
Proceedings of Machine Learning Research 255:1–16, 2024 ML-DE Workshop at ECAI 2024

PINNtegrate: PINN-based Integral-Learning for Variational
and Interface Problems

Frank Ehebrecht*,1,2 fehebrecht@uni-osnabrueck.de

Toni Scharle*,2 tscharle@rosen-group.com

Martin Atzmueller1,3 martin.atzmueller@uni-osnabrueck.de
1Osnabrück University, Semantic Information Systems Group, Osnabrück, Germany
2ROSEN Technology and Research Center GmbH, Lingen, Germany
3German Research Center for AI (DFKI), Osnabrück, Germany
*equal contributions

Editors: Cećılia Coelho, Bernd Zimmering, M. Fernanda P. Costa, Lúıs L. Ferrás, Oliver Niggemann

Abstract

Physics Informed Neural Networks (PINNs) feature applications to various partial differential
equations (PDEs) in physics and engineering. Many real-world problems contain interfaces,
i. e., discontinuities in some model parameter, and have to be included in any relevant
PDE solver toolkit. These problems do not necessarily admit smooth solutions. Therefore,
interfaces cannot be naturally included into classical PINNs, since their learning algorithm
uses the strong formulation of the PDE and does not include solutions in the weak sense.
The interface information can be incorporated either by an additional flux condition on
the interface or by a variational formulation, thus also allowing weak solutions. This paper
proposes new approaches to combine either the weak or energy functional formulation with
the piece-wise strong formulation, to be able to tackle interface problems. Our new method
PINNtegrate can incorporate integrals into the neural network learning algorithm. This
novel method cannot only be applied to interface problems but also to other problems that
contain an integrand as an optimization objective. We demonstrate PINNtegrate on
variational minimal surface and interface problems of linear elliptic PDEs.

Keywords: Partial Differential Equation, PDE, Elliptic PDE, Neural Net, PINN, Calculus
of Variations, Weak Solution, Interfaces, Energy Functional, Numerical Integration, Integrals

1. Introduction

Physics Informed Neural Networks as a mean to find approximate solutions to Partial
Differential Equations (PDEs) have been the focus of extensive research (Karniadakis et al.,
2021; Cuomo et al., 2022). An important class of PDEs in engineering and science are elliptic
PDEs: Given a domain Ω ⊂ Rd in d dimensions we want to find u ∈ H1(Ω,R), such that

−∇ · (A(x)∇u) +B(x)∇u+ C(x)u = f(x) in Ω,

u = g(x) on ∂ΩD,

∂nu = h(x) on ∂ΩN .

(1)

with A,B and f from suitable function spaces (see Appendix A). For a general A ∈
L∞(Ω,Rd×d), those equations have a unique weak solution u ∈ H1(Ω), i.e.∫

Ω
A(x)∇u · ∇φ+ (B(x) · ∇u)φ+ C(x)uφdx =

∫
Ω
f(x)φdx (2)

© 2024 F. Ehebrecht*,1,2, T. Scharle*,2 & M. Atzmueller1,3.



Ehebrecht*,1,2 Scharle*,2 Atzmueller1,3

for all φ ∈ H1
0 (Ω,R) or φ ∈ H1(Ω,R) for Dirichlet or Neumann boundary conditions,

respectively. We will denote this as an interface problem if A is piece-wise differentiable on
disjoint subdomains Ωi for i = 1, 2 with interface Γ = ∂Ω1 ∩ ∂Ω2. Thus, the weak solution u
is a piece-wise strong solution by elliptic regularity. Note that this is equivalent to enforcing
the flux conditions u1 = u2 and ∂nA1u1 = ∂nA2u2 at the interface, where the indices 1, 2
represent the limits from the left or the right of the interface, respectively. However, the
task of computing normal derivatives along the interface is not necessary, if we interpret
the interface problem as finding a weak solution on the entire domain Ω. Another way of
approaching this problem is interpreting it as an optimization problem. In their most general
form those problems are given by finding the unique minimizer of the functional

J [u] =
∫
Ω F (x, u,∇u,∇2u, . . . ,∇nu) dx. (3)

In particular, this includes minimal surface problems that we will investigate in Section
4.1. For B = 0, we note that a weak solution to Equation 1 is the unique minimizer of the
energy functional of Equation 3 with F = 1

2A(x)∇u · ∇u+ 1
2C(x)u2 − f(x)u for u : Ω→ R

in a suitable function space and F a suitably regular function. All of those formulations
have in common that we have to evaluate some integral and optimize the integrand in order
to solve them within a PINN framework. However, it turns out that the standard Monte
Carlo integration method often leads to unstable training in such cases. In this paper, we
introduce our method PINNtegrate to tackle this problem in the form of a PDE that can
be modeled via a hard-constraint PINN on its own.
Our contributions in this paper are three-fold:

1. We propose a new method called PINNtegrate, that can incorporate integral-
expressions into a deep learning algorithm.

2. We present two new approaches to tackle PDE interface problems in a PINN setup.
For this, we combine the strong formulation with the energy-functional or the weak
formulation and call these methods semi-variational PINNs and semi-weak PINNs.

