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Abstract

Discontinuities and delayed terms are encountered in the governing equations of a large
class of problems ranging from physics and engineering to medicine and economics. These
systems cannot be properly modelled and simulated with standard Ordinary Differential
Equations (ODE), or data-driven approximations such as Neural Ordinary Differential
Equations (NODE). To circumvent this issue, latent variables are typically introduced to
solve the dynamics of the system in a higher dimensional space and obtain the solution as
a projection to the original space. However, this solution lacks physical interpretability.
In contrast, Delay Differential Equations (DDEs), and their data-driven approximated
counterparts, naturally appear as good candidates to characterize such systems. In this
work we revisit the recently proposed Neural DDE by introducing Neural State-Dependent
DDE (SDDDE), a general and flexible framework that can model multiple and state- and
time-dependent delays. We show that our method is competitive and outperforms other
continuous-class models on a wide variety of delayed dynamical systems. Code is available
at the repository here.

Keywords: Delay, Delay Differential Equations, Neural ODE/DDE, Physical Modelling,
Dynamical Systems, Continuous-depth models, DDE solver

1. Introduction

In many applications, one assumes the time-dependent system under consideration satisfies
a Markov property; that is, future states of the system are entirely defined from the current
state and are independent of the past. In this case, the system is satisfactorily described
by an ordinary or a partial differential equation. However, the property of Markovianity
is often only a first approximation to the true situation and a more realistic model would
include past states of the system. Describing such systems has fueled the extensive de-
velopment of the theory of delay differential equations (DDE) (Minorsky, 1942; Myshkis,
1949; Hale, 1963). This development has given rise to many practical applications: in the
modelling of molecular kinetics (Roussel, 1996) as well as for diffusion processes (Epstein,
1990), in physics for modeling semiconductor lasers (Vladimirov et al., 2004), in climate
research for describing the El Ninõ current (Ghil et al., 2008; Keane et al., 2019), infectious
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diseases (Cooper et al., 2020) and tsunami forecasting (Wu et al., 2022), to list only a few.

At the same time, the blooming of machine learning in recent years boosted the devel-
opment of new algorithms aimed at modelling and predicting the behaviour of dynamical
systems governing phenomena commonly found in a wide variety of fields. Among these
novel strategies, the introduction of Neural Ordinary Differential Equations (NODEs) (Chen
et al., 2018) has contributed to further deepening the analysis of continuous dynamical sys-
tems modelling based on neural networks. NODEs are a family of neural networks that
can be seen as the continuous extension of Residual Networks (He et al., 2016), where the
dynamics of a vector y(t) ∈ Rd at time t – hereafter often identified with the state of a
physical system – is given by the parameterized network fθ and the system’s initial condition
y0:

dy(t)

dt
= fθ(t,y(t)), y(0) = y0. (1)

NODEs have been successfully applied to various tasks, such as normalizing flows (Kelly
et al., 2020; Grathwohl et al., 2018), handling irregularly sampled time data (Rubanova
et al., 2019; Kidger et al., 2020), and image segmentation (Pinckaers and Litjens, 2019).

Starting from this groundbreaking work, numerous extensions of the NODE framework
enabled to widen the range of applications. Among them, Augmented NODEs (ANODEs)
(Dupont et al., 2019) were able to alleviate NODEs’ expressivity bottleneck by augmenting
the dimension of the space allowing the model to learn more complex functions using simpler
flows (Dupont et al., 2019). Let a(t) ∈ Rp denotes a point in the augmented space, the
ODE problem is formulated as

d

dt

[
y(t)
a(t)

]
= fθ

(
t,

[
y(t)
a(t)

])
,

[
y(0)
a(0)

]
=

[
y0

0

]
. (2)

By introducing this new variable a(t), ANODE overcomes the inability of NODE to rep-
resent particular classes of systems. However, this comes with the cost of augmenting
the data into a higher dimensional space, hence losing interpretability. Among the alter-
native techniques proposed for circumventing the limitations rising from the modelling of
non-Markovian systems, the Neural Laplace model (Holt et al., 2022) proposes a unified
framework that solves differential equations (DE): it learns DE solutions in the Laplace
domain. The Neural Laplace model cascades 3 steps: first, a network hγ encodes the tra-
jectory, then the so-called Laplace representation network gβ learns the dynamics in the
Laplace domain to finally map it back to the temporal domain with an inverse Laplace
transform (ILT). With the state y sampled T times at arbitrary time instants, hγ gives a
latent initial condition representation vector p ∈ RK :

p = hγ((y(t1), t1), . . . , (y(tT ), tT )), (3)

that is fed to the network gβ to get the Laplace transform

F(s) = v (gβ(p, u(s))) , (4)
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with u a stereographic projector and v its inverse. Ultimately, an ILT step is applied to
reconstruct state estimate ŷ from the learnt F(s).

