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Editors: Cećılia Coelho, Bernd Zimmering, M. Fernanda P. Costa, Lúıs L. Ferrás, Oliver Niggemann

Abstract
Sparse model recovery requires us to extract model coefficients of ordinary differential
equations (ODE) with few nonlinear terms from data. This problem has been effectively
solved in recent literature for the case when all state variables of the ODE are measured.
In practical deployments, measurements of all the state variables of the underlying ODE
model of a process are not available, resulting in implicit (unmeasured) dynamics. In this
paper, we propose EMILY, that can extract the underlying ODE of a dynamical process
even if much of the dynamics is implicit. We show the utility of EMILY on four baseline
examples and compare with the state-of-the-art techniques such as SINDY-MPC. Results
show that unlike SINDY-MPC, EMILY can recover model coefficients accurately under
implicit dynamics.
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1. Introduction

Recovering ordinary differential equation (ODE) based first principle models that estimate
measurements of a dynamical process, also called sparse model recovery, is of recent inter-
est (Banerjee and Gupta, 2024; Maity et al., 2024). While model learning mainly focuses
on fitting the data (Lamrani et al., 2018, 2021), model recovery has two distinct objectives:
a) extracting accurate coefficients of the underlying ODE, and b) fitting the resulting ODE
model to data. Model recovery has applications in explainable digital twin learning, which
are becoming increasingly useful in many biomedical fields including precision medicine,
generation of patient specific data to aid in artificial intelligence for health, expert guided
systems (Kamboj et al., 2024) and in general in large scale in-silico testing of human cen-
tered autonomous systems (Banerjee et al., 2023). The requirement of explainability implies
that the underlying model of the digital twin should be based on first principles such as
physics laws, or physiological/ mechanical/ chemical processes. A hallmark of such models
is that they are sparse in the function space, i.e., the models only have a few nonlinear
components among the combinatorial options.

Recently, there has been several techniques proposed for this model recovery task in-
cluding Spare Indentification of Nonlinear Dynamics (SINDY) (Kaiser et al., 2018), SINDY-
Model Predicitive Control (MPC) (Kaiser, 2024), physics informed neural networks + sparse
regression for partial differential equations (PDE) (Chen et al., 2021). However, one of the
major drawbacks of all existing techniques is that they assume full measurability of the
process. This implies that the state-of-the-art model recovery techniques require measure-
ments of all the state variables. In practice, this is a major limiting assumption. This is
because, it requires installation of multiple sensors only for the purpose of digital twin learn-
ing. In human-centered systems, this requires more wearable or intrusive sensors, reducing
usability, increasing costs, and making deployment less feasible.
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Table 1: Related works in model recovery.
Approach Implicit Assumptions
Ho Kalman, Eigen system (Oymak and Ozay, 2021) No Linear system
Genetic Algorithm (Schmidt and Lipson, 2009) No Low dimensional nonlinear systems
SINDy (Quade et al., 2018) No Known sparsity threshold
SINDy-MPC (Kaiser et al., 2018) No Known sparsity threshold
E-SINDY (Fasel et al., 2022) Weak Known sparsity threshold
Neural ODE + metriplectic structure (Lee et al., 2021) No Known metriplectic structure
PINNs + Sparse Regression (Chen et al., 2021) Weak Physics loss for original coefficients
This paper Yes Black box ODE solver in the loss

To further illustrate the point consider that our aim is to learn a metabolic model for
an individual with Type 1 Diabetes for the purpose of large scale in-silico testing of a
personalized automated insulin delivery (AID) system. The metabolic model comes from
first principle knowledge of the glucose insulin interaction in the human body such as
Bergman Minimal Model (Bergman, 2021) (Eqn. 1).

