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Abstract

In hydraulic engineering, the design and optimization of weir structures play a critical role
in the management of river systems. Weirs must efficiently manage high flow rates while
maintaining low overfall heights and predictable flow behavior. Determining upstream flow
depths and discharge coefficients requires costly and time-consuming physical experiments
or numerical simulations. Neural Ordinary Differential Equations (NODE) can be capable
of predicting these flow features and reducing the effort of generating experimental and
numerical data. We propose a simulation based 2D dataset of flow properties upstream
of weir structures called FlowProp. In a second step we use a NODE-based approach
to analyze flow behavior as well as discharge coefficients for various geometries. In the
evaluation process, it is evident that the aforementioned approach is effective in describing
the headwater, overfall height and tailwater. The approach is further capable of predicting
the flow behavior of geometries beyond the training data.
Project page and code: https://github.com/SEilermann/FlowProp

Keywords: Neural Ordinary Differential Equations, Hydraulic Engineering, Benchmark
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1. Introduction

The use of machine learning in the field of fluid dynamics has gained increasing attention,
particularly for its ability to model complex systems where traditional numerical simu-
lations can be computationally expensive. In the specific case of hydraulic engineering,
predicting flow behavior over different geometric configurations is crucial for the design and
optimization of structures such as weirs and dams. This study explores the potential of
Neural Ordinary Differential Equations (NODEs) (Chen et al., 2018), a relatively recent
architecture in deep learning, to tackle the problem of fluid flow prediction over varying
weir geometries.

Weirs, as hydraulic structures, are essential for regulating flow in open channels. Their
efficiency is typically characterized by the discharge coefficient cD, which represents the rela-
tionship between the discharge Q and the geometric properties of the structure (Aigner and
Bollrich, 2015). Traditional research methods for calculating cD often rely on scaled physical
model tests or computational fluid dynamics (CFD) simulations, which can be limited by
cost and time (Oertel and Bung, 2014). Recent work has shown that machine learning mod-
els, particularly fully connected neural networks (FC-NNs), can predict hydraulic properties
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with reasonable accuracy (Fatahi-Alkouhi et al., 2024; Iqbal and Ghani, 2024). However,
such models often struggle with generalization to out-of-distribution (OOD) geometries,
i.e., shapes that deviate from those seen in training.

In this paper, we propose the use of a NODE-based approach to enhance the prediction
of waterlines and cD across a diverse set of weir geometries. NODEs offer a principled way
to model time-dependent or continuous systems by learning the underlying differential equa-
tions governing the system’s dynamics (Chen et al., 2018). This makes them particularly
suitable for our task, where fluid flow is governed by equations but the exact solution is
complicated by complex geometrical boundaries. We hypothesize that NODEs, by solving
such systems as an ODE, can generalize better to previously unseen geometries compared
to FC-NNs.

To validate this, we present a series of experiments where NODE architectures are
trained on our custom dataset, FlowProp, which includes various weir shapes, ranging from
trapezoidal forms to more irregular, non-polygonal geometries. We systematically compare
NODEs to traditional FC-NN architectures and evaluate their reconstruction of waterlines
as well as their ability to predict cD values. Our results demonstrate that NODEs outper-
form FC-NNs, particularly in scenarios involving novel or complex geometries, showcasing
their potential for applications in hydraulic design.

The contributions of this paper are threefold: (1) we introduce and optimize NODE
architectures specifically for the task of fluid flow reconstruction and discharge coefficient
prediction; (2) we demonstrate the superior generalization capabilities of NODEs on out-
of-distribution weir geometries; and (3) we provide a new dataset, FlowProp, designed to
benchmark models on realistic hydraulic tasks involving diverse geometric configurations.

The remainder of this paper is structured as follows: In Section 2, we review related work
in the application of machine learning to hydraulic systems. Method and dataset generation
are presented in Section 3. Section 4 details the experiments conducted including results
and discussions, followed by conclusions and future work in Section 5.