As an alternative to the aforementioned techniques, one may directly address the DDE
problem by working within the framework of neural network-based DDEs. Despite the
success of the NODEs philosophy, the extension to DDEs has barely been studied yet,
possibly owing to the challenges of using general purpose DDE solvers. DDEs extend ODEs
by incorporating additional terms into their vector fields, which are states delayed by a
certain time τ . Recently, Zhu et al. (2021) introduced a neural network based DDE with
one single constant delay:

dy(t)

dt
= fθ(t,y(t),y(t− τ)), τ ∈ R+

y(t < 0) = ϕ(t),
(5)

where ϕ(t) is the system’s history function, τ a constant delay and fθ a parameterized
network. This work was next extended in the Neural Piece-Wise Constant Delays Differ-
ential Equations (NPCDDEs) model in Zhu et al. (2022). Compared to NODE and its
augmented counterpart, neural network-based DDEs do not require an augmentation to a
higher dimensional space in order to be a universal approximator, thus preserving physi-
cal interpretability of the state vector and allowing the identification of the time delays.
Nonetheless, the current variants of Neural DDE models only deals with a single constant
delay or several piece-wise constant delays, thus lacking the generalization to arbitrary de-
lays. Moreover, to the best of our knowledge, no machine learning library or open-sourced
code exists to model not only these very specific types of DDEs but also any generic DDEs.

In this work, we introduce Neural State-Dependent DDE (SDDDE) model: an open-
source, robust python DDE solver compatible with neural networks. Neural SDDDE is
based on a general framework that pushes the envelope of Neural DDEs by handling DDEs
with several delays in a more generic way. The implementation further encompasses general
time- and state-dependent delay systems which extends the reach of Zhu et al. (2022).

In the remainder of the paper, we briefly introduce the framework in Sec. 2. Implemen-
tation and methodologies are further discussed in Sec. 3. Experiments and comparisons
with the state-of-the-art techniques are detailed in Sec. 4, using as benchmark numerous
time-delayed models of incremental complexity. Our model is shown below to compare
favorably with the current models on DDEs systems. Conclusions and outlook finalize the
article in Sec. 5.

2. Neural State-Dependant DDEs

In this section, we introduce the Neural State-Dependent Delay Differential Equation (SD-
DDE) model, which is designed to accommodate various types of delays, including constant,
time-dependent, and state-dependent delays. However, it is important to emphasize that
this approach cannot handle delays that are continuous, meaning those expressed through
integrals, as typically found in integro-differential equations. The specific types of delays
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Table 1: Existing works that deal with DDEs. Our implementation deals with a wider
range of delays (g is a scalar-valued function)

Delay types τ ’s Definition Neural DDE NPCDDEs Neural Laplace Neural SDDDE

References - Zhu et al. (2021) Zhu et al. (2022) Holt et al. (2022) This work
Constant τ = a

√
×

√ √

Piece-wise constant τ =
⌊
t−a
a

⌋
a ×

√ √ √

Time-dependent τ = g(t) × ×
√ √

State-dependent τ = g(t, y(t)) × × ×
√

Continuous τ =
∫ t

0
g(s, y(s))ds × × × ×

that our model can accommodate are summarized in Table 1. This table provides a clear
overview of the capabilities of the SDDDE model regarding different delay types. A generic
Delay Differential Equation is described by:

dy(t)

dt
= fθ(t,y(t),y(t− τ1(t,y(t))), . . . ,y(t− τk(t,y(t))))

y(t < 0) = ϕ(t),
(6)

where ϕ : R− → Rd is the history function, τi : R × Rd → R+ a delay function and
fθ : [0, T ]×Rd × · · · ×Rd → Rd a parameterized network. In Appendix A, we provide more
general and detailed information on DDEs, how we integrate them and discuss memory and
time complexities for Neural SDDDE.