˙i(t) = −ni(t) + p4u1(t), ˙is(t) = −p1is(t) + p2(i(t)− ib) (1)

˙G(t) = −is(t)G(t)− p3(G(t)−Gb) + u2(t)/V oI,

where i(t) is the interstitial insulin concentration, is(t) is the plasma insulin concentration,
and G(t) is the plasma glucose concentration, u1 is the external insulin delivery from the
AID, and u2 is the meal ingested by the individual. Whereas, p1, p2, ib, p3, p4, n, and 1/VoI
are all patient specific model coefficients. As seen from Eqn. 1, it is sparse in the nonlinear
functional space since it only uses eight of the possible 25 nonlinear terms if we limit to the
polynomial order 2 functional space.

To extract this model from measurements, state-of-the-art techniques will need mea-
surements of i, is, G, u1, and u2. However, in a real deployment only G, u1, and u2 are
available which are logged by a continuous glucose monitor (CGM) and the insulin pump. A
comprehensive blood panel is required to measure is and i, which is infeasible in deployment.

Unavailability of measurements of the state variables result in the problem of sparse
model recovery with implicit dynamics, i.e. dynamics that is not measured. Currently, to
the best of our knowledge, state-of-art techniques may not be able to solve this problem.
Contribution: The main contribution of this paper is that it proposes EMILY, a solu-
tion to the problem of sparse model recovery with implicit dynamics. EMILY uses neural
architectures with automated differentiation such as liquid time constant neural networks
(LTC-NN) in a carefully crafted network to represent model coefficients of a sparse model
as a function of implicit dynamics. It then searches through a constrained set of implicit
dynamics guided by an ODE solver to recover the original model coefficients of the sparse
model. We show application of EMILY on baseline examples established in Kaiser et al.
(2018) and compare it with SINDY-MPC for model recovery with all variables measured,
and extensions of SINDY-MPC by combining with non-sparse system identification tech-
niques for the model recovery with implicit dynamics problem.

2. Related Works

Table 1 summarizes the recent works on model recovery. In the linear domain, the problem
of system identification is solved using techniques such as Ho Kalman or Eigen system
realization algorithm (ERA) Oymak and Ozay (2021). Such techniques attempt to fit a
linear model to data but they are not designed to extract the underlying sparsity structure.
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The initial work on extracting nonlinear model from data used stratified symbolic re-
gression and genetic programming Schmidt and Lipson (2009). This approach did not scale
with the dimension of the state space and also did not consider the implicit dynamics.
Significant breakthrough was achieved through introduction of sparse identification of non-
linear dynamics (SINDy) and SINDy-MPC Kaiser et al. (2018) that tackles inputs. We
show in this paper that SINDy-MPC cannot, however, efficiently tackle implicit dynamics.

Physics-informed Neural Networks (PINN) utilize the concept of automatic differentia-
tion (AD) to perform accurate forward and inverse analysis of nonlinear physics models and
it has been used in many practical domains Chen et al. (2021). However, such architectures
are black boxes, are only used to solve the differential equation, and cannot recover the
model. Recently, PINNs have been integrated with sparse regression to recover model coef-
ficients Chen et al. (2021). A major assumption in these approaches is the knowledge of the
physics loss for the original model coefficients. This is an impractical circular assumption
since the original model coefficients are unknown in real-world examples. Recently, with
the advent of the neural ordinary differential equation (NODE) architecture there has been
a class of approaches for forecasting while maintaining metriplectic structures Lee et al.
(2021), i.e. algebraic structures in models induced by laws of physics such as energy conser-
vation Lee et al. (2021). In such approaches implicit dynamics were not originally addressed.
Attempts have been made to incorporate extraction of implicit models using PINNs and
SINDy strategy Kaheman et al. (2020), however, the unmeasured state variables are only
limited to the differentials of the original state variables. We term these approaches as
”weakly implicit”.

3. Preliminaries and Problem Statement

We consider a nonlinear ordinary differential equation model in Eqn: 2 with n dimensional
state space represented by vector X.

