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Abstract

The purpose of this study is to provide an effective approach to model design for transverse
vibrations of the actuated cantilever beam under the regime of non-linear loads, based
on available measurement data. The idea is to decompose whole system into a serial
connection of a static non-linear subsystem representing electromagnetic actuation with
inherent built-in magnetic hysteresis and a non-linear dynamic subsystem approximating
the spatio-temporal dynamics of the vibrating beam. Then, both components can be
independently modeled in terms of dedicated neural networks: feedforward network with
augmented inputs providing the information on the signal gradient for the first subsystem
and the multimodel neural ensemble with dedicated data fusion rule for the latter. This
provides great flexibility in model design, leading to a very high accuracy of system state
estimation. The decided advantage of this data-driven machine learning scheme is that
incomplete knowledge of the physical model can be efficiently recovered or exchanged with
the properly gathered information from input-output measurements. A physically relevant
real-world application is given to illustrate the potential of the new design in the form of
dynamic displacement modeling for an actuated vibrating beam system.

Keywords: neural modeling, spatio-temporal system, nonlinear dynamics

1. Introduction

Beams and cantilever beams are the main elements of structures used in different engineer-
ing applications, e.g. machine tools, civil constructions, micro-electro-mechanical systems,
automotive and aerospace structures, robot manipulators (Li et al., 2022; Patan et al.,
2019; Zarfam and Khaloo, 2012). The beams are subjected to static and dynamic loads,
vibrations, and material fatigue. In order to guarantee safety and system performance it is
necessary to analyze the beam dynamics, i.e. to obtain a spatial model of the beam.

The flexible cantilever beam is an example of a distributed-parameter system (DPS) with
an infinite number of states. Its dynamics generally are represented by non-linear partial
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differential equations (PDEs). Popular procedures for obtaining spatial models of DPS are
modal (Kermani, 2010) and finite-element (FE) analyses (Andreaus et al., 2007). However,
these approaches require detaile physical description of sensors, actuators, and mechanical
system itself. Modal analysis requires to solve descriptive PDEs. This requirement is
removed in the case of FE analysis, however, information about material properties as
well as boundary conditions is still needed (Fleming and Moheimani, 2003). Nowadays, a
new paradigm in modeling real-world engineering systems is data-driven modeling (DDM).
Prospect of not being restrained by highly complex models or an incomplete understanding
of the physics of systems creates a very attractive alternative for practitioners, which leads
to the rapid development of data-driven methods, especially neural networks. These can be
used effectively in many engineering areas to design the input-output relations of industrial
systems and plants using historical observations (Haykin, 2009). Given sufficient data, it
is possible to discover previously unknown physics or/and to cope with high-dimensional
problems. DDM can provide faster or computationally cheaper simulations for parameter
or state estimation. However, some challenges remain. In the work of Raissi et al. (2019)
proposed physics-informed neural networks (PINNs) that combine physical knowledge and
data-driven models may not always achieve satisfactory accuracy. Moreover, PINN still
requires a physical description of the system. A somewhat different application of neural
networks was proposed by Aquilar and co-workers (Aguilar-Leal et al., 2016). Imitating
the meshing procedure according to the idea of the FE method, finite-element method
differential neural network. Although the developed model of the spatial structure may
be very accurate, network inherits the large scale of the initial spatial mesh. Another
alternative, but with state-space neural networks, was used in Patan and Patan (2022)
giving the possibility to dramatically reduce size of the mesh while maintaining modeling
accuracy. In this case, DPS is represented by several lumped-parameter neural models.

This research provides a full DDM for systems belonging to the specific class of non-
linear DPSs with particular application to actuated vibrating beam. The idea is to treat
the physics of the plant, actuation, and measurement transducers as components of the
whole system, which can be efficiently reconstructed from informative measurement data.
The whole system is decomposed into a serial connection of a static non-linear subsystem
representing electromagnetic hysteresis-type actuation, a dynamic subsystem approximat-
ing the non-linear dynamics of the vibrating beam, and noisy measurements. Then, all the
components can be independently modeled and numerically treated in terms of dedicated
neural networks. Especially, a dedicated neural model ensemble reconstructing highly com-
plex plant dynamics provides great flexibility of model design, up to high accuracy of state
estimation.