3. We demonstrate our method implementing those approaches using several examples:
we consider a minimal surface problem, showcasing the efficacy of the PINNtegrate
method in a stand-alone setting and three interface problems for linear elliptic PDEs.

2. Related Work

The capability of artificial neural networks as universal function approximators (Cybenko,
1989) has been used to approximate solutions for PDEs as early as in Lagaris et al. (1997).
This has been resumed by Raissi et al. (2017) and Berg and Nyström (2018) and has become
popular under the name Physics Informed Neural Networks (PINNs), c. f., (Karniadakis
et al., 2021; Cuomo et al., 2022) for an overview.

A multitude of research has been published, either improving different components
of the architecture and learning algorithm (e. g., sampling strategies (Wu et al., 2023) or
adaptive activation functions (Jagtap et al., 2020a)), or approaches which used PINNs as
an alternative to a variety of classical numerical solvers for forward and inverse problems
(e. g., full waveform inversion in Rasht-Behesht et al. (2021)). A substantial part of this
publication is dedicated to deep learning algorithms to find approximate solutions to linear
elliptic interface problems. Since classical PINNs make use of the strong formulation of

2



PINNtegrate

PDEs, these interface conditions - i.e. a jump in some equation parameter - need to be
handled separately. This can be accomplished by some additional loss, introducing an
interface condition into the learning algorithm (e.g. some flux conditions for elliptic PDEs
or hyperbolic conservation laws). PINNs pursuing this approach can be found in (Jagtap
et al., 2020b; Cao et al., 2023; Li et al., 2020; Wu et al., 2022). A continuity condition of
the PDE residuals on the interfaces as described in (Jagtap and Karniadakis, 2020) does
not suffice for interface problems. Another way of accomplishing this, is by a formulation
that not only covers solutions in the strong sense but also in the weak sense. In (Weinan
and Yu, 2017; Wang and Zhang, 2020; Nabian and Meidani, 2018) the energy functional
formulation gets incorporated into the learning algorithm. Specifically, Wang and Zhang
(2020) tackle PDE interface problems with a loss solely posed in the energy functional form
and incorporating this into the learning algorithm by summing over all collocation points.
In our experiments we observed, that this is not necessarily a well-posed optimization target
for all variational problems. In (Ryck et al., 2024; Kharazmi et al., 2019; Zang et al., 2019)
the weak formulation gets incorporated into the learning algorithm. In (Ryck et al., 2024)
this is used to obtain entropy solutions of scalar conservation laws and in (Zang et al., 2019)
it is used to obtain approximate solutions to high-dimensional PDEs.

In contrast to existing approaches, we therefore stress two major foci of our work:
While our PINNtegrate method provides a (1) general approach to incorporate integral-
expressions into a deep learning algorithm, we (2) specifically provide a reliable methodology
to calculate approximate solutions to PDE interface problems.

3. Method

In Section 3.1 we present our method PINNtegrate that can incorporate a definite integral
over the domain Ω ⊂ Rd into a neural network learning algorithm. We will see that while one
can learn the integral I for provided integrand i(x) with the help of automatic differentiation,
our method’s intention is for the integrand i(x) to also be dynamically learned. This can
either be done for a static target-value of the definite integral, but also by making the
target-value learnable (e.g. minimizing it).

In the following notation, vectors of the independent variables will be set in boldface and
their elements indexed by a subscript (i.e. x = (x1, x2, . . . , xd)

T ). Sets of n sampling points
(e.g. a batch of scalars or vectors) will be denoted as the set {xi}i∈I (or {xi}i∈In) with index
set In = {1, 2, . . . , n}. The indices will be set as superscript in this case. For the sake of
brevity we will denote these as {xi} (or {xi}). For the assignments of these sets to specific
subsets as collocation points (c), Dirichlet boundary points (bD), Neumann boundary points
(bN) or interface points (inter), we also add a corresponding superscript (e.g. {xc,i}).

3.1. PINNtegrate

We will first introduce the definite integral as a solution to a partial differential equation
(PDE), and then show how a neural network can be used to learn an approximate solution
to this PDE. In one dimension, the definite integral I(x) =

∫ x
xs

i(ξ) dξ can also be expressed

as the initial value problem dI
dx(x)− i(x) = 0 with I(xs) = 0. We want to be able to learn

this integral in the general d-dimensional case with the help of a Neural Network NI(x,η),

3



Ehebrecht*,1,2 Scharle*,2 Atzmueller1,3

with model parameters η in a hard-constraint setup (see Appendix B.1):

g(x, Itarget) =

[
d∏

i=1

(xi − xi,s)

][
Itarget∏d

j=1(xj,e − xj,s)

]

ℓ(x) =

[
d∏

i=1

(xi − xi,s)

] d∑
j=1

(xj − xj,e)


Iη(x, Itarget) =

{
ℓ(x)NI(x,η), if Itarget = 0

ℓ(x)NI(x,η) + g(x, Itarget), if Itarget ̸= 0.

