
Proceedings of Machine Learning Research 255:1–9, 2024 ML-DE Workshop at ECAI 2024

Optimal Control of a Coastal Ecosystem Through Neural
Ordinary Differential Equations

C. Coelho 1, M. Fernanda P. Costa 1, L.L. Ferrás 1,2,
1 Centre of Mathematics, University of Minho, Braga, Portugal
2 Department of Mechanical Engineering (Section of Mathematics) and CEFT - Centro de Estudos
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Abstract

Optimal control problems (OCPs) are essentials in various domains such as science, en-
gineering, and industry, requiring the optimisation of control variables for dynamic sys-
tems, along with the corresponding state variables, that minimise a given performance
index. Traditional methods for solving OCPs often rely on numerical techniques and can
be computationally expensive when the discretisation grid or time horizon changes. In this
work, we introduce a novel approach that leverages Neural Ordinary Differential Equations
(Neural ODEs) to model the dynamics of control variables in OCPs. By embedding Neural
ODEs within the optimisation problem, we effectively address the limitations of traditional
methods, eliminating the need to re-solve the OCP under different discretisation schemes.
We apply this method to a coastal ecosystem OCP, demonstrating its efficacy in solving the
problem over a 50-year horizon and extending predictions up to 70 years without re-solve
the optimisation problem.

Keywords: Optimal Control; Neural Ordinary Differential Equations; Numerical Meth-
ods; Climate;

1. Introduction

An optimal control problem (OCP) is a constrained optimisation problem aimed at finding
a set of control variables u(.) ∈ U for a dynamic system, along with the corresponding state
variables x(.), that minimise a given performance index or cost functional, J(x(.), u(.)). The
application domains of OCPs are diverse, encompassing fields such as science, engineering,
and industry, among others (Todorov, 2006; Yin S, 2023).
For example, an OCP in Lagrange form is defined as follows:

J∗ = min
u(t)∈U

J(x(t), u(t)) ≡
∫ tf

t0

f(t, x(t), u(t)) dt

subject to: ẋ(t) = g(t, x(t), u(t)), for t ∈ [t0, tf ] (1)

x(t0) = x0, x(tf ) = xf

where U = {u(t) : u(t) is measurable, umin ≤ u(t) ≤ umax, t ∈ [t0, tf ]} is the admissible
control set, and umin and umax are fixed real constants with umin < umax.
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In general, f(.) and g(.) are continuously differentiable functions in all three arguments.
u(.) is piece-wise continuous and the associated state variables x(.) are piece-wise differen-
tiable. In (1) the value of x(tf ) is restricted, i.e, x(tf ) = xf . However, other problems may
consider the value of x(tf ) free.

It is important to note that there are well-known equivalent formulations for describing
an OCP, namely the Lagrange, Mayer, and Bolza forms (Todorov, 2006). However, solving
OCPs precisely and efficiently can be challenging. The majority of real-life OCPs lack
explicit solutions and rely heavily on numerical methods. OCPs can be solved using indirect
or direct methods.

Indirect methods apply the first-order necessary conditions from Pontryagin’s maximum
principle to reformulate the original OCP into a boundary-value problem. In these methods,
it is mandatory to calculate the Hamiltonian, the adjoint equations and the optimality and
transversality conditions. One of the most well-known indirect methods is the backward-
forward sweep method (Lenhart and Workman, 2007). Conversely, direct methods eliminate
the need for explicitly deriving first-order necessary conditions. Direct methods solve the
OCP directly by approximating it with a finite-dimensional optimisation problem (OP) ob-
tained through the discretisation of control and state variables. This transformation allows
the use of efficient and well-established optimisation methods to find the solution (Betts,
2010). In direct methods, control variables are always discretised, but the treatment of
state variables can vary (Diehl et al., 2006). The Direct Sequential approach transcribes
the OCP into an OP by discretising only the control variables while embedding the Ordi-
nary Differential Equations (ODEs) within the OP (Schlegel et al., 2005). This results in
relatively small-scale OPs. The dynamic system is solved using an ODE solver to obtain the
state values required for the optimisation process. Consequently, simulation and optimisa-
tion are performed sequentially. In contrast, the Direct Simultaneous approach discretises
both control and state variables, which can lead to large-scale OPs (Hanson et al., 2010).
However, in these approaches, using a different discretisation scheme, it is required to solve
an entire new OP, which is computationally expensive.