2. State of the Art

2.1. Hydraulic Structures and Discharge Coefficients

A weir is defined as a barrier structure constructed with the intention of impounding river
systems for a variety of reasons, including, but not limited to, the generation of electricity
and the regulation of water levels (Strobl and Zunic, 2006). However, the construction
of weirs also has the effect of disrupting the natural flow of rivers, which can potentially
result in flooding in the event of high Q caused by extreme weather conditions. Therefore,
an efficient design for discharging large Q but still achieving minimal overfall heights is a
significant objective of hydraulic engineers. A key performance metric for weirs is the cD,
which represents the efficiency of discharging water over the structure. The Q over a weir
can be described by the classical weir flow equation (Bashiri, 2016):

Q =
2

3
· cD · b ·

√
2g ·H

3
2
s (1)

where b is the weir width (river width at the location of the weir), Hs is the total
upstream head, and g is the gravitational acceleration. The cD encapsulates the effects
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of the weir geometry and hydraulic parameters such as Q, approaching flow velocity (vs),
surface roughness, tailwater and more (Aigner and Bollrich, 2015).

Name, Matrikelnummer, Helmut-Schmidt-Universität Hamburg12

Headwater Tailwater

k

P

Q
hs

Figure 1: Example of flow behavior over an exemplary linear weir geometry with the weir
height P and the overfall height k in a scaled physical model test with flow
direction from left to right.

Traditionally, cD has been determined using empirical equations derived from experi-
mental data or CFD simulations. Both research methods are time-consuming and costly,
requiring the use of laboratory resources or high-performance computing (Oertel and Bung,
2014). Although scaled physical model tests in hydraulic laboratories allow for the collec-
tion of data for varying Q in a relatively short period of time, the variation of geometries is
a significant cost and time investment. Moreover, the results for small Q may be influenced
by scale effects, which can lead to inaccurate results (Shen and Oertel, 2023). In numerical
simulations, the variation of geometries can be readily accomplished, and simulations at the
prototype scale can eliminate scale effects. However, the calculation of complex structures
with a fine computing mesh for a single Q can take up to several days (Oertel and Bung,
2014).

To provide a more precise calculation of cD, the following equation, derived from the
continuity equation, is commonly used (Ferguson, 1986):

cD =
3 ·Q

2 · b ·
√
2 · g ·

((
Q

b·hs

)2

(2·g) + k

)3/2
(2)

where hs represents the upstream flow depth (water level) and P is the weir height.
This equation takes into account the upstream flow conditions and the geometric properties
of the weir. The derivation of this formula from the continuity equation can be found in
Appendix C.

All hydraulic properties that can be analyzed in the tailwater of a weir structure are
highly dependent on the downstream flow conditions (Besser and Oertel, 2024). In contrast
to the headwater, the tailwater is not subject to significant regulation; rather, it is adjusted
to align with the prevailing natural discharge conditions. Given the inherent difficulty in
establishing the downstream water level as a computational boundary condition within a
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numerical simulation in the absence of knowledge regarding natural flow conditions, this
study will concentrate on the analysis of upstream flow parameters, rather than character-
istics of the downstream flow (Thorenz, 2024).

While CFD simulations remain the benchmark for high-precision calculations, their
computational demands highlight the need for more efficient methods to estimate cD across
diverse weir geometries.

2.2. Artificial Intelligence in Hydraulics

Artificial intelligence in various forms has already been implemented in the field of research
related to hydraulic engineering and, more specifically, hydraulic structures. Existing stud-
ies have dealt with the estimation of scour depth and location downstream of hydraulic
structures using a hybrid artificial intelligence model with binary particle swarm optimiza-
tion (PSO) algorithm and support vector regression (SVR) (Salih et al., 2020) or multi-
output descriptive neural network (DNN) (Guven, 2011). Other studies used FC-NNs to
estimate velocities in ventilated step spillways (Valero and Bung, 2016) or to predict the
friction factor of open channel flow (Yuhong and Wenxin, 2009). Furthermore, in (Fatahi-
Alkouhi et al., 2024; Iqbal and Ghani, 2024) the cD of modified semi-cylindrical structures
and piano key weirs is estimated by prediction with different several models like support
vector machines, simple feed forward neural networks and multivariate adaptive regression
splines.

