late fusion multi-branch MIL architecture, dubbed SURVIVMIL,
that considers H&E-stained WSIs and patient-specific health record data, addressing the
challenge of extreme multimodal dimensionality gaps in predicting NB patient outcomes.
Additionally, we introduce a concordance-based loss function specifically designed for the
survival outcome problem, which penalises the model for incorrect ranking of survival pre-
dictions. Our proposed architecture demonstrates improved model performance, and we
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further evaluate different settings of modality contribution for joint prediction of patient
outcomes.

2 Methods

Inspired by previous work (Jaume et al., 2024), we define a censorship status, c, and a
time-to-event, t, to frame our supervised survival prediction task. The censorship status
indicates whether we observed a patient death; c = 1 indicates a known follow-up, and
c = 0 indicates an observed patient death. The time-to-event, t, represents the time from
the biopsy to the date of death (if c = 0) or to the follow-up date (if c = 1). The supervised
classification task is then defined by dividing the given time responses into non-overlapping
quartiles, yj : [tj−1, .., tj) where j ∈ [1, ..., n]. Each output logit, ŷj of the multiclass classifier
corresponds to a specific time quartile. The hazard function is defined as:

h = σ(ŷj), (1)

where h is the probability of survival of a patient during the time interval (tj−1, tj) and
σ is the sigmoid activation function. From the discrete hazard function, the predicted
probability of survival is thus defined:

S =

j∏
k=1

(1− hj) (2)

To conduct survival analysis and effectively learn the hazard function, we propose an
integrated architecture combining WSIs and PHRs. SURVIVMIL consists of a feature ex-
traction pipeline followed by a multi-branch classifier. Within the classifier, we implement
a concordance-based loss function. The details of these components are discussed in the
following subsections.

2.1 WSI Bag Construction

We adopt the strategy of self-supervised contrastive learning, specifically the UNI model
(Chen et al., 2024) to extract semantically rich, meaningful feature representations. The
UNI model is based on DINOv2 (Oquab et al., 2024), a state-of-the-art self-supervised
learning method based on student-teacher knowledge distillation for pretraining large Vision
Transformer (ViT) architectures (Dosovitskiy et al., 2021). Specifically, this pre-trained
feature extractor, f(·), is utilised to produce a set of features:

Bk = {i1, ij , ..., inBk
}, ij ∈ R1×1024, (3)

representing the bags of instance embeddings of the tiled WSIs.

2.2 Multi-branch classifier

We adopt a late fusion approach in our multi-branch classifier, combining the global outputs
from the WSI data with those from PHRs. By merging these data branches at a higher
level of abstraction, this approach ensures that both the fine-grained details captured by
the WSIs and the broad PHRs contribute to the final prediction of patient outcomes.
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Our model comprises two branches: a WSI branch and a PHR branch. The set of in-
stance embeddings ij ∈ R1×1024, produced by the feature extractor, are input into the WSI
branch. Similar to the DSMIL architecture, the WSI branch employs both an instance-level
and a bag-level classifier. The instance-level classifier performs a max-pooling operation
to determine a critical instance. Subsequently, the bag-level classifier utilises a non-local
attention mechanism to evaluate the importance of each instance and aggregates the in-
stance embeddings to form a collective representation. The slide-level representation is a
weighted average of the attention scores produced by the non-local attention mechanism.
These scores, aBk

= {ai1, ...,ainBk
}, are computed by measuring the similarity between the

instance embeddings and the critical instance, enabling the model to focus on the most
relevant instances for the classification task. These two streams are trained concurrently
and merged at the end of the WSI classifier branch.

Figure 1: Infographic depicting the SURVIVMIL pipeline. WSIs and patient-specific health
records are considered in two separate branches and undergo unique preprocessing and
predictive modelling. The branch predictions are combined in the projection head and
stored in a buffer branch for an iterative concordance-based loss function calculation.

For the PHR branch, to transform the sparse clinical information into feature vectors
suitable for efficient use by neural networks, we utilise a multi-layered perceptron (MLP).
This transformation enhances the compatibility of the data with neural network architec-
tures, facilitating effective processing and analysis in our model.

2.3 Buffer Branch & Concordance Loss Formulation

Our multi-branch architecture incorporates two distinct loss components: a multi-branch
loss that utilises the classification predictions from the model’s projection head and a
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concordance-based loss function derived from the predictions accumulated in the buffer
branch.