Neural ODEs (Chen et al., 2018) are a specialised neural network (NN) architecture with
continuous depth. Unlike traditional NNs, which have a discrete sequence of layers and fit
a time-independent function to data, defined by the NN architecture, Neural ODEs fit the
solution’s of a time-dependent function, a initial value problem, to data using an ODE (or
system of ODEs). This enables Neural ODEs to handle irregularly sampled data and, once
trained, provide predictions across the entire time domain. In this work, we propose a novel
approach by embedding a Neural ODE into the OP to model the dynamics of the control
variables, given a system with known dynamics. In our approach, we model the dynamics of
the control variables with a Neural ODE, allowing us to solve the resultant system of ODEs
to obtain the control variable values at all desired time points once training is complete.
This method overcomes a major limitation of traditional methods by eliminating the need
to re-solve the OCP if the discretisation or the time horizon changes. This approach is used
to solve a coastal ecosystem OCP, originally formulated in Mandal et al. (2021).

This paper is organised as follows. In Section 2, we briefly describe the motivation and
the OCP herein proposed to be solved. Section 3 introduces our approach using Neural
ODEs. Section 4 presents the numerical results and includes a brief discussion on the
solution of the OCP. The paper ends with the conclusions in Section 5.
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2. Coastal Ecosystem OCP

Over the past two centuries, unchecked population growth, modernisation, industrialisation,
and urbanisation and deforestation have significantly increased greenhouse gas (GHG) emis-
sions. This rise in GHG levels leads to destructive natural phenomena impacting human
societies and ecosystems. Carbon Capture and Storage (CCS) techniques, including poly-
meric amines and desulphurization processes, are increasingly used in industries, potentially
reducing CO2 emissions by 20% by 2050 and mitigating acid rain. However, deforestation
and excessive GHG emissions persist, reducing forested areas. Solutions like greenbelts,
coastal afforestation, reforestation, and advanced CO2 capture methods offer promising
strategies for GHG reduction (Varghese and Karanikolos, 2020; Babbar and Babbar, 2018;
Krótki et al., 2020; Mandal et al., 2021).

In Mandal et al. (2021) the authors proposed an OCP to study the dynamics of GHG
emissions on climate change and coastal ecosystems over 50 years, using a coastal greenbelts
process (u1(t)) to reduce the concentration of GHGs by absorbing atmosferic CO2, and a
desulphurization process (u2(t)) to prevent the release of harmful sulphur components to
limit industrial GHG emissions. More details can be found in Mandal et al. (2021). Let G(t)
represent the GHGs emitted by various industrial activities and man-made sources, T (t)
the atmosferic temperature which changes the earth’s climate, H(t) the human population
in coastal regions which worsens deforestation, and F (t) the forest ecosystems near coastal
areas which are being damaged due to rapid climate change and concentrations of GHGs.
In our work we consider the OCP defined as:

minimize
u

J(u1, u2) =

∫ Tp

0

[
G+ u21 + u22

]
dt

subject to
dG

dt
= α1G+ δ1HG− δ2FG+ δ3T − (u1 + u2)G,

dT

dt
= α2T + θ1GT + θ2HT − θ3FT − u1GT,

dH

dt
= α3H

(
1 − H

k1

)
− ψ1GH − ψ2TH + ψ3FH,

dF

dt
= α4F

(
1 − F

k2

)
− ϵ1HF +

ϵ2F

a+G
− ϵ3TF + (u1 + u2)F,

umin < u(t) ≤ umax, ∀t ∈ [0, Tp]

(2)

with the following initial conditions

G0 = G(0) > 0, T0 = T (0) > 0, H0 = H(0) ≥ 0, F0 = F (0) ≥ 0.