(4)

This neural form Iη(x, Itarget) can then be used to learn the integral for the provided
integrand i(x). Let us now consider, that the integrand i(x) is of the general form as
provided in the functional in Equation 3 i(x) ≡ F (·, u,∇u,∇2u, . . . ,∇mu)(x) , for some
given suitably regular function F and an unknown function u from a suitable function space.
The objective is now either to find a u for a given integration target Itarget or to find an u
that minimizes Itarget. For this, an approximation to u is learned by a neural network with
learnable parameters θ denoted as uθ(x) := Nu(x,θ). This leads to a PINNtegrate loss
term of

LPη,θ({xc,i}, Itarget) =
1

Nc

Nc∑
i=1

[
∂dIη

∂x1∂x2 . . . ∂xd
(xc,i, Itarget)

− IΩ(xc,i)F (·, uθ,∇uθ,∇2uθ, . . . ,∇muθ)(x
c,i)

]2 (5)

In this formulation, the target value is fixed. To make it learnable, one has to also incorporate
it into the learning algorithm. We express this by moving it to the subscript. Additionally,
we introduce Itarget as a loss term weighted with a small hyperparameter parameter α. While
this additional term is not necessarily needed, it improves the rate of convergence.

LPη,θ,Itarget(x, α) = Lη,θ(x, Itarget) + α Itarget (6)

Additionally, u needs to have its boundary conditions incorporated into the learning algorithm
(see Appendix B.1). Section 4.1 shows that using Monte Carlo integration for training is
unstable, while PINNtegrate leads to stable training.

3.2. Semi-Variational PINNs

While the strong formulation of Equation 1 does not suffice for interface problems, the for-
mulation as energy functional of Equation 3 can completely describe systems with interfaces.
The integrand of the energy functional can be combined with our PINNtegrate method
to approximate solutions of u. In our experiments we have observed that a formulation
solely by the energy functional does not provide a reliable learning algorithm. While for
very simple problems (e.g. no interface at all or highly symmetric solutions) the energy
functional may suffice, problems of reasonable complexity are likely to not converge to a
reasonable approximation. Thus, additionally to the loss provided by the energy functional

4



PINNtegrate

in the PINNtegrate formulation, we include the strong formulation of the PDE into the
loss term for each subdomain and coin this method semi-variational. We surmise that due
to the localised nature of the strong formulation a loss term using this is numerically more
stable, since every sample point of a learning batch must fulfill the condition individually. In
contrast to this the energy functional formulation is global (non-localized) and a complete
ensemble of points is needed for formulating the optimization target.

We again use a neural network uθ to approximate the solution to our problem. However,
each subdomain needs its own neural network denoted as uθj

for each subdomain Ωj . By
just writing uθ here, we indicate the usage of the correct neural network for the respective
collocation point. With this definition we have a variational loss for a given set of collocation
points {xc,i} in the domain ΩH of

Lvariationalη,θ,Itarget ({x
c,i}, α) = 1

Nc

Nc∑
i=1

[
∂dIη

∂x1∂x2 . . . ∂xd
(xc,i, Itarget)

− IΩ(xc,i)
(1
2
A(xc,i)∇u(xc,i) · ∇u(xc,i) +

1

2
C(xc,i)u(xc,i)2 − f(xc,i)u(xc,i)

)]2
+ αItarget.

(7)

Note, that this loss is formulated for the complete domain of the encasing hyperbox ΩH. For
the strong formulation loss we have to take a loss term for each subdomain Ωj . Thus, the
strong formulation for each subdomain

−∇ · (Aj(x)∇u) +Bj(x) · ∇u+ Cj(x)u = fj(x) in Ωj (8)

for all j = 1, . . . k leads to a strong formulation loss of

Lstrongθ ({xcΩ,i}) = 1∑k
j=1Nj

k∑
j=1

Nj∑
i=1

[
−∇ · (Aj(x

cΩj ,i)∇uθj
(xcΩj ,i))

+Bj(x
cΩj ,i) · ∇uθj

(xcΩj ,i) + Cj(x
cΩj ,i)uθj

(xcΩj ,i)− fj(x
cΩj ,i)

]2 (9)

with {xcΩ,i} as the set of all collocation points in Ω and {xcΩj ,i} as the set of collocation
points in subdomain Ωj . Putting together the strong formulation, the weak formulation via
our PINNtegrate method, the interface condition and the Dirichlet boundary condition
we arrive at Algorithm 2 (see Appendix B.2).

3.3. Semi-Weak PINNs

As in the previous section, we combine the strong formulation with a variational formulation.
Here, we will use the weak formulation of the linear elliptic PDE (Equation 2).

To parameterize u, we again use a neural network uθ(x) := Nu(x,θ) with trainable
parameters θ. The test-function φ also gets parameterized by a neural network Nφ with
parameters ζ and can be formulated as

φζ(x) := ℓφ(x)Nφ(x, ζ)

ℓφ(x)

{
= 0, ∀x on (∂Ω)Dirichlet

> 0, else.

(10)

5



Ehebrecht*,1,2 Scharle*,2 Atzmueller1,3

In this setting, we arrive at a loss term for the weak formulation

Lweakη,θ,ζ({xc,i}) = 1

Nc

Nc∑
i=1

[
∂dIη

∂x1∂x2 . . . ∂xd
(xc,i, Itarget = 0)

− IΩ(xc,i)

(
A(xc,i)∇uθ(xc,i) · ∇φζ(x

c,i) +B(xc,i) · ∇uθ(xc,i)φζ(x
c,i)

+ C(xc,i)uθ(x
c,i)φζ(x

c,i)− f(xc,i)φζ(x
c,i)

)]2
.