Classical way to deal with magnetic material hysteresis is to use the Preisach model
(Adly and Abd-El-Hafiz, 1998). However, often the question is as to what experimental
data should be used for identification to provide the best hysteresis approximation possible.
Neural network modeling can answer this question. In the work Adly and Abd-El-Hafiz
(1998), a feedforward network was used to represent the hysteresis of a magnetic tape.
Proposed approach still requires elementary hysteresis operators to excite the network.
Another approach was suggested in Makaveev et al. (2001), with feedforward neural network
representing relation between magnetic field and magnetic induction. However, the method
requires using both extreme magnetic field and induction values, as well as a parameter
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distinguishing between the virgin curve and hysteresis branch. In this work we apply a very
simple approach to represent hysteresis observed in the electromagnetic actuators using
same feedforward structure, with two inputs only: the voltage on the electromagnet coil
and its changes in subsequent time instances.

2. Vibrating beam laboratory stand

A vibrating beam system (shown in Figure 1) is a laboratory stand invented by Inteco Sp. z.o.o
(http://www.inteco.com.pl) to experimentally examine the displacements and vibrations
observed in mechanical constructions and large structures subjected to forces and moments.
Stand renders it possible to learn about measurements of vibrations, as well as to derive
controls for suppressing them. System consists of a thin flat ferromagnetic elastic beam and
four electromagnetic actuators. To measure the deformation of the beam, laser distance
sensor is applied. Actuators can be set manually on the dedicated rail. The distance sensor
is mounted on a moving cart on its rail, driven by a servomotor. The system is controlled via
RT-DAC PCI I/O board, connected to PC computer and cooperates with Matlab/Simulink
software. Signals available for measurements are the voltage at the electromagnet coil [V],
the current in the electromagnet coils [A], and the displacement of the vibrating beam [mm].
The control signals are the excitation of the electromagnets [V] and the position of the cart
[mm]. The beam is clamped at one end and free at another. The vibrating beam is an ex-
ample of a distributed-parameter system, whose transverse displacement dynamics d(x, t)
can be mathematically represented by the Euler-Lagrange temporal biharmonic equation:

ρ
∂2d(x, t)

∂t2
+ κ∇4d(x, t) = p(x, t), (1)

x is spatial point at the time instant t, ρ stands for mass density per unit area and κ denotes
the elasticity coefficient. A detailed description of the considered class of DPS can be found
in Polyanin (2002); Patan et al. (2019).

External excitation acting on the beam is represented by p(x, t). This excitation is
produced by a set of Nact electromagnetic actuators. Since the magnetic field propagates
non-linearly in space and additionally the material of the beam becomes magnetized, the
specific form of p(x, t) is complex and difficult to express in terms of the physical effects
involved. In addition, each electromagnetic actuator can be described in the form of a
non-linear relation f(·) between control signal u(t) and current flowing in the magnet coil
i(t). The current flowing in the actuator generates a magnetic field that acts on the beam
via g(·), a non-linear mapping, as follows:

ij(t) = f(uj(t)) for j = 1, . . . , Nact (2)

p(x, t) =

Nact∑
j=1

g(x, ij(t)) (3)

The closed-form of the non-linear function would be hard to express in terms of physics
and construction of the actuator device, but due to its magnetic properties, f(·) should
represent a hysteresis curve.
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The modeling objective is to design two models representing the static non-linearity
Equation (2) and dynamic non-linearity Equation (1) simultaneously coping with noisy
observations of system state.

2.1. Data acquisition

To design a high-quality model, system input data should be permanently exciting, ensuring
coverage of wide range of operating conditions. Three types of excitation were proposed:

• a chirp signal with frequency range 0.05 Hz to 1 Hz, decreasing in amplitude. Two
scenarios are considered, (a) decrease from 2.15 to 1 and (b) and from 3.6 to 1.85,

• ramp signals with different slopes and the amplitude from the range [−2.25, 2.25],

• random steps with the amplitude selected from the range [−2.25, 2.25].

The chirp signal as well as random steps are frequently used to permanently excite the
system (Norgaard et al., 2000; Soderstorm and Stoica, 1989). In turn, in addition to the
chirp signal, the ramp signal is used here to represent the follow-up properties of the system.

It should be emphasized that the input data were appropriately selected in such a way
as to extract the deformation characteristics of the beam. The frequency of the input signal
should not be too high as it can produce vibrations in the beam. Moreover, due to the
characteristics of the electromagnetic actuator, one can observe that for signals with larger
frequencies and relatively high amplitude, the beam can ’stick’ to the actuator, producing
a displacement equal to zero. Such situations should be avoided. A selected portion of the
data is illustrated in Figure 2(a).

3. Data-driven modeling

The whole system can be viewed as a static non-linear subsystem representing an electro-
magnetic actuator and a non-linear dynamic subsystem describing the beam itself connected
in series. Taking into account the system specificity, two neural network models are applied
here: a feedforward neural network and a recurrent one.