Tp is a predefined time period over which the controls are applied and α1, α2, α3 and
α4 are respectively the natural growth rate of G, T , H, and F . The term δ1HG is the
concentrations of GHGs caused by human activities, θ1GT is the increase in atmosferic
temperature, ψ1GH is the decline in the human population, and ϵ2F

a+G is the promotion of
coastal forest ecosystems due to the rapidly rising concentrations of GHGs. The term θ2HT
is the rise in atmosferic temperature and ϵ1HF is the decline in coastal ecosystems, due to
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humans activities. ψ2TH presents the decrease in human population and ϵ3TF presents the
destruction of coastal ecosystems, due to rapid global warming. Finally, δ2FG and θ3FT
present the absorption of G(t) and T (t) respectively by forest ecosystems, and ψ3FH is
the increase in human population made possible by the support of forest ecosystems. For a
detailed description of all parameters see Table 1 in Mandal et al. (2021).

3. Neural ODEs for Optimal Control

Neural ODEs are a special class of a NN architecture that fits the solution of a initial value
problem:

dh(t)

dt
= fθ(h(t), t) with h(t0) = h0, (3)

to data (Chen et al., 2018). Here, h0 is the initial condition at the initial time t0, t is the
time at which the solution is being computed, fθ is a NN with parameters θ, and h(t) = ht

is the solution at time t.
In contrast to traditional NNs with a discrete layer-by-layer structure, Neural ODEs

model the dynamics of data through a continuous-time dynamical system. This continuous-
time approach introduces some key advantages over traditional NNs such as the ability to
handle irregularly-sampled data and making predictions at any point in the time domain.
To achieve this, Neural ODEs are composed of two main components: a NN, fθ, with
parameters θ, which approximates the right-hand side of an ODE or system of ODEs; a
numerical method (ODESolve) that computes the solution of (3) as an initial value problem
(Chen et al., 2018):

{h(t)}t=t0,t1,...,tf = ODESolve(fθ,h0, (t0, t1, . . . , tf )),

where (t0, t1, . . . , tf ) is the vector of times for which a solution is desired.
Neural ODEs are trained using the same process as traditional NNs, and the result

of training a Neural ODE is an ODE or a system of ODEs, which can be used to make
predictions by solving the initial value problem at the desired times.

In this work, we propose using Neural ODEs for the OCP (2). Our approach employs a
Neural ODE to fit a system of ODEs to the control variables dynamics:

du(t)

dt
= fθ(u(t), t) with u(t0) = u0, (4)

where u(t) = (u1(t), u2(t)).
To find the optimal parameters θ, we minimise the objective functional subject to the

constraints (2). First, we define the loss function to train our Neural ODE for the optimal
control approach (2), for all time steps, given by 1,

L(θ, u(t)) =

Tp∑
t=0

G(t) + u1(t)
2 + u2(t)

2. (5)

In our approach, we propose obtaining u1(t) and u2(t) by numerically solving (4):

1. In this work, we do not use the weighting factors for the coastal greenbelt and desulphurisation costs as
in Mandal et al. (2021) since these prevented the NN from training successfully.
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u(t) = ODESolve(fθ,u0, (0, Tp)).

Then the state variables G(t), T (t)), H(t), F (t) are obtained by solving the ODE system
(2), which receive u1(t) and u2(t) from the numerical method ODEsolve.

Thus, the Neural ODE is trained by minimising (5), and the result of training is a
system of ODEs that can be discretised at any desired points in time to obtain the optimal
control values u1(t) and u2(t).

According to Mandal et al. (2021), the coastal greenbelt and desulphurisation control
variables have limit bounds u1(t) ∈ (0, 0.02] and u2(t) ∈ (0, 0.0025]. To satisfy these bounds,
we constrain the Neural ODE’s output by applying the exponential function e−u2

and
multiply it by 0.02 and 0.0025 for u1 and u2, respectively.

The advantage of this approach over traditional optimal control methods lies in its
modelling of the dynamics of u(t) as a continuous-time function (the solution of (4)). This
means that we only need to solve the optimal control problem once. Even if the time
domain [0, Tp] changes, we can easily discretise u(t) at the desired times to obtain the
optimal control variables for the problem.

4. Results and Discussion

We conduct numerical experiments by solving the coastal ecosystem OCP using control
variables u1(t) and u2(t), making the Neural ODE learn the dynamics of the system of

ODEs du(t)
dt . This involves learning the optimal control dynamics for both the coastal

greenbelt u1(t) ∈ (0, 0.02] and the desulphurization u2(t) ∈ (0, 0.0025]. The OCP is solved
for an end time of 50 years, Tp = 50, with initial conditions u1(t0) = 0.02, u2(t0) = 0.0025
for the control variables, and G0 = 0.04, T0 = 0.07, H0 = 1.1, F0 = 8.75 for the system
variables, as in Mandal et al. (2021).