2.3. Neural Ordinary Differential Equations

The concept of NODEs, as initially proposed by Chen et al. (2018), represents a continuation
of the research initiated in (Weinan, 2017; Lu et al., 2018) on the integration of machine
learning and differential equations. An ODE

dx(t)

dt
= f(x(t), t) (3)

where t ∈ R+ represents the time, x(t) is the state variables, and the function f models
the dynamics. The aforementioned approach is predicated on the assumption that the
function f is already known. Despite the significant challenge posed by complex systems,
which require considerable time and knowledge investment, the lack of understanding of
their underlying dynamics adds an additional layer of difficulty (Li et al., 2024). To address
these challenges, a neural network fNN with the parameters θNN can be trained to replace
f in order to ensure that no hidden dynamics are overlooked.

dx(t)

dt
= fNN(x(t), t; θNN) (4)

When the data pair
(
x(t), dx(t)dt

)
is unavailable and only x(t) is accessible, a NODE

based approach can be used by training the neural network (NN) fODE with integrated
ODEs, where θODE are the parameters:

x (t1) = x (t0) +

∫ t1

t0

fODE(x(t))dt = ODESolve (x (t0) , fODE, t0, t1; θODE) (5)

4



Neural ODE for Flow Properties

In Equation (5) using θODE parameters of fODE and (t0, t1) are the limits of the integration.
The initial condition of integration is set as x(t0). Therefore, Chen et al. (2018) integrated
ODE solvers (such as adaptive Runge-Kutta (Butcher, 1996)) into PyTorch (Paszke et al.,
2019), thus enabling solving the ODE in Equation (5). To address the challenge of sbstantial
memory costs, Chen et al. (2018) proposed the use of the adjoint method, which improves
memory efficiency while maintaining gradient accuracy.
The aforementioned approaches illustrate that a number of artificial intelligence based tech-
niques have already been developed for the analysis of weir structures. In contrast to ex-
isting approaches our approach based on a NODE model for the analysis not only of the
efficiency of a weir structure but also of the flow behavior, including velocity and total
energy, associated with different weir structures represents a significant advancement in the
field.

3. Methods

3.1. Generation of FlowProp: A 2D Flow Properties Dataset

In contrast to Equation (5), where t is used to describe a system temporal behavior, we
employ the variable s ∈ {0, . . . , S}, with S ∈ N denoting the total number of steps, to
elucidate the flow properties of a considered step. To generate our 2D dataset of hydraulic
structures with flow properties, called FlowProp, two simulations with different geometries
serving as weir structure were performed. For simulation the commercially available software
FLOW-3D HYDRO Version 2023R1 by Flow Science (2023) was used. The volume-of-fluid
method was used and RNG (Renormalized Group) was selected as the turbulence model as
suggested by (Safarzadeh and Noroozi, 2017). With a weir height of P = 0.3 m, the mesh
size was set to 0.005 m. The simulations were performed for Q = 0.05 m³/s. Since our
selected initial geometries triangular getri and rectangular gerec represent linear structures,
the simulation was reduced to 2D. As a result of the simulation, hs as well as Hs and vs
were extracted. The evolution of hs, Hs and vs can be seen in Figure 2 for getri. The gerec
can be found in Appendix A.2.
Additional simulations of linearly interpolated geometries (gen) between getri and gerec
were performed to prove a linear correlation between the resulting upstream hs. Details
are provided in Appendix A.3. By understanding the linear correlation of hs between gen,
the amount of n geometries G = {ge0, ge1, . . . , gen} saved as 2D images with matching
waterlines W = {w0, w1, . . . , wn} can be defined when generating FlowProp. This step is
possible without additional simulations using

gen = (1− l) · getri + l · gerec (6)

where l is the interpolation step. This step is used for both, the interpolation of gen and
wn. The mean interpolated simulation and further information of saving can be seen in
Appendix A.4.