Multi-branch Loss: The multi-branch loss function considers each of the modalities’
respective time-bin classifications, as well as their joint modality prediction of survival
probability. For the branch-specific classifications:

LWSI = LCE(Bk,Y) (4)

LPHR = LCE(Pk,Y) (5)

Lmulti =
1

2

(
LWSI + LPHR

)
, (6)

where LWSI and LPHR are the cross-entropy loss functions specific to the WSI and
patient-specific health records predictions.

Buffer Branch: To compute concordance for survival analysis, we need to accumulate
predictions across patients. However, the implicit batch size limitation in traditional MIL
survival analysis approaches poses a challenge. To overcome this, we introduce a buffer
branch in our network architecture designed to accumulate predictions from the projection
head of the network and iteratively compute a concordance-based loss function. Implement-
ing a buffer branch allows the model to dynamically update its stored predictions during
training, allowing for continuous refinement of the concordance-based loss estimation.

Concordance Loss: Utilising the accumulated predictions in the buffer branch, we
define concordance based on pairs of samples (k, j) that are comparable under certain
conditions. Specifically, a pair of samples, (k, j) are comparable if tk ̸= tj andmin(tk, tj) = 0
(indicating that at least one event has occurred). A comparable pair is deemed concordant
if tk < tj and Ŝk > Ŝj . The concordance index is defined as:

C =

∑
k ̸=j 1{tk < tj}1{Ŝk > Ŝj}∑

k ̸=j 1{tk ̸= tj}1{min(tk, tj) = 0}
(7)

LC−index = 1− C, (8)

where 1 is an indicator function and LC−index is the concordance-based loss.
Combining the classification loss and concordance-based loss, our total loss is derived:

Ltotal = Lmulti + LC−index. (9)

3 Experimental Evaluation

3.1 Setup

We obtained a dataset comprising 189 high-risk pediatric neuroblastoma patients. Each
patient record includes an unannotated H&E stained WSI as well as supplementary infor-
mation regarding the age and MYCN status (MYCN amplified, or MYCN non-amplified) of
each patient, which is derived from the Fluorescence In Situ Hybridisation (FISH) detection
test (Misra et al., 1995). In this cohort, 30% of the patients are MYCN-amplified, and 68%
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had a poor prognosis. For each patient, we collect WSIs with an average bag size of 5,483
256 × 256 patches per image. To evaluate our model, we perform 5-fold cross-validation
and report the concordance index (C-Index). Additionally, we compared the performance
of SURVIVMIL using our implemented concordance-based loss (CI Loss) against the widely
used negative log-likelihood loss (NLL Loss).

Baselines: We evaluate our methodology against a range of baselines, all utilising the
same pre-trained feature extractor (Chen et al., 2024). The baselines considered include
AMIL (Chen et al., 2022), an attention-based MIL framework; TransMIL (Shao et al.,
2021), which employs patch-to-patch interactions using the Nyström method (Xiong et al.,
2021); and DSMIL (Li et al., 2020). We also consider an existing multimodal baseline,
MCAT (Chen et al., 2021), an early fusion genomic-guided co-attention architecture. To
assess the performance of SURVIVMIL, we employ three different evaluation methods: (1)
using WSIs as a single data modality, (2) using patient-specific health records as a single
data modality, and (3) combining both data modalities. In the first approach, the set of
feature representations obtained by the feature extractor are fed as an input to the models.
For the second approach, a 3-layer MLP and a sparse neural network (SNN) (Jaume et al.,
2024) are used to transform the sparse scalar representations of the patient records into
feature vectors. Finally, for the multimodal baselines (3), except for the case of MCAT, we
adapt the WSI classifiers by concatenating the two different data modalities and passing
the concatenated feature vectors as inputs into the respective networks.

3.2 Results

Table 1: Survival Prediction results on
our in-house paediatric NB dataset. We
report the average and standard devi-
ation results of 5-fold cross-validation,
highlighting the best performance in
bold.

Method C-index (↑)

W
S
I DSMIL 0.6370.0392

TransMIL 0.4980.0100

AMIL 0.6460.0920

P
H
R MLP 0.5670.0024

SNN 0.5800.0074

M
u
lt
im

o
d
al

DSMIL 0.6180.0506

TransMIL 0.5240.0287

AMIL 0.6190.0799

MCAT 0.5400.0455

SurvivMIL (NLL Loss) 0.6340.0428

SurvivMIL (CI Loss) 0.6510.0455

Table 1 highlights the predictive performance of
SURVIVMIL against baselines evaluated on WSIs
and PHRs. SURVIVMIL outperforms both the
unimodal and multimodal baselines, achieving
+0.5% above AMIL in a unimodal setting,
+7.1% compared to SNN, and +3.2% above
AMIL in a multimodal setting. We propose that
this performance is a result of its effective han-
dling dimensionality-gapped multimodal inte-
gration and its employment of the concordance-
based loss function.