3.1. Non-linear static subsystem

If we want to use a data-driven approach to develop a model as presented in Equation (2)
only available measurement data can be used. In general, the non-linear relation between
u(k) and i(k) is in the form of a hysteresis. In this work, we propose to use a static
feedforward neural network to find the relation Equation (2). In order to properly recon-
struct the hysteresis we need to take into account the change of the input in the subse-
quent time instances, i.e., if the voltage is increasing or decreasing. Eventually, network
input space consists of two components: the control signal u(t) and the control change
∆u(k) = u(k)− u(k − 1), and the neural network model can be represented as follows:

î(k) = V Mσ(V M−1σ(. . . σ(V 1ū(t)))), (4)

where ū(k) = [u(k)∆u(k)]T, V j , j = 1, . . . ,M are weight matrices of the appropriate size,
M is the number of hidden layers, and σ(·) represents the non-linear activation function.
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The model Equation (4) is shown in Figure 3(a). It is a first-order lag external memory
neural network model (Norgaard et al., 2000; Patan, 2019).

3.2. Non-linear dynamic subsystem

For the sake of simplicity of the considerations presented here, it is assumed that the
vibrating beam is excited by one actuator only and the beam displacement is measured
point-wise. Then, the model has one input (the estimation of an actuator current) and
one output (the beam displacement). Such an assumption renders it possible to model the
system using a lumped-parameter model. Taking into account highly non-linear dynamic
properties of the vibrating beam, a recurrent neural network was used in this context:

x(k) = σ(W xx(k − 1) +W uî(k) +Bx),

ŷ(k) = W yx(k) +By,
(5)

where x(k) ∈ Rv×1, î(k) ∈ R1, and ŷ(k) ∈ R1 are the state vector, estimated input and
the estimated displacement, respectively, W x ∈ Rv×v is state weight matrix, W u ∈ Rv×1

stands for the input weight matrix, W y ∈ R1×v represents the output weight matrix,
Bx ∈ Rv×1 and By ∈ R1 are bias weights of the state and output layers, respectively,
and v is the number of hidden neurons (the model order). Finally, σ(·) is the non-linear
activation function. Unfortunately, the series of preliminary experiments conducted on
system dynamics demonstrated a varying behavior under different excitations.

From these impediments directly stems a motivation to search for a more sophisticated
and flexible solution. As a possible remedy, we applied the concept of multimodel design,
where the purpose of each model was to accurately catch the dynamics of the vibrating beam
for a specific behavior represented by a particular subset of measurement data. The idea
follows the so-called ensemble learning methods, where from among a significant diversity of
partial models it is possible to build an aggregate model of high quality covering the whole
dynamics of the system. In this spirit, the entire available data is split into several subsets
taking into account a frequency range, type of excitation, or even input signal amplitude.
If we assume data division into N subsets, our goal is to construct N models of the form
Equation (5). To this end, the idea is quite common in engineering practice (Haykin, 2009).

However, the main problem when dealing with many models is to propose a method
for the model output augmentation. The common approach is to generate the final model
output as a mean value of outputs of the candidate models (Haykin, 2009; Patan and Patan,
2023). Unfortunately, such a data fusion rule is problematic in cases when candidate models
have poor generalization abilities and perform poorly for data unseen before.

In this paper, we propose a novel augmentation method where all candidate models are
evaluated first using historical data. Based on evaluation, a proper weight is assigned to each
model, pointing out the contribution of that candidate to the final response of ensemble.
The whole idea is shown in Figure 3(b). All trained candidates are run in parallel.

Dealing with dynamic models, the evaluation should be done over a specific time interval.
Then, it is proposed to transfer most recent output of each candidate yj(k) to the memory
buffer and store it there for a specific number of time steps represented by bl (buffer length).
At each time instant k, candidate models are evaluated but using data stored in the memory
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buffer assigned to them, applying the sum of squared errors as follows:

Jj(k) =
k−1∑

i=k−bl

(yd(i)− yj(i))
2, (6)

where j is the candidate number, yd(i) represents desired outputs at the time instant i. It
is important to notice that the past output data are easily available. The candidate model
with the lowest index value Jj(k) performed the best for the last of bl time steps.