Ẋ = f(X,U, θ), (2)

where f is a parameterized nonlinear function that is sparse in the nonlinear function
domain, U is the m dimensional external input, and θ is the p dimensional model coefficient.
Sparsity: An n-dimensional model with M th order non-linearity can utilize

(
M+n
n

)
non-

linear terms. A sparse model only includes a few nonlinear terms p <<
(
M+n
n

)
. Sparsity

structure of a model is the set of nonlinear terms used by the model.
Implicit dynamics: Sensing constraints prevent the measurement of all the state variables
in X. Therefore, we assume that many state variables cannot be measured or estimated.
This is captured by the sensing matrix C, a diagonal matrix where cii = 1 if a sensor
measures xi ∈ X, and cii = 0, otherwise. Consequently, only the sampled traces of Y = CX
are available as sensed data, leaving much of the system’s nonlinear dynamics implicit.
Identifiable model: A model in Eqn. 2 is identifiable Verdière et al. (2020) for a sensing
matrix C, if there exists a time tI > 0, such that ∀θ, θ̃ ∈ Rp, we have:

∀t ∈ [0, tI ], Cf(X(t), U(t), θ) = Cf(X(t), U(t), θ̃) =⇒ θ = θ̃. (3)

Eqn. 3 effectively means that a model is identifiable if two different model coefficients
do not result in identical measurements Y . Basically, this means ∀θi ∈ θ, dYdθi ̸= 0. In this
paper, we assume that despite presence of implicit dynamics the model is identifiable.
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Figure 1: EMILY: Solution for sparse model recovery with implicit dynamics.

Problem Definition 1 (Sparse Model Recovery from Implicit Dynamics):
Given N samples of measurements Y and inputs U , obtained from a sparse model in Eqn. 2
with a measurement matrix C such that θ is identifiable, recover θ̃ such that for Ỹ generated
from f(X,U, θ̃), we have ||Y − Ỹ || ≤ ϵ, where ϵ is the maximum tolerable error.

4. Methodology

In EMILY (Fig. 1), we extend neural architectures such as liquid time constant neural
network (LTC-NN), continuous time recurrent neural networks (CT-RNN), neural ordinary
differential equations (NODE) to obtain advanced neural structures (LTC-NN-MR, CT-
RNN-MR, NODE-MR) that can solve the model recovery problem. The forward pass
of these advanced neural structures has the same form as bilinear approximations of the
implicit dynamics in Eqn. 2 and hence can search through the space of implicit dynamics
(proved in Section 5). The measurements of Y , can be used to convert the set of implicit
dynamics to an over-determined system of equations that are linear in terms of the model
coefficients. As such an over-determined system of equations may have no solution unless
either some equations are rejected or are expressed as linear superposition of other equations.
To search for a set of consistent equations to estimate model coefficient, a dense layer is
utilized. Each output node of the dense layer corresponds to the coefficient of a non-linear
term in the library of nonlinear functions that are searched. Given a sparsity threshold
of r, any hidden layer output of ≤ r is clipped to zero. Then the non-zero hidden layer
outputs are used as model structure and the values of the non-zero elements are uses as
model coefficients. The search process of the dense layer is guided by a loss function (ODE
loss) that computes the mean square error between the estimated Yest using an ODE solver
SOLVE(Y (0),Θ, U + Uex) and the ground truth measurements of Y .

The advanced neural architectures for model recovery (ξ-MR, where ξ is either LTC-NN,
CT-RNN, or NODE) (Fig. 1) is implemented by extending the base code available in Hasani
(2024). For each example, we extract the training data consisting of temporal traces of Y ,
and U . The resulting training data is then divided into batches of size SB. This forms a 3
D tensor of size SB × |Y |+m× k.

Each batch is passed through the ξ network with V nodes, resulting in V hidden states.
A dense layer is then employed to transform these V hidden states into p = |Θ| model
coefficient estimates. The dense layer is a multi-layer perceptron with ReLU activation
function for the model coefficient estimate nodes. The model coefficient estimates, and the
initial value Y (0) is passed through an ODE solver, that solves the model in Eqn. 2 with
the coefficients Θest, initial conditions Y (0) and inputs U . The Runge-Kutta integration
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method is used in the ODE solver, which gives Yest. The backpropagation of the network is
performed using the network loss appended with ODE loss, which is the mean square error
between the original trace Y and the estimated trace Yest.