(11)

Since Equation 2 must hold for all suitable φ we must introduce an adversarial training step
where we vary ζ to maximize Lweakη,θ,ζ . Using the strong formulation as posed in Equations 8
and 9 and boundary loss terms as posed in Equations 17 and 18, we can put everything
together to form Algorithm 3.

4. Results

0 1000 2000 3000 4000 5000
epoch

5.900

5.925

5.950

5.975

6.000

6.025

6.050

6.075

6.100

pr
ed

ict
ed

 su
rfa

ce
 a

re
a

Monte Carlo integration
PINNtegrate

(a) Results for Section 4.1. The training
with the Monte-Carlo approach diverges,
while PINNtegrate converges to a
good approximation.

semi-variational semi-weak static

semi-weak adversarial strong-normal semi-weak WAN
0.02

0.01

0.00

0.01

0.02

(b) Error plots for the different approaches
for the example given in Section 4.2

Figure 1: Results for Sections 4.1 and 4.2

We first present a variational problem to demonstrate our PINNtegrate method in
a setting without strong formulation loss terms and compare the results to the analytical
solution. We then present an experiment for the linear elliptic PDE of Equation 1 with
an interface (two further examples with different domains and parameters can be found
in Appendix C.1 and C.2). There, we use our semi-variational method and our semi-weak
method. For the semi-weak method we also ran a simplified version with one static test
function. While this does not guarantee a unique minimization target in general, our
calculations showed acceptable results. The weak adversarial networks approach (WAN)

6



PINNtegrate

of (Zang et al., 2019) did not converge for our interface problems. For the example in
Section 4.2, we added a combination of the WAN method with an additional strong loss
term to show that in principle the information to obtain the correct solution is available.
As a benchmark for the interface problems, we compared our results to implementations
with flux-continuity conditions, i.e. a strong formulation loss together with a loss term using
the interface condition in the normal direction of the surface as proposed in (Cao et al.,
2023). We call this approach strong-normal in the following. While all our interfaces were
given analytically, note that in practice, an interface would be most likely given as a set of
points. To obtain normal vectors in this case, parameterization by arclength is needed (for
the example in Section 4.2 we achieved this by a B-spline fit).

It is well-established, that fully connected Neural Networks within a range of number of
layers and neurons, and activation functions are widely used for PINNs (see (Cuomo et al.,
2022)). Here, all Neural Networks we used in our experiments have 5 layers with 50 neurons
each and tanh activation functions. Collocation points were either sampled on a grid or
at random. In all experiments, Adam optimizers were used (L-BFGS optimizers did not
further improve the approximations). For the sake of readability, we omit axis labeling in
some plots where the units are arbitrary.

The results for the linear elliptic PDE problems can be found in Table 1 (for more
details see Table 2 in Appendix D). In these tables, the root mean square error (RMSE)
to a high-resolution FEM ground truth and the weights for the loss terms and number of
epochs are shown. The specific weights were determined empirically.

4.1. Variational Problem: 1D Minimal Surface Problem

To showcase our PINNtegrate method in a rather comprehensible setting, we first consider
a variational problem with only one independent variable. We want to find the C1-function
y∗ : [a, b]→ R with y∗(xa) = ya and y∗(xb) = yb with xa, xb ∈ R, that minimizes the surface
of revolution, i.e. the surface that is obtained by rotating the graph of y∗ around the x-axis.
The functional for this surface area is given by I[y] = 2π

∫ xb

xa
y
√
1 + y′2 dx and the optimal

y can be obtained by finding y∗ = argmin
y

I[y]. This expression has an analytical solution

of the form y∗(x) = c1 cosh(
x
c1

+ c2) with c1, c2 ∈ R (see (Bronstein et al., 2015)). For our
example we set xa = 0, ya = 1, xb = 1, yb = 1 (and obtain c1 ≈ 0.848 and c2 ≈ −0.589).
We set the prediction of y as a hard-constrained neural form yθ = Ny(x,θ)x (x− 1) + 1,
fulfilling the boundary conditions directly (and thus omitting the boundary loss term) and
set up the integral network as described in Equation 4, to obtain a loss function as described
in Equation 6. For this example, we provide this explicitly written out as

Lη,θ,Itarget({xc,i}) = αItarget +

1

Nc

Nc∑
i=1

[
∂Iη
∂x

(xc,i, Itarget)− 2πyθ(x
c,i)

√
1 +

∂yθ
∂x

(xc,i)

]2
.