Early Fusion vs. Late Fusion: Except
for the case of TransMIL, we find that early fu-
sion multimodal baselines, trained on the con-
catenated modalities, slump in predictive perfor-
mance compared to when trained onWSIs alone.
This highlights the challenge of using early fu-
sion methodologies for multimodal data that ex-
hibits large dimensionality gaps. In contrast, we
demonstrate that SURVIVMIL, a late fusion alter-
native, improves performance in scenarios with
extreme dimensionality gaps. Notably, our ar-
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chitecture also outperformed MCAT, an early fusion architecture, further reinforcing the
effectiveness of late fusion in handling extreme dimensionality-gapped multimodal data.

CI Loss vs. NLL Loss: While SURVIVMIL employed with the NLL loss function
outperforms the other multimodal baselines, it is the addition of the buffer branch, facili-
tating the CI Loss function of our network that provides the best overall performance across
all unimodal and multimodal baselines. This combination effectively handles small batch
sizes by accumulating predictions and directly optimising for concordance, resulting in more
accurate survival predictions and better model calibration for our SURVIVMIL pipeline.

Figure 2: Kaplan-Meier curves for SURVIVMIL, compared with the best-performing models in
both unimodal (PHR and WSI) and multimodal settings. Risk groups are defined using the
mean of the survival probability predictions. The log-rank test was employed to evaluate
statistical significance (α = 0.05).

Kaplan-Meier Analysis: Figure 2 displays the Kaplan-Meier survival curves for
high- (red) and low- (blue) risk groups predicted by the models. By statistical signifi-
cance, SURVIVMIL achieves better delineation between the two risk groups compared to the
best-performing unimodal and multimodal baselines. This improved delineation can be
attributed to the late fusion architecture, which allows the network to best integrate and
leverage the strengths of the two modalities towards a more refined prediction of a patient’s
risk. Additionally, within our cohort of high-risk neuroblastoma patients, we demonstrate
that morphological differences across diverse patient samples can be leveraged to success-
fully sub-stratify an ’ultra-high-risk’ patient group.

Impact of Modality Contributions on Predictive Performance: In Figure 3, we
assess the impact of varying the contributions of different modalities within our SURVIVMIL
architecture on predictive performance. Our findings indicate that model performance im-
proves as more diverse modalities are integrated. The optimal combination for overall
survival prediction is achieved when whole-slide images (WSIs) contribute a weighted pro-
portion of 0.3 and patient-specific health records contribute 0.7.

4 Conclusion

This paper focuses on neuroblastoma (NB) patient outcomes and addresses two key chal-
lenges in multimodal survival analysis using Multiple Instance Learning (MIL):
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Exteme Dimensionality-Gapped Multimodal Integration: The first challenge
involves defining architectures that effectively integrate diverse modalities, especially when
there are extreme data dimensionality gaps. We propose a late fusion architecture that
allows for weighted attribution of each modality, enhancing the accuracy of NB patient
outcome predictions.

Figure 3: Curve depicting the change in con-
cordance index performance for SURVIVMIL as
different weighted contributions from either
modality attend to the prediction of patient
outcomes.

MIL Framework Limitations: The
second challenge is overcoming the limita-
tions posed by the MIL framework in sur-
vival analysis, where the hazard function
is typically approximated using a param-
eterised log-likelihood loss function due to
batch size constraints. We address this by
incorporating a buffer branch into our archi-
tecture, designed to accumulate a minibatch
of predictions, enabling the use of an effi-
cient concordance-based loss function. Our
model demonstrates improved performance
over all unimodal baselines and surpasses
all early fusion multimodal baselines. Ad-
ditionally, we show that our model achieves
better predictive performance when em-
ploying the concordance index (CI) loss
function compared to the negative log-
likelihood (NLL) loss function.

In the context of our high-risk NB pa-
tient cohort, we present a successful, statis-
tically significant sub-stratification of a pro-
portion of high-risk patients into an ultra-
high-risk group. Further research into bet-
ter understanding the morphological biomarkers specific to this subgroup of categorised
patients could facilitate enhanced precision in diagnosis at an earlier stage.
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