3.2. Learning of Waterlines with a NODE-Approach

For learning flow properties with a NODE approach we incorporate a convolutional encoder
encG to extract features from gen and a NODE model to predict waterline dynamics in
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Figure 2: Flow properties (water level hs, flow velocities vs, total energy Hs) of the trian-
gular geometry with flow direction from left to right with P describing the height
of the weir and k the overfall height over the weir structure.

the headwater, overfall region and tailwater. Each wn is represented by 2D coordinates
{(xc,0, yc,0), ..., (xc,s, yc,s)}, where each yc,s denotes the hs.
As mentioned in Section 2.3 we focus on its spatial evolution in xs. The encG compresses
the 2D image so S = 502 and our initial condition x(s0) is defined as (xc,0, yc,0). In our
case x(s1) is described:

x (s1) = ODESolve (x (s0) , fODE, s0, s1, encG; θWODE) , (7)

which captures the dynamics of the wn under the parameters θWODE. We define the training
objective to minimize the Mean Squared Error (MSE) between the predicted ŷc,s and actual
water levels yc, s as in previous works before (Norcliffe et al., 2021; Lee and Parish, 2021).
Next to the waterline, we determine cD from Equation (2) to evaluate the weir efficiency
influenced by its shape and flow properties. For this study, the cD is calculated from the
flow depth hs at a location of 3 × P upstream of the weir.

4. Experiments

In this section, we perform three main experiments to validate the proposed method on
our dataset FlowProp. First, we analyze the reconstruction capability of our approach. We
compare these results to different network architectures of our NODE approach. Next, we
evaluate the method by calculating cD, to compare these in terms of effectiveness. The third
and final experiment evaluates the NODE’s interpolation and extrapolation capabilities.
Settings: To implement our approach, we use PyTorch (Paszke et al., 2019) and the
torchdiffeq library (Chen, 2018) as the ODE solver, employing the Runge-Kutta of order
5 of Dormand-Prince-Shampine (Dormand and Prince, 1980) with adaptive step size for
numerical integration. We implement the Adam optimizer (Kingma and Ba, 2017) with a
learning rate of 1e − 3 to train the model, where after 1, 000 iterations the learning rate
gets reduced by a factor of 0.5. The complete architecture of our NODE approach can be
found in Appendix E.2.
Datasets: In order to evaluate the proposed methodology, we utilize the aforementioned
dataset, FlowProp. Furthermore, we employ a chronological train-test split to create two
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Table 1: Comparison of test set reconstruction results considering different NODE network
architectures. According to the lowest MSE and AD, NODE4 performs best on
the FlowProp dataset. AD is multiplied by 104.

Model Layers Neurons ↓ AD [m²] ↓ MSE Params

NODE1 5 100 168.1254 1.3611× 10−4 195,977
NODE2 10 100 8.3524 2.6265× 10−5 246,477
NODE3 15 100 6.9407 2.0175× 10−5 296.977
NODE4 20 100 1.7985 9.9456× 10−6 347,477
NODE5 25 100 17.7146 4.2681× 10−5 397,977
NODE6 30 100 16.9965 9.3494× 10−4 448,477

distinct subsets. Additionally, we generate a dataset comprising simulations of predomi-
nantly non-polygonal weirs. In the first subset FlowProp-First, the first 20% of samples,
comprising gerec and trapezoidal shapes, are removed and used exclusively as the test set.
The second subset is formed by removing the final 20% of samples from the initial dataset,
which are used exclusively as the test set. This subset predominantly contains trapezoidal
shapes and getri and is named FlowProp-Last. The third dataset, designated as FlowProp-
Diverse, comprises ten predominantly non-polygonal weirs, with selected shapes detailed in
Appendix D. For all datasets, we define the sample size as n = 100.