3. Methods

In the following, we discuss similarities, drawbacks and benefits of Neural SDDDE com-
pared with the following models: NODE, ANODE and Neural Laplace. We recall that
Neural SDDDE is a direct method for solving DDEs, specifically designed to handle de-
layed systems. This is not the case for ANODE where flexibility is obtained by introducing
a higher dimensional space. Lastly, Neural Laplace can solve a broader class of differential
equations, although with some limitations that we pinpoint in the following.

From the theoretical viewpoint, the Laplace transformation is often a tool used in proofs
on DDEs (Bellman and Cooke, 1963) since it allows to transform linear functional equa-
tions in f(y(t)) involving derivative and differences into linear equations involving only F(s).
Thus, time-dependent and constant delay DDEs are transformed into linear equations of
F(s) using the Laplace transform. This transformation enables Neural Laplace to bypass
the explicit definition of delays, whereas Neural SDDDE needs the delays to be specified un-
less the vector flow f and delays are learnt jointly. These observations tie Neural Laplace to
Neural SDDDE as they can be seen as similar models but living in different domains. How-
ever, a limitation of Laplace transformation-based approaches is that they are not defined
for DDEs with state-dependent delays, thus restricting the class of time-delayed equations
that one can solve with this technique.
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Neural Laplace is a model that needs memory initialized latent variables, i.e., a long
portion of the solution trajectory needs to be fed in order to get a reasonable representation
of the latent variable. In contrast, by design, NODE and ANODE require information only
at the initial time to predict the system dynamics. From this viewpoint, Neural SDDDE lies
between these two frameworks as it requires a history function ϕ(t) to be provided for t ∈
[−τmax, 0], where τmax is the maximum delay encountered during integration. This is more
demanding than solely relying on an initial condition y(0) but far less than memory-based
latent variables methods. Moreover, the training and testing schemes for Neural Laplace is
constrained by this very same observation since future events can only be predicted after
a certain observation time. This also makes the length of the trajectory to feed to Neural
Laplace a hyperparameter to tune. This is not the case with NODE, ANODE and our
approach.

4. Experiments

We evaluate and compare the Neural SDDDE on several dynamical systems (time, state-
dependent and constant delays) listed below coming from biology and population dynam-
ics. We show that Neural SDDDE outperforms a variety of continuous-depth models and
demonstrates its capabilities in simulating delayed systems. For all the systems listed in
this section, data generation information is gathered in Appendix C.

4.1. Description of the test cases

Time-dependent delay system Here, we study a time-dependent delayed logistic equa-
tion (Arino et al., 2006):

dy(t)

dt
= y(t)

[
1− y(t− τ(t))

]
, (7)

with τ(t) = 2+sin(t). We integrate in the time range [0, 20] and define the constant history
function ϕ(t) = x0, where x0 is sampled uniformly from [0.1, 2.0].

State-dependent time-delay system In this example, we consider the 1-D state-dependent
Mackey Glass system from Dads et al. (2022) with a state-dependent delay:

dy(t)

dt
= −α(t)y(t) + β(t)

y2(t− τ(y))

1 + y2(t− τ(y))
+ γ(t) (8)

with α(t) = 4 + sin(t) + sin(
√
2t) + 1

1+t2
, β(t) = γ(t) = sin(t) + sin(

√
2t) + 1

1+t2
and

τ(y) = 1
2 cos(y(t)). The model is defined on the time range [0, 10] and the constant history

function is ϕ(t) = x0 with x0 sampled uniformly from [0.1, 1].

Delayed Diffusion Equation Finally, we choose the delayed PDE taken from Arino
et al. (2009). Such dynamics can for example model single species growth in a food-limited
environment.

∂u

∂t
(x, t) = D

∂2u

∂x2
(x, t) + ru(x, t) (1− u(x, t− τ)) , (9)

where D = 0.01, r = 0.9 and τ = 2. We integrate in the time range [0, 4], the spatial
domain is Dx = [0, 1] with periodic boundary conditions and define the history function

5



Monsel Semeraro Mathelin Charpiat

ϕ(x, t) = a sin(x)e−0.01t where a is uniformly sampled from [0.1, 4.0]. The spatial domain is
discretized with a uniform grid of resolution ∆x = 0.01.

4.2. Evaluation

We assess the performance of the models with their ability to predict future states of a
given system. The metric used is the mean square error (MSE) in all cases. Neural Laplace
predicts only after a burn-in time since a part of the observed trajectory is used to learn a
latent initial condition vector p. Since NODE, ANODE and Neural SDDDE can be seen as
initial value problems (IVPs) we produce trajectories from initial conditions and compute
the MSE with respect to the whole trajectory. On each DDE system, to assess the quality
of each model, we elaborate additional experiments alongside with the test set predictions
that can be found in Appendix D.