We then analyse and compare the results obtained before and after implementing the
control strategies by plotting the system state variables over time in Figure 1. To examine
how the control is applied, we also plotted the control variables over time in Figure 2.

For the Neural ODE, the NN architecture fθ is composed of: an input layer with
two neurons with a hyperbolic tangent (tanh) activation function; a hidden layer with 32
neurons and a tanh activation function; and an output layer with two neurons. The Adam
optimiser was used with a learning rate of 1e-5 (Kingma and Ba, 2014) and the training
stopping criteria was given by the maximum number of iterations, 10000.

The coastal greenbelt control variable u1(t) is constantly used at its maximum value
for roughly 20 years, declining to zero afterwards. Conversely, the desulphurisation control
variable u2(t) is gradually reduced over the 50 years until it approaches zero.

Under this control strategy, GHGs emission significantly decline compared to the no-
control scenario, consequently influencing atmosferic temperature changes. With control,
the temperature rise is kept below 0.5ºC over the next 50 years, while without control, the
temperature would rise by more than 2.0ºC over the same period. During the first 20 years,
when GHGs concentration are at their lowest, human population growth increases sharply.
Additionally, the reduction in GHGs emission leads to a higher growth rate of the forest
ecosystem compared to the no-control dynamics. However, the decrease in GHGs emission
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Figure 1: Numerical results for the system with and without the control strategy for the
next 50 years.

Figure 2: Optimal control profiles for the next 50 years.
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also results in a reduction of the forest ecosystem, after 25 years, due to lower atmosferic
CO2 levels, which reduces photosynthetic activity and, consequently, the number of plants.

Extrapolation Our approach fits a system of ODEs to model the control variables of the
system u1(t) and u2(t). As a result, solving the OCP yields a system of ODEs that can be
discretised to obtain the variables’ values at desired times without needing to re-solve the
problem for different discretisations.

To demonstrate the effectiveness of our method in extrapolating the future beyond the
solving time horizon, we discretise u(t) for 70 years and plot the system dynamics in Figure 3
and control variables over time in Figure 4.

Figure 3: Numerical results for the system with and without the control strategy for the
next 70 years.

From Figure 4 we can see that the control strategy for the coastal greenbelt continues
to approach zero. However, the desulphurisation control variable starts to rise slightly after
50 years, showing a tendency to increase.

From Figure 3, we observe that over the next 70 years, GHGs emission continue to drop,
reaching a growth rate lower than the current one. Consequently, atmospheric temperature
does not increase significantly compared to the no-control scenario. After 60 years, the hu-
man population in coastal areas will stabilise, with a growth rate of zero. This stabilisation
directly affects the increase of the forest ecosystem, which helps reduce GHG emissions by
absorbing CO2. This explains the reduced need for the coastal greenbelt.
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Figure 4: Optimal control profiles for the next 70 years.

5. Conclusion

In this work, we proposed solving the coastal ecosystem optimal control problem defined
by Mandal et al. (2021) using a novel approach. We propose using a Neural ODE to learn
the control variable dynamics of the coastal greenbelt u1 and desulphurisation u2 by fitting
a system of ODEs. Once the training process was completed, we analysed the system
dynamics with control by discretising the resultant system of ODEs over the desired time
interval. This approach overcomes a major limitation of traditional optimal control methods
by eliminating the need to re-solve the problem if the discretisation or time horizon changes.

The numerical results demonstrate that our approach successfully solved the coastal
ecosystem optimal control problem for the next 50 years, addressing the complexities of
these systems. Furthermore, without the need to re-train or re-solve the optimal control
problem, we computed the system dynamics for the next 70 years, showing that our ap-
proach produces a generalised control strategy.

In future work, we aim to explore the proposed approach with different optimal control
problems and compare the results obtained by extrapolating the learnt ODE with those ob-
tained by re-solving the optimal control problem using a longer time horizon discretisation.
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