5. Theoretical Foundations: Why does EMILY work?

The forward pass of liquid time constant neural network (LTC-NN) is (Hasani et al., 2021):

dh(t)

dt
= −

h(t)
ρ

1+ρfNN (h(t),I(t),t,ω)

+ fNN (h(t), I(t), t, ω)(A), (4)

where h(t) is one hidden state of the LTC-NN, ρ is a time constant parameter, required
to assist any autonomous system to reach equilibrium state. As such existence of the
−h(t)/(ρ ÷ (1 + ρfNN (h(t), I(t), t, ω))) term indicates an input dependent time constant
that matches the structure of Eqn. 2. fNN is the forward pass and is a function of the
hidden states, I(t) is the input to the LTC-NN, ω and A are the parameters of the LTC-NN
architecture.

Remark 1 The forward pass of an LTC-NN architecture generates a set of implicit physical
dynamics that are equivalent to a bilinear approximations of the system in Eqn. 2.

Supporting argument:
Algebraic manipulation of the forward pass of LTC-NN architecture gives the structure

of Eqn. 5 which allows an input dependent time constant ρ
1+ρfNN (h(t),I(t),t,ω) .

dh(t)

dt
= −

h(t)
ρ

1+ρfNN (h(t),I(t),t,ω)

+ fNN (h(t), I(t), t, ω)(A). (5)

The stability criteria for any stable system requires the model to have a time constant
term as shown in Eqn. 6.

dX

dt
= −X/ρ+ f−ρ(X) + g(X)UT , (6)

where ρ is the time constant of the system and f−ρ(.) is the unperturbed dynamics obtained
by removing the time constant component from f(.).

Assuming that the system described by Eqn. 2 is a dynamic causal system, the bilinear
approximation (Friston et al., 2003) of the model in Eqn. 6 results in Eqn. 7.

dX

dt
≈ −X/ρ+ f−ρ(X) +BX + CUT +

∑
j

uj
TDjX +H, (7)

where B = ∂(g(X)UT )
∂X , C = ∂(g(X)UT )

∂UT
, and Dj = ∂2(g(X)UT )

∂X∂uj
T

, H is a constant. Rearranging

Eqn. 7, we have the similar form as the LTC-NN forward pass in Eqn. 8.

dX

dt
≈ −

X
ρ

1+ρ(B+
∑

j u
j
T
Dj)

+ (f−ρ(X) + CUT +H). (8)

We observe that Eqn. 8 is the same form as Eqn. 5 if the input to the LTC-NN I(t) is
a concatenation of Y and UT . The hidden layers of the LTC-NN model an inflated set of
implicit dynamics which may include the unmeasured system variables of the sparse model.

Remark 2 The inflated set of implicit dynamics in LTC-NN induces an over-determined
set of equations in the coefficients of the bilinear approximation of nonlinear model.
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Table 2: Benchmark Examples available in Kaiser et al. (2018).
Example Variables Inputs Implicit No of coefficients
Lotka Volterra x1, x2 1 x1 4
Chaotic Lorenz System x1, x2, x3 1 x1 x2 4
F8 Crusader tracking x1, x2, x3 1 x2 20
Pathogenics attack x1, x2, x3 x4, x5 1 x3, x4 13

Supporting argument: The training process of LTC-NN fixes weights and instantiates
the hidden layer outputs. The values of the unmeasured variables in X is estimated by the
hidden state in each training step utilizing the forward pass and learned LTC-NN weights
ω. Hence each forward pass provides an over-determined set of linear equations in the
coefficients B, C, and Djs.

The original model coefficients θ are non-linear functions of the coefficients B, C, and
Djs, The dense layer is best suited for exploring a large set of possible nonlinear combina-
tions of B, C, andDjs that express θ. An overdetermined system of equations is inconsistent
and may be unsolvable. The dense layer guided by the ODE solver induced loss function
(ODE Loss) learns a consistent set of linear equations in B, C, and Djs; and it also learns
their nonlinear combination to determine θ.