As a reminder, to produce outputs, NODE and ANODE need an initial condition, Neural
SDDDE the history function and Neural Laplace a portion of the trajectory. To ensure a
fair comparison in our experiments, we opt to give Neural Laplace the same information as
Neural SDDDE, specifically the history function. For one of the models presented above,
the Neural Laplace method is given a much larger chunk of the trajectory, in accordance
with what its authors were considering.

4.3. Results

Test errors for each dynamical system are reported in Table 2. Complementary information
are included in the Appendix B for what concerns the training process; model and training
hyperparameters.

Time Dependent DDE State-Dependent DDE Delay Diffusion

NODE .72± .086 .0355± .00064 .0029± .0014
ANODE .00962± .00368 .00011± .000071 .00087± .00035
Neural Laplace .00191± .0006 .00049± .00078 .00064± .00016
Neural SDDDE .000989± .00017 .0000215± .00001 .00075± .00019

Table 2: Test MSE averaged over 5 runs (random model initialization seed) of each experi-
ment with their standard deviation. Best result bolded.

Testset prediction Neural SDDDE almost consistently outperforms all other models
across the DDE systems discussed in Section 4, as demonstrated in Figures 1, 2, 3, and
4. Neural Laplace appears to suffer from the Runge phenomenon (such a phenomenon
is a problem of oscillation at the edges of an interval that occurs when using polynomial
interpolation with polynomials of high degree over a set of equispaced interpolation points),
particularly evident in the State-Dependent DDE (Figure 2). This issue likely stems from
the ILT algorithm providing too few query points. As expected, Neural ODE is the most
limited model, generally predicting only the mean trajectory of the dynamical systems being
considered. ANODE yields satisfactory results, with the exception of the Time Dependent
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Figure 1: Time Dependent DDE ran-
domly sampled test trajectory plots

Figure 2: State Dependent DDE ran-
domly sampled test trajectory plots

Figure 3: Diffusion Delay PDE randomly sampled from the testset

Figure 4: Absolute error of Diffusion Delay PDE randomly sampled from the testset

DDE (Figure 1). For the Diffusion Delay PDE, all models predict the PDE’s evolution with
an absolute error reaching up to 10−2, as shown in Figure 3. The absolute error, depicted in
Figure 4, illustrates the discrepancies between the models. Neural Laplace produces more
errors across the entire spatial domain for given time steps, while IVP models have errors
localized in specific spatial regions.

Increasing trajectory fed for Neural Laplace Instead of providing the same history as
for Neural SDDDE, Neural Laplace is now provided 50% of the trajectory to build its latent
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initial condition representation vector p. To that purpose, the first half of the trajectory
is used in Neural Laplace to predict the second half. We choose to train the model on the
Time Dependent DDE along with the same training procedure (see Appendix B). Provided
the test MSE of Table 2, we choose to only compare the test MSE of Neural SDDDE and
Neural Laplace in Table 3. By comparing Figure 5 and 1 one can clearly note that the
Runge phenomenon is almost absent and predictions are almost as good as Neural SDDDE.
This confirms that, in general, Neural Laplace needs more than the history function in order
to correctly simulate DDEs.

Figure 5: Time-dependent DDE randomly
sampled testset trajectories where 50% of
data is fed to Neural Laplace

Test MSE
Neural Laplace .00125± .000798
Neural SDDDE .000989± .00017

Table 3: Time Dependent test MSE av-
eraged over 5 runs with their standard
deviation. Best result bolded.

5. Conclusion and Future Work

In this paper, we introduced Neural State-Dependent Delays Differential Equations (Neural
SDDDE) capable of solving DDEs with any type of delays via neural networks. This open-
source, robust python DDE solver compatible with neural networks pushes the current
envelope of Neural DDEs by handling the delays in a more generic way. To the best of our
knowledge, no machine learning library or open-sourced code is available to model such a
large class of DDEs.