4.1. Reconstruction of Waterlines

We have tested different NODE configurations of our presented approach (see Section 3.2) to
reconstruct the course of the waterline in the headwater, overfall region and tailwater. The
tests were performed with different hidden layer sizes and a fixed number of 100 neurons
per layer. We used our FlowProp dataset. The main network architectures tested are
presented in Table 1. Figure 3 presents the reconstruction quality with our best model,
NODE4. The red area between the predicted and simulated waterlines represents the areal
deviation, calculated using Simpson’s Rule (Virtanen et al., 2020). It can be observed
that the waterline can be accurately reconstructed in the headwater, overfall region and
tailwater. However, with all other tested NODE configurations (1-3, 5) the waterline in the
tailwater cannot be precisely reconstructed or the reconstruction task fails in total. After
the overfall, the waterline tends to rise in the tailwater region, as shown in Appendix B. As
the number of hidden layers increases, the waterline adapts more to the actual course of the
tailwater, but after 25 hidden layers the waterline cannot be reconstructed (NODE6). In
addition to the qualitative evaluation, Table 1 shows the areal deviation (AD) in m² and the
MSE of the various NODE architectures. Despite the relative small MSE and AD of those
other configurations, NODE4 performs best with the lowest evaluation metrics, indicating
that NODE4 effectively learned the underlying physical properties by solving Equation (7).
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Figure 3: The areal deviation between reconstructed and simulated waterline is highlighted
in red for model NODE4. It shows strong reconstruction capability in the head-
water, overfall region and tailwater.

4.2. Prediction of Discharge Coefficients

In the second experiment, we utilize our best model from the experiment before NODE4
to predict values of hs to calculate cD for a comparison of different weirs based on their
efficiency using FlowProp. We compare NODE4 to a FC-NN to predict hs. The FC-NN uses
encG similar to our NODE approach to process the weir shapes as described in Appendix E.
We compare the MSE of the predicted cD values with those obtained from the simulations,
demonstrating the accuracy of the NODE4 predictions. The mean cD of the FlowProp
test set is 0.6712. The MSE achieved using the FC-NN model is 2.8944 × 10−6 and with
NODE4 2.6464 × 10−5. With only a small deviation, NODE4 can also be used to predict
the efficiency of a weir in terms of its cD. Further, our results are represent state-of-the-art
results in comparison to (Fatahi-Alkouhi et al., 2024; Iqbal and Ghani, 2024).

4.3. Model Accuracy on Novel Geometries

In the third experiment, we evaluate the NODE’s generalization ability with the datasets
FlowProp-First, FlowProp-Last and FlowProp-Diverse. This approach allows us to examine
NODE’s interpolation and extrapolation capabilities in predicting the waterlines and cD.
The results of our best model NODE4 and second best model NODE3 are summarized in
Table 2. The small MSE and AD indicate strong generalization and interpolation capabili-
ties, despite the NODE was not being exposed to these specific shapes during training (an
example visualization is given in Appendix B). Table 2 lists the MSE of the predicted cD.
The results show that NODE outperforms FC-NN on test sets containing out-of-distribution
shapes relative to the training set, suggesting NODE’s superior generalization ability by ef-
fectively learning the waterline as an ODE.
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Table 2: Comparison of the MSE of the predicted and simulated cD with our best model
NODE4 and a FC-NN. NODE4 predicts the cD more accurately considering the
MSE when using untrained geometries for testing. The results of Experiment 2
are also shown for comparison.

NODE4 FC-NN
Test Set ↓ MSE ↓ MSE

FlowProp 9.9456× 10−6 2.8944× 10−6

FlowProp-First 3.3652× 10−4 4.6653× 10−4

FlowProp-Last 4.3783× 10−4 4.7144× 10−4

FlowProp-Diverse 2.2431× 10−2 2.2198

Table 3: Results of the waterline generation based on the third experiment. We compare our
best model NODE4 of the first experiment with the second best model NODE3.
AD is multiplied by 104.