6. Implementation

EMILY is implemented based on the codebase available at Hasani (2024). Here a generic
framework for LTC-NN, CT-RNN, and NODE is implemented using tensorflow 2.7.0. We
wrote a custom loss function (code available in supplementary document) that implements
the Runge-Kutta solution of the physical dynamics given a vector of model coefficients. We
use the general training architecture presented in Hasani (2024) with an ADAM optimizer.
All code is available in https://github.com/ImpactLabASU/LTC-NN-MR

7. Evaluation strategy

We show the effectiveness of the proposed technique in extracting model coefficients on the
benchmark examples and compare with baseline techniques through evaluation experiments.
We use the benchmark examples established in Kaiser et al. (2018), which are summarized
in Table 2.

7.1. Baseline Strategies

The state-of-art model recovery technique is SINDY-MPC (Kaiser et al., 2018). However,
it cannot tackle implicit dynamics. Hence, we extend SINDY-MPC in two ways:

SINDY-MPC-Weakly Implicit (SINDY-MPC-WI): In this approach, in the n-D
system if xj is measured, all other n−1 dimensions are replaced by the n−1 differentials of xj .
This is also termed as weakly implicit. If n > 3 this approach fails since the state variables
xjs may not be n − 1 differentiable. Hence, this method scales poorly with dimensions if
n− 1 dimensions are implicit. In the benchmark examples, since the maximum number of
implicit dynamics is 2, this method does not face problems with gradient computation.

SINDY-MPC Augmented with ERA (SINDY-MPC-ERA): In this method, we first
use the k < n measured states in a system identification exercise using ERA (Oymak and
Ozay, 2021) to extract an approximate n dimensional linear model. The n − k implicit
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dynamics are then replaced by the state estimations obtained from simulating the identified
n-dimensional linear model. Then SINDY-MPC is used to recover the nonlinear model.

Baselines with Automated Differentiation: Architectures that enable automatic dif-
ferentiation such as CT-RNN (Hasani et al., 2022), NODE (Chen et al., 2018), or LTC-
NN (Hasani et al., 2021) are capable of representing implicit dynamics. We have already
shown the versatility of LTC-NN in representing non-linear implicit dynamics. The LTC-
NN nodes can be replaced by NODE or CT-RNN and they would still be able to extract
implicit dynamics of different forms since the forward pass of NODE and CT-RNN are
different from LTC-NN as shown in Eqn. 9. Hence, such architectures are at a relative
advantage over sparse identification mechanisms such as SINDy.

CT RNN: ˙h(t) = −
h(t)

ρ
+ fCT (h, I, t, ωCT ), NODE: ˙h(t) = fNODE(h, I, t, ωNODE). (9)

7.2. Evaluation Experiments

We conduct two types of experiments: a) sparse model recovery with full measurability
(SMR-FM), where there are no implicit dynamics and b) sparse model recovery with implicit
dynamics (SMR-ID), where the variables highlighted in Table 2 are implicit. For the SMR-
FM experiment, we do not show the SINDY-MPC extensions and only report the state-of-
the-art SINDY-MPC method. We show all baselines for SMR-ID experiments.

7.3. Training and Testing Strategy

We utilize the same training method as used in SINDy-MPC and as reflected in the code ac-
cessed from Kaiser (2024). Batch training was utilized for each example. For each example,
we took the same simulation data as SINDy-MPC and divided the traces into 48 instance of
training and 16 instance of test each of at least k = 200 samples. These training instances
were passed to the neural architectures with a batch size SB = 32. The RMSEY and
RMSEΘ are reported on the test data. Code is available in the supplementary document.