To validate the effectiveness of Neural SDDDE, we conducted a series of benchmark
tests, comparing it against NODEs, the augmented version ANODE, and Neural Laplace.
These numerical experiments covered a diverse range of models, including time- and state-
dependent scenarios, as well as a delayed Partial Differential Equation (PDE). Our findings
revealed that Neural SDDDE accurately reproduced the dynamics across all scenarios tested.
Furthermore, Neural SDDDE demonstrated superior performance in terms of accuracy and
reliability when compared to the other established methods.

We believe this flexible and versatile tool may provide a valuable contribution to sev-
eral fields such as control theory where time-delay are often considered. In particular, it
may prove useful in learning a model for partially observed systems whose dynamics of
observables can be learned, under mild conditions, from their time-history.
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Appendix A. Overview in DDE integration

This Appendix section is a self-contained introduction on DDE integration.

A.1. Definition

We recall the definition: a delay differential equation (DDE) is defined by

dy(t)

dt
= fθ(t,y(t),y(t− τ1), . . . ,y(t− τk))

τi = τi(t,y(t)), ∀i ∈ {1, 2, . . . , k}
y(t < 0) = ϕ(t),

(10)

where ϕ : R− → Rd is the history function, τi : R × Rd → R a delay function and
fθ : [0, T ]

k × Rd → Rd can be a parameterized network.

Some problems can arise in DDEs that can cause numerical difficulties. First, breaking
points may occur in various derivatives of the solution y. Second, a delay may vanish, i.e.,
τi → 0. The first difficulty is due to the presence of delays terms. In general, DDEs possess
a derivative jump (or discontinuity, breaking point) at the initial time point t = 0 because

ϕ′(t = 0−) ̸= y′(t = 0+)

Moreover, the history function ϕ may also have discontinuities too. Discontinuities can
then arise and propagate from the history function and initial point in y or its higher
derivatives (Zivari-Piran and Enright, 2010). The second issue may force the solver to take
too many small steps. Zivari-Piran and Enright (2010) transforms the DDE problem into a
discontinuous initial value problem (IVP). Alike ODEs, existence and uniqueness theorems
for DDEs are based on the continuity of the functions with respect to t and Lispchitz
continuity with respect to y and its delayed counterparts y(t− τ(t,y)). For constant, time-
dependent and state-dependent delays, these problems have been widely investigated by
Bellman and Cooke (1963); Balachandran (1989); Driver (1962) and Hale (2006).

A.2. Example sketch of integrating a simple DDE

Let us consider a first order DDE with a constant time delay τ and a constant history
function ϕ(t) = y0. In the most general case, we have our first discontinuity at t = 0 since
ϕ′(t = 0−) ̸= y′(t = 0+), so we need to be careful on integration on these derivative jumps.

dy(t)

dt
= f(t,y(t),y(t− τ)), with y(t < 0) = y0 (11)

On the time interval t ∈]0; τ [ there are no discontinuities and the DDE becomes

dy(t)

dt
= f(t,y(t),y0), with y(0) = y0

This formulation problem reshapes the DDE problem into an ODE one that we know
how to solve with ease. Let us introduce the interpolated function ϕ1(t) to be the solution

12



Time and State Dependent Neural Delay Differential Equations

of the DDE of Equation 11 on the interval ]0; τ [.

On the time interval t ∈]τ ; 2τ [ there are no discontinuities and the DDE becomes

dy(t)

dt
= f(t,y(t), ϕ1(t)), with y(τ) = ϕ1(τ)

Once again we have an ODE on this interval. Iteratively, we can solve the DDE on
successive intervals and this will yield a piecewise continuous solution because of the initial
point discontinuity.

One might have noticed that during an integration step, we need the interpolated func-
tion of y(t − τ). This means that the DDE method is based on the continuous extensions
of numerical ODE schemes.

A.3. Discontinuity tracking

In the general case, discontinuity that arise from the delay terms are not known a priori
unless we are dealing with constant delays (Shampine and Thompson, 2012). During each
integration step of our DDE, one must check for discontinuities by checking the roots of the
following functions gis (Zivari-Piran and Enright, 2010). Let us stipulate that we integrate
from tn to tn+1 and the previous detected discontinuities are {λ−m, . . . , λ0, . . . , λr−1} where
the first m+ 1 jumps {λ−m, . . . , λ0} are given by the history function and the initial point
and the rest were found during previous integration steps. Let

∀(i, s) ∈ [0, . . . , r]× [−m, . . . , r − 1], gis(t) = t− τi − λs (12)

The new discontinuity λr is defined as

λr = min{λ > λr−1, λ is a root of odd multiplicity of gis(t)} (13)

If λr is null then the integration step is valid otherwise you redo one from tn to λr. A
detailed algorithm procedure is given in Zivari-Piran and Enright (2010).