The evaluation results are passed to the softmax function to normalize the quality of
the candidates to a probability distribution over N possible models as:

wi(k) =
e−Ji∑N
l=1 e

−Jl
, for i = 1, . . . , N, (7)

where w(k) = [w1(k), w2(k), . . . , wN (k)]. The best performing model, represented by the
lower value of the error function, should have the dominant role in the probability distribu-
tion of weights w(k). Therefore, as the input arguments to the softmax function, we used
the inverse of the performance indexes from Equation (6) (negative argument in exponen-
tial functions in Equation (7)). Every single component of the vector w(k) constitutes the
contribution of a suitable candidate model to the finally formed model output, which is
derived as follows:

ŷ(k) = w(k)y(k)T =

N∑
i=1

wi(k)yi(k), (8)

where y(k) = [y1(k), y2(k), . . . , yN (k)]. The accuracy of the estimate ŷ(k) depends on the
buffer length. If bl is too small, performance evaluation is not accurate and one can observe
chaotic switching between candidate models when deriving the output estimate. In turn, if
bl is too large, the output estimator is less sensitive to the changes in operating conditions,
acting similarly to moment of inertia. Thus, the selection of bl is of crucial importance here.

4. Experiments

4.1. System settings and data preprocessing

During experiments, only one actuator was used, located at the position of 40cm. A point-
wise measurement was considered. Laser sensor was set at a position equal to 55cm. All
signals were acquired using the RT-DAC4/PCI digital timing I/O board. The sample time
was set to 0.1 second. To remove quantization noise, a simple moving-average filter of order
5, was applied to smooth the data.

Analyzing the frequency spectrum of the system output presented in Figure 2(b), it
is clear that the behavior of the system is highly non-linear. For the excitation including
components with frequencies in the range from 0.01 Hz to 1 Hz, the system generates an
output consisting of components with frequencies in a much broader range than input sig-
nal. Clearly, we can see vibrations induced around approximately 2.5 Hz, which are highly
undesirable. As was mentioned in Section 2 the objective of this work is to catch accurately
the deflection properties of the system, not the vibration ones. Then, to exclude these un-
desired effects, output data was filtered. To carry out this task, a low-pass IIR Butterworth
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filter was applied, with cut-off frequency set to 1Hz and the stop-band attenuation being
60dB. Such a designed filter was used to preprocess the beam displacement measurements.

4.2. Hysteresis modeling

To model the actuator, a feedforward neural network Equation (4) was used. Because
the second network input is a difference between two subsequent control signal values,
the training data should be treated as the time sequence. Recorded data covered four
working scenarios, each representing the response of the system for a specific input signal,
as described in Section 2.1. Thus, the total number of samples was equal to 287986. Data
were divided into training, testing, and validation sets according to the ratio 0.4 : 0.4 :
0.2, respectively. Hyperparameters of the neural model were found through a series of
experiments. We have started with a simple network consisting of two hidden layers. We
increased both the number of layers and neurons to achieve the best-performing model,
taking into account the mean squared error (MSE) calculated over the testing set. The
specifications of the selected models investigated are listed in Table 1. The notation x–y–z
means that the model was constructed using 3 hidden layers with x, y, and z neurons in
consecutive layers, respectively. The best performance was achieved in the neural network
with 4 hidden layers (in Table 1 marked with the boldface) with MSE equal to 5.39 · 10−4.

To evaluate the modeling quality, static characteristics are derived by allocating points
(u(k), i(k)) in Cartesian coordinate system. Figure 4(a) shows hysteresis of the actuator
fed by a collection of ramp signals, where output of the model is marked with red–crosses
and measurements are marked with blue–circles. To emphasize the non-linear form of this
characteristic, projection giving a similar effect to the “fisheye” transformation was applied:

ut(k) = arctan(50u(k)), it(k) = arctan(50i(k)), (9)

where ut(k) and it(k) are input and output after transformation, respectively. Clearly, the
model reconstructs the real static characteristic of the actuator reasonably well, however,
the model response is characterized by lower variance contrary to measurements. This
is caused by measurement noise, which the model filters. Figure 4(b) shows hysteresis
plotted employing a neural model fed with the chirp signal. One can see several hysteresis
loops representing different levels of coercive forces resulting from the complex physics of
actuators, drift due to heating, and magnetization of the beam material in close vicinity of
the actuator.