7.4. Evaluation metrics

For each evaluation experiment, we use the following two metrics:

Root mean square error in model coefficients (RMSEΘ): Given the estimated model
coefficients Θest for any technique we computed RMSEΘ as:

RMSEΘ =

√√√√1

p

∑
j=1...p

(Θj
est −Θj)2, RMSEY =

1

n

∑
l=1...n

√√√√ 1

k
×

∑
j=1...k

(Y l
est(j)− Y l(j))2. (10)

Root mean square error in signal (RMSEY ): Given the estimation of the measured
variables Yest for any technique we compute RMSEY as in Eqn. 10.

Statistical Analysis: For each model recovery example, we first show the recovered model
for EMILY. We show the mean model coefficient. For comparison results we show the mean
and standard deviation of each metric.

8. Results

In this section, we show the results for the experiments discussed in Section 7.2.
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8.1. Recovered Models

The models extracted by EMILY are given below. All coefficients are rounded up to three
decimal points after most significant digit. Original models in supplement.
Lotka Volterra : It has two variables x1 and x2 given by the following equations:

ẋ1 = ax1 − bx1x2, ẋ2 = −cx2 + dx1x2 + u

a = 0.5, b = 0.025, c = 0.5, and d = 0.005
Recovered model:

ẋ1 = 0.52x1 − 0.026x1x2, ẋ2 = −0.501x2 + 0.005x1x2 + 0.999u

Chaotic Lorenz: The chaotic lorenz system is described in the following equations:

ẋ1 = σ(x2 − x1) + u, ẋ2 = x1(ρ− x3)− x2, ẋ3 = x1x2 − βx3,

σ = 10, β = 8/3, ρ = 28.
Recovered model:

ẋ1 = 10.000(x2 − x1) + 0.999u, ẋ2 = 27.992x1–1.002x1x3–0.998x2, ẋ3 = 1.000x1x2–2.7x3

F8 Cruiser: The F8 Cruser system is given by:

ẋ1 = −0.9x1 + x3 − 0.09x1x3 + 0.47x2
1 − 0.02x2

2 − x2
1x3 + 3.85x3

1 − 0.21u+ 0.28x2
1u+ 0.47x1u

2 + 0.6u3

ẋ2 = x3, ẋ3 = −4.208x1 − 0.396x3 − 0.47x2
1 − 3.564x3

1 − 20.967u+ 6.265x2
1u+ 46x1u

2 + 61.1u3

Recovered model:

ẋ1 = −0.872x1 + 0.998x3 − 0.088x1x3 + 0.476x1
2 − 0.0186x2

2–0.970x1
2x3

+3.849x1
3 − 0.22u+ 0.265x1

2u+ 0.472x1u2 + 0.63u3, ẋ2 = 1.000x3

ẋ3 = −4.210x1 − 0.399x3 − 0.465x1
2 − 3.565x1

3 − 20.978u+ 6.267x1
2u+ 45.711x1u2 + 62.002u3

Pathogenics attack model: The pathogenic attack system is given by:

ẋ1 = λ− dx1 − β(1− ηu)x1x2, ẋ2 = β(1− ηu)x1x2 − ax2 − p1x4x2 − p2x5x2

ẋ3 = c2x1x2x3 − c2qx2x3 − b2x3, ẋ4 = c1x2x4 − b1x4, ẋ5 = c2qx2x3 − hx5,

with λ = 1, d = 0.1, β = 1, a = 0.2, p1 = 1, p2 = 1, c1 = 0.03, c2 = 0.06, b1 = 0.1,
b2 = 0.01, q = 0.5, h = 0.1, and η = 0.9799.

Recovered model:

ẋ1 = 0.939− 0.1x1 − 0.982x1x2 + 0.98ux1x2, ẋ2 = 0.982x1x2 − 0.98ux1x2 − 0.18x2 − 1x4x2 − 1.001x5x2

ẋ3 = 0.059x1x2x3 − 0.03x2x3 − 0.009x3, ẋ4 = 0.029x2x4 − 0.1x4, ẋ5 = 0.059x2x3 − 0.1x5