The first to do such an iterative process to find the discontinuities λr and modify the
integration step bounds is Paul (1993). An alternative approach relies on stepsize control
was proposed by Oberle and Pesch (1981) and Neves (1975). These methods, give up on
tracking the discontinuities, which are instead assumed to be automatically included by
estimating the error of the integration step. A rejected step will result in a detection of a
discontinuity jump and this is the default implementation done in Julia DelayDiffEq pack-
age (Widmann and Rackauckas, 2022).

For an ODEmethod of order p, we usually ask the solution to be at least Cp+1 continuous.
Therefore, to have a successful integration, it is crucial to include in the mesh of points all
of the discontinuity of y(k) at least for k ≤ p+1. Consequently, discontinuity tracking needs
to abide by these rules.

13
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A.4. Unconstrained time stepping

Regardless of the method chosen to integrate a DDE; relying on the error estimate of the
stepsize method or tracking the breaking points, being able to take arbitrarily large steps
that are suggested by the numerical solver is a nice to have. This means that sometimes the
formulation of our problem becomes implicit because our approximation solution y applied
to all delays terms in our integration step is simply not yet known. This makes the overall
method implicit even if the discrete method we are using is explicit. We call this occurence
overlapping, Zivari-Piran and Enright (2010) shows that the issue at hand is well defined
and solvable for time and state dependent delays. Let us briefly describe the algorithmic
procedure when we are dealing with overlapping (ie tn+1 − tn > τ). Given equation 11 and
an integration step from tn to tn+1. y(t− τ) is at the very best partially known and need to
be extrapolated to get an good approximation of y(tn+1). The following actions are taken :

• Choose an initial guess for the interpolant Πn of y(t− τ) in [tn; tn+1].
• Compute the solution y(tn+1) using the interpolant Πn and by stepping the solver
• Update the interpolant Πn using the computed solution
• End if the interpolant has converged

The initial guess is usually the extrapolation of the interpolant of the previous step and
the end criterion of convergence can vary across cases.

A.5. Pseudo code for DDE solver

Following the detailed explanation of the challenges posed by DDE, we present the pseudo
code of the DDE solver implemented by Zivari-Piran and Enright (2010) that is detailed in
Algorithm 1, where the general outline of one integration step of a DDE is shown; the DDE
solver is illustrated in Algorithm 2. For sake of simplicity, we suppose for the pseudo code
a single time delay DDE since the general case does not differ from it.

14
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Algorithm 1 Pseudo code for one DDE numerical integration step

1: Input:
Vector field f(t,y,y(t− τ))
Integration bound tn, tn+1

Interpolated estimated solution ŷ(t) in [t0; tn]
Set of detected discontinuities Λ = {λ−m, . . . , λ0, . . . , λr−1}.

2: if tn+1 − tn > min(Λ) then
3: Declare the interpolant Πn = ŷ of y(t− τ) in [tn; tn+1]
4: while the interpolant Πn has not converged do
5: Define fODE(t,y) = f(t,y,Πn(t))
6: Step the solver y(tn+1) = ODESolve(fODE, tn, tn+1, ŷ(tn))
7: Update Πn using the computed solution y(tn+1).
8: end while
9: else

10: Define fODE(t,y) = f(t,y, ŷ(t− τ))
11: Step the solver y(tn+1) = ODESolve(fODE, tn, tn+1, ŷ(tn))
12: end if
13: Determine next time step tnext from solver
14: if step is accepted then
15: Return updated ŷ(t), next integration bounds tn+1, tnext and Λ.
16: else
17: Check for discontinuities in [tn; tn+1] i.e
18: λr = min{λ > λr−1 : λ is a root of odd multiplicity of gi(t, y(t)), i ≤ r − 1 }
19: where gi(t,y(t)) = t− τ(t,y(t))− λi

20: if a discontinuity is found, λr+1 then
21: Return same ŷ(t), next integration bounds tn, λr+1 and Λ ∪ {λr} .
22: else
23: Return same ŷ(t), next integration bounds tn, tnext and Λ.
24: end if
25: end if
26: Output:

Interpolated estimated solution
Next integration bounds
Updated set of discontinuities
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Algorithm 2 Pseudo code for DDE solver

1: Input:
Vector field f(t,y,y(t− τ))
Integration bound t0, tF
History function ϕ(t)
Set of history function’s discontinuities Λ = {λ−m, . . . , λ0}.