(12)

This loss is then used in a training algorithm as described in Algorithm 1 with Nepochs = 5000
epochs, Nc = 100 equidistant sampled collocation points and an Adam optimizer with
learning rate of lr = 0.001. The surface area starting value is set as Itarget,start = 2π since
this is the surface area of the respective cylinder with given boundary conditions and seems

7



Ehebrecht*,1,2 Scharle*,2 Atzmueller1,3

to be a good heuristic. Figure 1(a) shows the approximation of the learned minimal surface
value during training for the cases of PINNtegrate and Monte Carlo integration. Our
method successfully finds a good approximation of the analytical solution (dashed line). In
the case of Monte Carlo integration, the learning algorithm becomes unstable and diverges
at some point - even in this relatively easy example with one independent variable. The
RMSE of our approximation to the analytical solution (based on the sampling points) is
RMSEex4.1 = 2.5× 10−3

4.2. Elliptic PDE ’flower’: Interface and Dirichlet Boundaries

In this example, we calculate an approximate solution to an interface problem of the linear
elliptic PDE (Equation 1) in two dimensions. We set f(x) = 2, g(x) = 0, B = 0 and C = 0.
The interface Γ is described by the closed curve
xinterface = (sin(t) (cos(Nt) + 5) , cos(t) (cos(Nt) + 5))T , t ∈ [0, 2π] and N = 5. We sample
this interface with Ninter = 200 points {xinter,i}. We call the inner subdomain Ωinner and set
a(x) = 1 for x ∈ Ωinner and the outer subdomain Ωouter and set a(x) = 6 for x ∈ Ωouter. The
outer boundary is the boundary of the square [−1, 1] × [−1, 1] and we sampled this with
NbD = 400 points ({xbD,i}). We took Nc = 104 randomly sampled collocation points ({xc,i})
on the complete domain. We ran both our two methods described in sections 3.2 and 3.3
to calculate approximate solutions to this problem. For our semi-weak method we also ran
an experiment with only one static test function φstatic = (x1 − 1)(x1 + 1)(x2 − 1)(x2 + 1).
For the adversarial training, we used a hard-constraint neural network as described in
Equation 10: φζ(x) := (x1− 1)(x1 +1)(x2− 1)(x2 +1)Nφ(x, ζ). Additionally, we calculated
approximations with the strong-normal method and the WAN method. However, the WAN
method training only converged in a scenario where we also included the piece-wise strong
formulation into the loss.

We tested our prediction against high resolution (66049 vertices) FEM calculation. The
error plots for this can be seen in Figure 1(b) and RMSE values (using the set of FEM
vertices) in Table 1. All methods yielded acceptable results, with our semi-weak method
exhibiting the smallest RMSE.

Table 1: RMSEs of our experiments compared to high-resolution FEM calculations of all
the examples for linear elliptic PDEs.

flower ellipse mixed

semi-variational 6.4e-3 2.0e-3 -
semi-weak-static 6.9e-3 2.9e-3 2.1e-2
semi-weak-advers 3.7e-3 9.2e-4 1.6e-2
strong-normal 1.4e-2 9.4e-4 1.1e-2
semi-weak-WAN 5.3e-3 - -

8



PINNtegrate

5. Conclusion

In this paper, we presented our novel method PINNtegrate: it can incorporate integrals
into a neural network learning algorithm in such a way, that its integrand can be optimized.
While this can be used for problems in calculus of variations, it can also be extended to be
used for PDE interface problems: We combined the variational and the strong formulation
of the PDE and implemented the variational formulation with our PINNtegrate method –
calling these methods semi-weak and semi-variational . For demonstrating their successful
application, in our experimentation we first tackled variational minimal surface problems
for our PINNtegrate method in a stand-alone setting. Not only did this conclusively
showcase our method, but we also demonstrated that posing such a problem with Monte Carlo
integration may lead to unstable training. Furthermore, we solved interface problems of linear
elliptic PDEs with our semi-weak and semi-variational method and compared the predictions
to a high resolution FEM ground truth. Additionally, we used a method employing a flux
condition for comparison. All methods yielded good and valid approximations, where our
semi-weak method with adversarial training produced the best results in two experiments.
Also, it does not require the calculation of normal vectors, which is a considerable advantage.

Future research directions include extensions to interface problems of other PDEs, if they
can be posed as minimization-functional or in the weak formulation. Furthermore, we aim
to investigate whether our PINNtegrate method could also be used for other problems
where an integrand has to be optimized. This can, for example, be optimal control problems
where a continuous-time cost functional needs to be minimized.

References

J. Berg and K. Nyström. A unified deep artificial neural network approach to partial
differential equations in complex geometries. Neurocomputing, 317:28–41, 2018.

I. N. Bronstein, K. A. Semendyayev, G. Musiol, and H. Muehlig. Handbook of Mathematics.
Springer, 6th edition, 2015.

F. Cao, X. Guo, F. Gao, and D. Yuan. Deep learning nonhomogeneous elliptic interface
problems by soft constraint physics-informed neural networks. Mathematics, 11(8), 2023.

S. Cuomo, V. S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi, and F. Piccialli. Scientific
machine learning through physics-informed neural networks: Where we are and what’s
next. arXiv preprint arXiv:2201.05624, 2022.

G. V. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
Control, Signals and Systems, 2:303–314, 1989.

A. D. Jagtap and G. E. Karniadakis. Extended physics-informed neural networks (xpinns): A
generalized space-time domain decomposition based deep learning framework for nonlinear
partial differential equations. Communications in Computational Physics, 2020.

A. D. Jagtap, K. Kawaguchi, and G. E. Karniadakis. Adaptive activation functions accelerate
convergence in deep and physics-informed neural networks. Journal of Computational
Physics, 404:109136, 2020a.