4.3. Beam modeling

The vibrating beam, was modeled through the lumped-parameter system Equation (5). To
catch the dynamics of the distributed-parameter system Equation (1), a high-order lumped
model should be used. Firstly, a single neural model was tried. The training set was formed
in such a way as to include data representing the system response for any excitation used (see
Section 2.1). Results achieved for a model consisting of 12 hidden neurons with hyperbolic
tangent activation functions, shown in Figure 5(a) turned out to be very unsatisfactory.
A model works well only for slowly varying signals or constant ones. In this case, the
performance index in the form of MSE was equal to 0.1454. Also, more complex models
were tested without a significant breakthrough. Then, the ensemble of models proposed in
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Section 3.2 was investigated. All candidate models had the same inherent structure: v = 20
hidden neurons, tanh activation function and one linear output neuron. Such a kind of
multimodel is called a homogenous ensemble. It means that the model architecture is the
same, but the training data is different. In this study, we used 8 models. Details about the
training data selected for a particular model are provided in Table 2. Each candidate model
was trained for 1000 steps by the Levenberg-Marquardt algorithm using different training
data but tested on all available datasets. The initial weights were set to be random values.
The model quality expressed by MSE is shown in the last column of Table 2.

Obviously, the generalization abilities of candidate models are not so good due to the
relatively high value of MSE. However, using candidate models in the framework of the
model ensemble as proposed in Section 3.2 gives MSE equal to 5.22 ·10−4. Then, a fusion of
candidate models renders it possible to achieve good performance of the model with pretty
good generalization properties. In the case considered, we used a memory buffer bl = 10.
This value was selected as a compromise between accuracy and sensitivity, as discussed in
Section 3.2. The quality of the one-step ahead output prediction of the proposed ensemble
is illustrated in Figure 5(b) where the measured beam displacement is marked with the
red–solid line and the ensemble output with the blue–dashed line. The model follows the
required displacement closely, giving a strong argument for the correct modeling of the
beam. Moreover, the model response is not biased much, as the mean value of the model
output is equal to 0.0901 and mean of the displacement measurements is 0.0882. This is a
clear confirmation that the model generalizes data well.

To make a definite assessment of the proposed multimodel approach, it was compared
with simpler method. The widely used approach in this context is to derive the ensemble
response as the average of the responses of all candidate models. The quality of multimodel
expressed by MSE was equal to 0.0803. Clearly, averaging responses of models listed in
Table 2 improves the modeling over single models, but the results are still much worse
than the result provided by the multimodel proposed in this work. Moreover, the averaged
model is firmly biased as its response mean is 0.1509 which is clearly shown in Figure 5(c).
Summarizing, data fusion by means of averaging is obviously not acceptable here.

5. Concluding remarks

In this paper a novel approach for data-driven modeling for a particular class of distributed-
parameter systems was proposed, with special attention to the application of the vibrating
beam system. Due to the non-linear nature of the considered laboratory stand, recurrent
neural networks were used to represent the dynamics of the system. However, it was ob-
served that a single neural network, which is a lumped-parameter system, was not able
to represent spatio-temporal characteristics of the plant. As a remedy, the multimodel
approach was suggested with a novel mechanism to aggregate sub-model responses. Us-
ing the recent output data, the method provides weights representing the contribution of
each sub-model to the final response of the model ensemble. The proposed ensemble has
a homogenous structure, but its parts were trained on different training sets. Thus, the
ensemble is characterized by pretty well generalization properties which were confirmed
empirically. The ultimate advantage of the proposed scheme is that it is easy to upgrade
by incorporating models trained using recently recorded data or developed using different
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actuators-sensors settings. The important part of the modeling process is to properly rep-
resent electromagnetic actuators described by a highly non-linear static characteristic. The
proposed model in the form of a feedforward multi-layer network with properly prepared
input space is able to achieve pretty high approximation accuracy. At the same time, the
structure of the model is quite simple and easy to train, contrary to alternative models
reported in the literature. However, some effort should be paid to the proper, automatic
selection of the model hyperparameters as well as dividing the data into training and testing
sets in order to provide high-quality models.
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Figure 1: Vibration beam laboratory stand.
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(c) Averaging model.

Figure 5: Vibrating beam modeling results.

Table 1: Specification of selected neural models.

No. topology activation function MSE
units in layers hidden/output

1 5–3 tanh/linear 0.102
2 7–5 tanh/linear 0.0011
3 12–8–4 tanh/linear 0.000557
4 15–10–7–3 tanh/linear 0.000539

Table 2: Specification of models in the ensemble.

No. training data specification MSE

1 chirp: freq. 0.01− 0.05Hz, amp. 1.5A 0.19
2 chirp: freq. 0.05− 0.15Hz, amp. 1.5A 0.1749
3 chirp: freq. 0.15− 0.3Hz, amp. 1.5A 0.1557
4 chirp: freq. 0.01− 0.05Hz, amp. 2.5A 0.1802
5 chirp: freq. 0.05− 0.15Hz, amp. 2.5A 0.1393
6 chirp: freq. 0.15− 0.3Hz, amp. 2.5A 0.1616
7 ramp collection 0.1428
8 random steps 0.1787
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