2: Choose an initial dt
3: Declare tn = t0, tn+1 = t0 + dt
4: Declare interpolated estimated solution ŷ(t) = ϕ(t) for t < t0
5: repeat
6: Algorithm 1
7: until tn+1 = tF

A.6. Memory and computational complexity

Neural SDDDEs rely on an ODE solver, thus function evaluations are associated with the
same computational cost as NODEs. However, Neural SDDDE has some extra constraints
making the method more computationally involved. Hereafter, we compare the complexity
of these two schemes; we define S as the number of stages in the Runge-Kutta (RK) scheme
used for the time-integration, N the total number of integration steps, and d the state’s
dimension.

Memory complexity DDE integration necessitates keeping a record of all previous states
in memory due to the presence of delayed terms. This is because at any given time t, the
DDE solver must be able to accurately determine y(t−τ) through interpolation of the stored
state history. This extra amount of extra memory needed depends on the solver used. For
example, the additional memory required when using a RK solver for one trajectory is
O(SNd). The model’s memory footprint is not affected by the number of delays.

Time complexity In comparison to NODE, the solution estimate ŷ needs to be evaluated
for each delayed state argument, i.e., y(t − τi). The cost of evaluating the interpolant is
small compared to the cost of computing its coefficients. Similarly, the time complexity is
conditioned by the solver used. For example, for a RK scheme, the coefficient computation
scales linearly with the number of stages. Hence, Neural SDDDE adds a time cost O(SD d)
compared to NODE for each vector field function evaluation.

Appendix B. Training information

Table 4 sums up the MLP architecture of each IVP model (i.e., NODE, ANODE and
Neural SDDDE) for each dynamical system. ANODE has an arbitrary augmented state of
dimension 10 except for the PDE that has 100. Neural Laplace’s architecture is the default
one taken from the official implementation for all systems. The learning rate and the number
of epochs are the same for all models. The optimizer used is AdaBelief (Zhuang et al.,
2020). Table 5 gives the number of parameters for each model. In all of our experiments,
we used the Dopri5 solver across all of our models.
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Width Depth Activation Epochs lr
Time Dependent DDE 64 3 relu 2000 .001
State Dependent DDE 64 3 relu 1000 .001
Diffusion PDE DDE 128 3 relu 500 .0001

Table 4: Model and training hyperparameters

NODE ANODE Neural DDE Neural Laplace
Time Dependent DDE 8513 9815 8578 17194
State Dependent DDE 8513 9815 8642 17194
Diffusion PDE DDE 58852 84552 71653 17194

Table 5: Number of parameters for each DDE system

Appendix C. Data generation parameters

We expose in Table 6 the parameters used for each dataset generation. The start integration
time is always T0 = 0. TF refers to the end time integration. NUM_STEPS equally spaced
points are sampled in [T0, TF ]. The specific delays DELAYS and the constant history function
ϕ(t) function domain are given. Each training dataset is comprised of 256 datapoints and
the testset of 32 datapoints. We used our own DDE solver to generate the data (Dopri5
solver (Dormand and Prince, 1980) was used.). We then double-checked and compared its
validity with Julia’s DDE solver. U refers to the uniform distribution. For example, Time
Dependent DDE’s constant history function value is uniformly sampled between 0.1 and
2.0. For the Diffusion Delay PDE the history function value in the column ϕ(t) refers to
the constant a defined in Section 4.

TF num steps delays ϕ(t)
Time Dependent DDE 20.0 200 2 sin(t) U(0.1, 2.0)
State Dependent DDE 10.0 150 0.5 cos(y(t)) U(0.1, 1.0)
Diffusion PDE DDE 4.0 100 1.0 U(0.1, 4.0)

Table 6: Dataset generation information
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Appendix D. Additional Experimentation

Hereafter, we discuss about the supplementary experiments undertaken to assess the mod-
els’ quality. In the initial supplementary experiment, we alter the history function ϕ(t)
which results in modified system behavior, thereby creating new trajectories for section
4’s dynamical systems. This first experiment places each model into a pure extrapolation
regime; the constant value of the history function ϕ(t) = y0 is sampled outside the range of
the training and testing data. This allows to see the models’ extrapolation capabilities. The
second experiment is more a hybrid approach where the history function is a step function:

ϕ(t) =

{
y0 t ≤ tjump

y1 otherwise

tjump ∼ U(−τmax, 0), y0,y1 ∼ U(c0, c1)

where tjump is the largest delay in the system and c0, c1 are system specific randomly
sampled values (see Appendix E for more details). Not only can the nature of the history
step function change but can also have its domain function outside of the training and test
data (extrapolation regime).