9



Ehebrecht*,1,2 Scharle*,2 Atzmueller1,3

A. D. Jagtap, E. Kharazmi, and G. E. Karniadakis. Conservative physics-informed neural
networks on discrete domains for conservation laws: Applications to forward and inverse
problems. Computer Methods in Applied Mechanics and Engineering, 365:113028, 2020b.

G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang. Physics-
informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

E. Kharazmi, Z. Zhang, and G. E. Karniadakis. Variational physics-informed neural networks
for solving partial differential equations. arXiv preprint arXiv:1912.00873, 2019.

P. L. Lagari, L. H. Tsoukalas, S. Safarkhani, and I. E. Lagaris. Systematic construction of
neural forms for solving partial differential equations inside rectangular domains, subject
to initial, boundary and interface conditions. Int. J. Artif. Intell. Tools, 29:2050009:1–
2050009:12, 2020.

I. E. Lagaris, A. C. Likas, and D. I. Fotiadis. Artificial neural networks for solving ordinary
and partial differential equations. IEEE Trans. Neural Networks, 9 5:987–1000, 1997.

W. Li, X. Xiang, and Y. Xu. Deep domain decomposition method: Elliptic problems. In
Mathematical and Scientific Machine Learning, pages 269–286. PMLR, 2020.

M. A. Nabian and H. Meidani. A deep neural network surrogate for high-dimensional random
partial differential equations. arXiv preprint arXiv:1806.02957, 2018.

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics informed deep learning (part i):
Data-driven solutions of nonlinear partial differential equations. arXiv, abs/1711.10561,
2017.

M. Rasht-Behesht, C. Huber, K. Shukla, and G. E. Karniadakis. Physics-informed neural
networks (pinns) for wave propagation and full waveform inversions. Journal of Geophysical
Research: Solid Earth, 127, 2021.

T. D. Ryck, S. Mishra, and R. Molinaro. wpinns: Weak physics informed neural networks
for approximating entropy solutions of hyperbolic conservation laws. SIAM J. Numer.
Anal., 62:811–841, 2024.

Z. Wang and Z. Zhang. A mesh-free method for interface problems using the deep learning
approach. Journal of Computational Physics, 400:108963, 2020.

E. Weinan and T. Yu. The deep ritz method: A deep learning-based numerical algorithm
for solving variational problems. Commun. Math. Stat., 6:1 – 12, 2017.

C. Wu, M. Zhu, Q. Tan, Y. Kartha, and L. Lu. A comprehensive study of non-adaptive and
residual-based adaptive sampling for physics-informed neural networks. Comput. Methods
Appl. Mech. Eng., 403:115671, 2023.

S. Wu, A. Zhu, Y. Tang, and B. Lu. On convergence of neural network methods for solving
elliptic interface problems. arXiv preprint arXiv:2203.03407, 2022.

Y. Zang, G. Bao, X. Ye, and H. Zhou. Weak adversarial networks for high-dimensional
partial differential equations. J. Comput. Phys., 411:109409, 2019.

10



PINNtegrate

Appendix A. Introduction

The suitable function spaces of Section 1 are a uniformly elliptic matrix-valued function
A ∈ L∞(Ω,Rd×d), B ∈ L∞(Ω,Rd), A ∈ L∞(Ω,R), f ∈ L2(Ω,R). In the isotropic case, we
write A(x) = a(x)1d for a scalar-valued function a with 0 < c ≤ a(x) ≤ C <∞ for some
positive constants c, C. In electrostatics, u describes the electric scalar potential and A
represents the electric permittivity. In thermodynamics, the steady state of the temperature
distribution in a body can be described by an equation of this form, where A represents the
thermal diffusivity of the material. Note that in both cases A is not necessarily smooth,
but can have jumps. This can occur, for example, at an interface between two materials.
Therefore, a solution in the strong sense does not necessarily exist for an arbitrary A, even
for seemingly trivial problems. In such a case, an additional (physical / flux) interface
condition is required, to have a well-posed problem. Figure 2 depicts such a problem setup.

Figure 2: Ω is split into two subdomains Ω1, Ω2 via interface Γ.

Appendix B. Method

B.1. PINNtegrate

In the general d-dimensional case

I(x) =

∫ xd

xd,s

· · ·
∫ x1

x1,s

i(ξ1, ξ2, . . . , ξd) dξ1· · · dξd (13)

with xs = (x1,s, x2,s, . . . , xd,s)
T as the vector of lower bounds of the integral, this transforms

to {
∂dI

∂x1∂x2...∂xd
(x)− i(x) = 0

I(x) = 0 if xi = xi,s for some i ∈ {1, . . . , d}.
(14)

This integrates over the domain of the hyperbox which is spanned by ΩH = [x1,s, x1,e] ×
[x2,s, x2,e] × · · · × [xn,s, xn,e] with upper bounds xe = (x1,e, x2,e, . . . , xn,e)

T . However, one
can extend the integrand from an arbitrary domain Ω to a hyperbox ΩH ⊃ Ω by setting
i(x) = 0 on ΩH \ Ω.