Model Test Set ↓ AD [m²] ↓ MSE

NODE3 FlowProp-First 29.5337 9.9260× 10−5

NODE3 FlowProp-Last 56.8599 1.1873× 10−4

NODE3 FlowProp-Diverse 173.1117 1.9759× 10−3

NODE4 FlowProp-First 6.3794 5.2104× 10−5

NODE4 FlowProp-Last 33.4424 5.7798× 10−5

NODE4 FlowProp-Diverse 200.6530 2.5601× 10−3

5. Conclusion and Future Work

In this study, we evaluated the efficiency and flow properties of varying weir geometries
using NODE. We proposed FlowProp, a novel dataset that represents the flow behavior
based on different geometric shapes of weirs. Our experiments show that NODE model
can accurately describe the water level in the headwater, the overfall height and tailwater
with just small deviations. The NODE model accurately predicts the discharge coefficient,
closely matching simulated values for both polygonal and non-polygonal weirs. Moreover,
the NODE can generalize beyond the training data, although its performance is less accurate
in the overfall region and tailwater, indicating room for improvement in handling diverse
weir shapes. Furthermore, the transfer to three-dimensional geometries as for example
non-linear weirs can be evaluated in a following study. In future work, we compare the
performance of the NODE with baseline models such as RNN, LSTM, and GRU to evaluate
its effectiveness.
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https://arxiv.org/abs/2103.12413.
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Eilermann Lüddecke Hohmann Zimmering Oertel Niggemann

Carey, I. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cim-
rman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. Ribeiro, F. Pe-
dregosa, P. van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Al-
gorithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020. doi:
10.1038/s41592-019-0686-2.

Ee Weinan. A proposal on machine learning via dynamical systems. Communications in
Mathematics and Statistics, 1(5):1–11, 2017.

Z. Yuhong and H. Wenxin. Application of artificial neural network to predict the friction
factor of open channel flow. Commun Nonlinear Sci Numer Simulat, 14, 2009.

Appendix A. Dataset Properties

A.1. Simulation Parameters

Table 4 summarizes the parameters and boundary conditions set and retrieved from the
numerical simulations in FLOW 3D. All simulations hat the same setting accept for the
weir geometry. In total the numerical models contained of 51,000 cells. To optimize the
simulation an initial water body was included in the model.

Table 4: Simulation parameters and boundary conditions.

Sim Inlet BC Oulet BC Cell size Sim time Geometry Comp time
[m] [s] [hh:mm:ss]

RECT Flow rate Continuative 0.005 28 Rectangle 01:08:53
TRIA Flow rate Continuative 0.005 28 Triangle 01:07:35
INT1 Flow rate Continuative 0.005 28 Trapezoid 1 01:08:56
INT2 Flow rate Continuative 0.005 28 Trapezoid 2 01:09:17
INT3 Flow rate Continuative 0.005 28 Trapezoid 3 01:16:08
INT4 Flow rate Continuative 0.005 28 Trapezoid 4 01:09:22
INT5 Flow rate Continuative 0.005 28 Trapezoid 5 01:08:33
INT6 Flow rate Continuative 0.005 28 Trapezoid 6 01:10:22
INT7 Flow rate Continuative 0.005 28 Trapezoid 7 01:09:54

A.2. Initial Rectangle Simulation

Figure 4 shows the simulation results of initial rectangular geometry (gerec) with develop-
ment of free surface elevation (hs), flow velocities (vs) and total energy Hs.
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Figure 4: Flow properties (free surface elevation hs, flow velocities vs, total energy Hs) of
the rectangular geometry gerec with flow direction from left to right.

A.3. Linear Correlation

We examine the linear correlation between the initial geometries (getri), gerec and additional
simulations of linear interpolated geometries (gen) between getri, gerec and the resulting hs.
With a linear fitting equation

hs = 0.1107 · C + 0.4192 (8)

the linear correlation can be proven with an uncertainty of less than 2 % as shown in
Figure 5. The factor C represents the crest length in flow direction.

Figure 5: Linear fitting equation for interpolated geometries gen between the rectangular
geometry gerec and triangular geometry getri and the upstream flow depths hs
describing an approximated linear correlation.

A.4. Interpolation Result

Each simulation can be decomposed into the weir geometry with the same position and the
course of hs. The initial geometries getri, gerec are described by four vertices, whereby the
upper vertices of getri share the same position. The waterline from the simulation is de-
scribed by a large number of data points with their respective coordinates. The interpolated
geometries gen of the simulation result in symmetric trapezoids with different base sizes,
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Eilermann Lüddecke Hohmann Zimmering Oertel Niggemann

which can be merged with the interpolated waterlines to create new simulations. Figure 6
shows the mean interpolated geometry between gerec and getri.