Figure 6: Time Dependent DDE ran-
domly sampled extrapolated trajectory
plots

Figure 7: State Dependent DDE ran-
domly sampled extrapolated trajectory
plots

Extrapolation regime prediction This experiment really challenges model generaliza-
tion capabilities. Overall, on certain datasets, some models can extrapolate with new con-
stant history functions that are not too far out from the function domain of history functions
used during training; more in details, trajectories were generated with ϕ(t) = x0 ∈ [a, b]:
some models are able to exhibit adequate predictions for history functions that have a value
near the bounds of [a, b]. For the Time Dependent system (Figure 6), Neural SDDDE yields
better results compared to the other models. NODE produces the trajectory’s mean field
while ANODE captures the dynamics main trend but with amplitude discrepancies. For
the State-Dependent DDE (Figure 7), Neural SDDDE once again efficiently captures the
dynamics while the other models fail. For the Diffusion Delay PDE displayed in Figure 8
& 9, overfitting is observed for Neural Laplace. Out of all the IVP models, Neural SDDDE
predicts the best possible outcome compared to NODE and ANODE.

Step history function prediction This third appendix experiment also demonstrates
how the modification of the history function leads to changes in the transient regime and

18



Time and State Dependent Neural Delay Differential Equations

Figure 8: Diffusion Delay PDE randomly sampled from the extrapolated testset

Figure 9: Absolute error of Diffusion Delay PDE randomly sampled from the extrapolated
testset

impacts later dynamics. Neural Laplace fails to generate adequate trajectories for the Time-
dependent DDE system (Figure 10) and the State-Dependent DDE (Figure 11). NODE and
ANODE do not generalize well compared to Neural SDDDE that accurately predicts the
dynamics. By studying the effect of such a new history function on the Diffusion Delay PDE,
we saw that the system’s dynamics is not changed substantially, therefore, we decided to
omit this system’s comparison.

Figure 10: Time Dependent DDE ran-
domly sampled from history step function

Figure 11: State Dependent DDE ran-
domly sampled from history step function
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Noise analysis Finally, we also conduct a noise study on one of the datasets, the Time
Dependent DDE system. Each data point is added Gaussian noise that is scaled with a
certain factor α of the trajectory’s variance. The model is then trained with this noisy data
and evaluated on the noiseless testset. In our experiment, we selected 4 scaling factors α:
0.02, 0.05, 0.1 and 0.2. Results in Table 7 show that our model is robust to noisy data and
almost consistently outperforms other models. Additionally, results from Table 7 show that
adding a small amount of noise (here α = 0.02) makes the learning process more robust, a
common result in Machine Learning (Morales et al., 2007; You et al., 2019).

NODE ANODE Neural Laplace Neural SDDDE

α = 0 1.01± .435 .00729± .00235 .0014± .00046 .00148± .000872
α = 0.02 .720± .00254 .0128± .002377 .00881± .00254 .000906± .000441
α = 0.05 4.032± 4.225 .03655± .0349 .00977± .00146 .00250± .000951
α = 0.1 1.597± 1.100 .0223± .00634 .0154± .00501 .0121± .00534
α = 0.2 1.02± .282 .0321± .00319 .0273± .00704 .0186± .00524

Table 7: Test MSE with the noiseless data averaged over 5 runs of each Time Dependent
DDE noise experiments with their standard deviation. Best result bolded.

Appendix E. Additional Experiment hyperparameters

In table 8 we give the parameters used for each experiment. Extrapolated ϕ(t) indicates
the possible value of the constant history function (first appendix experiment). τmax and
c0, c1 are described in appendix D (second appendix experiment). For the Diffusion Delay
PDE, as stated in appendix D, the other history step function is omitted.

Extrapolated ϕ(t) τmax c0 c1
Time Dependent DDE U(2.0, 3.0) 3.0 0.1 3.0
State Dependent DDE U(−1.0, 0.1) 1/2 −1.0 1.0

Table 8: System specific values for each testing experiment
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