∂dI

∂x1∂x2 . . . ∂xd
(x) := IΩ(x) i(x) =

{
i(x) for x ∈ Ω

0 for x ∈ ΩH \ Ω.
(15)

Let us now define a neural network NI(x,η), with model parameters η that will help us
to learn I. While we could use this neural network directly to learn I, we still need to
incorporate the boundary conditions. This could be done by introducing a term in the loss

11



Ehebrecht*,1,2 Scharle*,2 Atzmueller1,3

function that penalizes the deviation of the neural network from the boundary conditions
for a set of sampling points. However, a more elegant way is to use a hard-constraint (e.g.
see (Lagari et al., 2020)) setup. For this, we need to constrain the boundary conditions and
the integration target Itarget := I(xe):

g(x, Itarget) =

[
d∏

i=1

(xi − xi,s)

][
Itarget∏d

j=1(xj,e − xj,s)

]

ℓ(x) =

[
d∏

i=1

(xi − xi,s)

] d∑
j=1

(xj − xj,e)


Iη(x, Itarget) =

{
ℓ(x)NI(x,η), if Itarget = 0

ℓ(x)NI(x,η) + g(x, Itarget), if Itarget ̸= 0.

(16)

For boundaries, we distinguish between Dirichlet and Neumann conditions as posed in
Equation 1. The established way to formulate the respective loss terms for sets of Dirichlet
sampling points {xbD,i} is

LDθ ({xbD,i}) = 1

NbD

NbD∑
i=1

∣∣∣uθ(xbD,i)− g(xbD,i)
∣∣∣2 (17)

and sets of Neumann sampling points {xbN,i} it is

LNθ ({xbN,i}) = 1

NbN

NbN∑
i=1

∣∣∣A(xbN,i)∂nu(x
bN,i)− h(xbN,i)

∣∣∣2 . (18)

Putting everything together, we arrive at Algorithm 1.

B.2. Semi-Variational PINNs

The complete algorithm for the Semi-Variational PINN method is shown in Algorithm 2.

B.3. Semi-Weak PINNs

The complete Algorithm for the Semi Weak PINN method is shown in Algorithm 3

Appendix C. Results

C.1. Elliptic PDE ’ellipse’: Interface and Dirichlet Boundaries

A linear elliptic PDE interface problem with additional complexity is obtained by altering
the domain to an ellipse that is divided by an interface. The ellipse has its center at (0.5, 0.5)
with a = 0.4 the radius of the semi-major axis and b = 0.25 the radius of the semi-minor
axis. Here, we indeed need to use an indicator function for our PINNtegrate method.
We set g(x) = 0.1x1, f(x) = 10, B = 0 and C(x) = 50. The interface is described by the
function

x2(x1) = −2.5x1 + 1.75 (19)

12



PINNtegrate

Algorithm 1: PINNtegrate algorithm

Initialize network parameters θ,η uniformly
Initialize:{xc,i}, {xbD,i}, {ubD,i}, {xbN,i}, {ubN,i}, IΩ
Initialize weights: wP, wbD, wbN, α
Set number of Nepochs

iepoch ← 0;
while iepoch < Nepochs do

L̃Dθ ← wbDLDθ ({xbD,i});
L̃Nθ ← wbNLNθ ({xbN,i});
if static Itarget then

L̃Pη,θ ← wPLPη,θ({xc,i}, Itarget);
θ,η ← minimize(L̃Pη,θ + L̃Dθ + L̃Nθ );

else if learnable Itarget then

L̃Pη,θ,Itarget ← wPLPη,θ,Itarget({x
c,i}, α);

θ,η, Itarget ← minimize(L̃Pη,θ,Itarget + L̃
D
θ + L̃Nθ );

end
iepoch ← iepoch + 1;

end

Algorithm 2: Semi-Variational PINN algorithm

Initialize network parameters θ,η, Itarget
Initialize: {xc,i}, {xinter,i}, {xbD,i}, {ubD,i}, IΩ
Initialize loss weights: wP, wstrong, wbD, winter, α
iepoch ← 0;
while iepoch < Nepochs do

L̃Dθ ← wbDLDθ ({xbD,i});
L̃interθ ← winterLinterθ ({xinter,i});
L̃strongθ ← wstrongLstrongθ ({xcΩ,i});
L̃variationalη,θ,Itarget

← wPLvariationalη,θ,Itarget
({xc,i}, α);

θ,η, Itarget ← minimize(L̃variationalη,θ,Itarget
+ L̃Dθ + L̃strongθ + L̃interθ );

iepoch ← iepoch + 1;

end

13



Ehebrecht*,1,2 Scharle*,2 Atzmueller1,3

Algorithm 3: Semi-Weak PINN algorithm

Initialize network parameters θ,η uniformly
Initialize {xc,i}, {xc,i}, {xbD,i}, {ubD,i}, {xbN,i}, {ubN,i}, IΩ
Initialize loss weights wP, wbD, wbN, wstrong, winter, α
iepoch ← 0;

Initialize: {xc,i}, {xinter,i}, {xbD,i}, {ubD,i}, IΩ
Initialize loss weights: wP, wstrong, wbD, winter, α
iepoch ← 0;
while iepoch < Nepochs do

L̃Dθ ← wbDLDθ ({xbD,i});
L̃Nθ ← wbNLNθ ({xbN,i});
L̃strongθ ← wstrongLstrongθ ({xcΩ,i});
L̃weakη,θ,ζ ← wPLweakη,θ,ζ({xc,i});
θ,η, ζ ← minimize(L̃weakη,θ,ζ, + L̃Dθ + L̃Nθ + L̃strongθ + L̃interθ );

ζ ← maximize(L̃weakη,θ,ζ);

iepoch ← iepoch + 1;

end

and separates the ellipse into the two domains Ωleft with a(x) = 5 for x ∈ Ωleft and Ωright

with a(x) = 1 for x ∈ Ωright.