Figure 6: The mean interpolated trapezoidal geometry between the rectangular geometry
gerec and triangular geometry getri.

Appendix B. Examples

Figure 7 shows the failed reconstruction of NODE1 with 5 hidden layers and 100 neurons
in each hidden layer. NODE1 cannot accurately reconstruct the overfall region and the
tailwater of the waterline. The course of the waterline in the tailwater region rises upward.

Figure 7: Failed reconstruction of NODE1. The waterline in the tailwater moves upwards.

Figure 7 shows the failed reconstruction of NODE6 with 30 hidden layers and 100
neurons in each hidden layer. NODE6 fails to reconstruct the overfall region and the
tailwater of the waterline. After the overfall the waterline follows an almost linear downward
trend.
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Figure 8: Failed reconstruction of NODE6. The waterline after the overfall moves down-
wards without reconstructing the tailwater region.

In Figure 9 the waterline shows failed accuracy in the overfall region when doing the
third experiment.

Figure 9: Prediction of the waterline of a circular weir geometry of FlowProp-Diverse. The
overfall region cannot be predicted accurately.

Appendix C. Derivation of the Discharge Coefficient

Given the classical discharge Equation (1) the total energy (Hs) is calculated using the
Bernoulli equation with k as the overfall height over the weir structure:

Hs =
v2s
2g

+ k (9)
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The discharge (Q) can be described by the continuity equation (Ferguson, 1986) with v as
the upstream averaged flow velocity and A the flow cross section as:

Q = vs ·A (10)

The flow cross section A is calculated from hs as the water level and b the width of the
cross sections:

A = b · hs (11)

Equation (10) can be combined with Equation (11) and solved for vs:

vs =
Q

b · hs
(12)

To finally determine the discharge coefficient cD, Equation (9) is substituted into Equa-
tion (1) and solved for cD. Equation (12) replaces the need to directly measure vs. This
results in the Equation (2).

To determine cD of a weir, we measure a reference free surface elevation (h0) at 3 × P
as described in Section 1, resulting in a reference point at 0.6 m. cD can then determined
by inserting h0 for hs in Equation (2).

Appendix D. Additional Dataset

Figure 10 shows six non-polygonal weirs that are part of the FlowProp-Diverse dataset. We
used this dataset to show that our approach can be applied to shapes that are outside the
distribution of the initial polygonal training samples.

Figure 10: Six additional weirs of the dataset FlowProp-Diverse. From left to right: Circle,
Ogee, Ellipsoid, Tilting Left, Hose and Tilting Right.

Appendix E. Model Architecture

E.1. Encoder encG

The encoder, denoted as encG, processes input images with 128×128 pixels. It employs three
convolutional layers with increasing filter sizes of 1, 16, 32, and 64, respectively, each with
a kernel size of 3×3. ReLU activation is applied after each convolutional layer to introduce
non-linearity. To downsample the feature map and emphasize important features such as
edges, we apply max pooling after each convolutional layer. Max pooling is particularly

16



Neural ODE for Flow Properties

effective in capturing the outer shape of weir geometries, which is crucial for this task. The
final layer is fully connected to compresses the extracted features into a representation of 8
neurons.

E.2. Neural Ordinary Differential Equations NODE

Our NODE model utilizes encG to process the images of the weir geometrics. The NODE
architecture includes an ODE component. This component is a neural network consisting
of an input layer, hidden layers, and an output layer. It has 20 hidden fully connected
layers, each with 100 neurons and an ELU activation function. It uses as ODE solver the
Runge-Kutta of order 5 of Dormand-Prince-Shampine. The NODE is trained with the
Adam optimizer and a learning rate of 1e − 3, which get reduced by a factor of 0.5 after
1, 000 epochs. The total trainable parameters are 347, 477.

E.3. Fully Connected Neural Network FC-NN

The FC-NN model employs encG for processing geometric shape images. Therefor, the
input dimension is 8. It consists of 20 hidden fully connected layers, each with 100 neurons,
followed by an ELU activation function with an total of 347, 277 trainable parameters. The
FC-NN is trained using the Adam optimizer with the default learning rate of 1e − 3 until
convergence.
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