8.2. SMR-FM experiments

Table 3 shows that all techniques perform similarly when all state variables are measurable.
A one-sided t-test revealed no statistically significant differences between the techniques,
with all p-values greater than 0.05.
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Table 3: SMR-FM: Comparison with full measurability. Value in () is standard deviation.
Example RMSE SINDY-MPC EMILY CT-RNN-MR NODE-MR
Lotka RMSEΘ 0.059 (0.02) 0.048 (0.015) 0.054 (0.03) 0.064 (0.02)
Volterra RMSEY 0.03 (0.02) 0.03 (0.018) 0.05 (0.02) 0.088 (0.03)
Chaotic RMSEΘ 0.014 (0.008) 0.015 (0.006) 0.022 (0.009) 0.044 (0.012)
Lorenz RMSEY 1.7 (0.6) 1.68 (0.4) 3.66 (1.1) 8.1 (3.6)
F8 RMSEΘ 7.9 (3.2) 6.8 (2.9) 10.5 (4.8) 19.9 (7.4)
Crusader RMSEY 3.2 (2.1) 1.57 (1.4) 3.46 (2.6) 7.22 (5.7)
Pathogenics RMSEΘ 0.5 (0.2) 0.39 (0.23) 0.43 (0.3) 0.42 (0.3)
attack RMSEY 27.8 (9.1) 28.3 (6.2) 28.8 (7.7) 29.5 (9.6)

Table 4: SMR-ID: Comparison with implicit dynamics. Value in () is standard deviation.
Example RMSE SINDY-MPC-WI SINDY-MPC-ERA EMILY CT-RNN-MR NODE-MR
Lotka RMSEΘ 2.1(1.9) 0.2 (0.09) 0.054 (0.026) 0.06 (0.035) 0.065 (0.04)
Volterra RMSEY 6.2(4.1) ×103 0.99 (0.5) 0.03 (0.021) 0.06 (0.04) 0.09 (0.05)
Chaotic RMSEΘ 0.1 (0.09) 0.06 (0.05) 0.016 (0.009) 0.023 (0.01) 0.045 (0.023)
Lorenz RMSEY 7.2(2.3) ×106 10.1 (4.6) 1.7 (0.6) 3.74 (2.0) 8.23 (5.1)
F8 RMSEΘ 1051 (204) 21.3 (5.4) 7.81 (4.6) 10.9 (6.2) 21.9 (9.1)
Crusader RMSEY 653 (121) 43.2 (21.1) 1.6 (1.2) 3.52 (2.9) 7.75 (6.4)
Pathogenics RMSEΘ 23.4 (19.1) 6.3 (4.2) 0.45 (0.21) 0.45 (0.31) 0.49 (0.35)
attack RMSEY 134.6 (21.1) 65.1 (19.1) 28.9 (7.8) 29.1 (8.2) 29.9 (10.3)

8.3. SMR-ID experiments

Table 4 shows that our attempts at extending SINDY-MPC to tackle implicit dynamics in
recovering sparse dynamics failed. The SINDY-MPC-WI technique performed significantly
worse than all other approaches in both model recovery and data fitting tasks. This is
primarily because simply adding the derivatives of state variables as additional states may
not capture the true model structure. The model may involve implicit state variables that
are non-linear combinations of other states, rather than just the direct derivatives of the
measured state variables. While the SINDY-MPC-ERA method performed significantly
better and is closer to neural architecture-based approaches, it still lags behind them. This
is because, although ERA captures a model structure that fits the data well, it may fail to
recover the true model structure as it does not enforce the sparsity constraint. The EMILY
method worked best among all approaches.

9. Conclusions

In this paper, we showed that EMILY can extract underlying first principle based ODE
models of a process from data when some of the ODE state variables are not measured.
This is an important step towards making model recovery methods applicable in practical
deployments. This can enable online real time explainable digital twin learning. We have
not evaluated the runtime of EMILY and is an important future work. While recent works
on PINNs and SINDY-MPC have considered weakly implicit dynamics where differentials
of state variables are included as unmeasured dynamics, to the best of our knowledge, this
is the first approach to recover model coefficients under implicit dynamics.
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