We used Nc = 104 points sampled on a grid. There were 1542 in the left and right
domains each and 6916 outside. We again used our methods and the strong-normal method.
In all cases, we sampled the interface at 523 points. For the semi-weak case with one

static test function, we set φ(x) = (x1−0.5)2

0.42
+ (x2−0.5)2

0.252
− 1 and in the adversarial case set

φζ(x) :=
(
(x1−0.5)2

0.42
+ (x2−0.5)2

0.252
− 1
)
Nφ(x, ζ).

Again, we tested our predictions against high resolution FEM calculation (prediction on
the FEM vertices). The results are depicted in Figure 3 and Table 1. While all methods
yielded acceptable results, our semi-weak method had the smallest RMSE, followed by the
strong-normal method.

C.2. Elliptic PDE ’mixed’: Interface and Mixed Dirichlet/Neumann Boundaries

For the next example, we use mixed Dirichlet and Neumann boundaries. We consider a
unit square domain Ω. The boundaries at (x = 0) and (x = 1) are of Dirichlet type and the
boundaries at (y = 0) and (y = 1) are of Neumann type. The Neumann boundaries are set
to be 0 everywhere. The left Dirichlet boundary is set to ubD,left = 0 and the right Dirichlet
boundary is set to ubD,right = 0.1. In this setup, the test function φ for the semi-weak method
needs to be zero on the Dirichlet boundaries and non-zero on the Neumann boundaries. For
the case of one test function, we set φ(x) = x1(x1− 1) and in the case of adversarial training
to φζ(x) = (Nφ(x, ζ)x1(x1 − 1))2. The parameters of the elliptic PDE (Equation 1) in this
example are set to g(x) = 0.1x1, f(x) = 10, B(x) = (1, 1)T and a(x) = 5 for x ∈ Ωleft and
a(x) = 1 for x ∈ Ωright.

14



PINNtegrate

semi-variational semi-weak static

weak-weak adversarial strong-normal

0.010

0.005

0.000

0.005

0.010

Figure 3: Results for C.1. The plots depict the error comparing each of our methods to
high-resolution FEM calculations. The black dotted area shows the position of the
interface. All methods find reasonable approximations of the solution (assuming
the error of the FEM calculation is reasonably small). Our semi-weak method
had the smallest RMSE.

The semi-variational approach is omitted, since B(x) ̸= 0. The results are shown in
Figure 4 and Table 1. The strong-normal method yields the best results, closely followed by
our semi-weak method. The comparison was again performed on a set of vertices of high
resolution FEM calculations.

semi-weak static

semi-weak adversarial strong-normal

0.050

0.025

0.000

0.025

0.050

Figure 4: Results for C.2. The plots depict the error comparing each of our methods to
high-resolution FEM calculations. All methods find reasonable approximations of
the solution. The strong-normal method yielded the best results

15



Ehebrecht*,1,2 Scharle*,2 Atzmueller1,3

Appendix D. Weights

Weights and number of epochs for the training of the interface problems are shown in Table 2

Table 2: Epochs and weights of the different loss terms for the examples of linear elliptic
PDEs. (#E: number of epochs, PNT: PINNtegrate, intrf: interface, strg: strong)

#E PNT intrf strg bD bN flux

flower:
semi-variational 35k 0.2 30 0.05 0.5 - -
semi-weak-static 90k 1e-3 1.0 1e-3 1.0 - -
semi-weak-advers 40k 1.0 50 1.0 10 - -
strong-normal 40k - 100 1.0 1.0 - 2.0
semi-weak-WAN 30k - 30 1.0 1.0 - -

ellipse:
semi-variational 40k 50 500 10 550 - -
semi-weak-static 60k 50 500 10 550 - -
semi-weak-advers 20k 50 500 10 550 - -
strong-normal 20k - 500 10 550 - 1.0

puzzel:
semi-weak-static 50k 1.0 500.0 1.0 10.0 10.0 -
semi-weak-advers 50k 1.0 500.0 1.0 10.0 10.0 -
strong-normal 50k - 100.0 1.0 1.0 1.0 2.0

16


	Introduction
	Related Work
	Method
	PINNtegrate
	Semi-Variational PINNs
	Semi-Weak PINNs

	Results
	Variational Problem: 1D Minimal Surface Problem
	Elliptic PDE 'flower': Interface and Dirichlet Boundaries

	Conclusion
	Introduction
	Method
	PINNtegrate
	Semi-Variational PINNs
	Semi-Weak PINNs

	Results
	Elliptic PDE 'ellipse': Interface and Dirichlet Boundaries
	Elliptic PDE 'mixed': Interface and Mixed Dirichlet/Neumann Boundaries

	Weights

