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Abstract

Neural Ordinary Differential Equations (NODEs) are well-established architectures that
fit an ODE, modelled by a neural network (NN), to data, effectively modelling complex
dynamical systems. Recently, Neural Fractional Differential Equations (NFDEs) were pro-
posed, inspired by NODEs, to incorporate non-integer order differential equations, captur-
ing memory effects and long-range dependencies. In this work, we present an optimised
implementation of the NFDE solver, achieving up to 570 times faster computations and
up to 79 times higher accuracy. Additionally, the solver supports efficient multidimen-
sional computations and batch processing. Furthermore, we enhance the experimental
design to ensure a fair comparison of NODEs and NFDEs by implementing rigorous hy-
perparameter tuning and using consistent numerical methods. Our results demonstrate
that for systems exhibiting fractional dynamics, NFDEs significantly outperform NODEs,
particularly in extrapolation tasks on unseen time horizons. Although NODEs can learn
fractional dynamics when time is included as a feature to the NN, they encounter difficul-
ties in extrapolation due to reliance on explicit time dependence. The code is available at
https://github.com/zimmer-ing/neural-fde.

Keywords: Neural Networks, Cyber-Physical Systems, Neural Ordinary Differential Equa-
tion, Neural Fractional Differential Equation, Benchmark

1. Introduction

In various scientific and engineering disciplines, it is fundamental to model the behaviour
of processes over time. This is crucial in fields such as epidemiology (Grassly and Fraser,
2008), economics (Mircea et al., 2014), and materials science (Zhang et al., 2016), among
others.

While traditional approaches often use integer order differential equations, such as Ordi-
nary Differential Equations (ODEs), to model systems’ dynamics, these might not always be
the best choice. Non-integer order differential equations, also known as Fractional Differen-
tial Equations (FDEs), have gained increasing attention in recent years due to their ability
to capture complex behaviours and memory effects in various systems (Akgül and Khosh-
naw, 2020). Unlike integer-order derivatives, they can describe phenomena that exhibit
exponential relations, long-range interactions, and anomalous diffusion, which are often
observed in fields such as physics (Abdou, 2017; Uchaikin, 2003), engineering (Goodwine,
2014; Ge et al., 2015), and finance (Ma et al., 2019; Aljethi and Kılıçman, 2023).

While differential equations are powerful mathematical modelling tools, the process of
designing and adjusting these models is time-consuming and difficult, relying heavily on
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field experts. Recently, neural networks (NNs) have demonstrated their ability to model
systems from data, addressing these problems and becoming a go-to solution for a wide
range of fields (Faroughi et al., 2022; Pavlidis et al., 2006; Grebner et al., 2021). Given
the importance of differential equations to science and engineering, Chen et al. (2018) were
the first to propose a NN that models ODEs from data, called Neural Ordinary Differential
Equations (NODEs). This innovation revolutionised the NN paradigm, as NODEs use ODE
solvers that integrate over the time axis, providing a continuous representation. This allows
NODEs to handle irregularly sampled data and make predictions across the entire time
domain, independent of the sampling rate. The popularity of NODEs has inspired several
works proposing NNs that model other types of differential equations (Zhu et al., 2021;
Liu et al., 2019), and the exploration of continuous representations like Neural Laplace
(Holt et al., 2022) and Neural Flows (Biloš et al., 2021), which are based on mathematical
principles also often used in engineering (Zimmering and Niggemann, 2024). Furthermore,
NODEs are now a well-established architecture with several applications that can be found
in the literature (Meleshkova et al., 2021; Sorourifar et al., 2023; Bräm et al., 2024; Bonnaffé
et al., 2021).

One of the most recent proposals in this context, are Neural Fractional Differential
Equations (NFDEs) (Coelho et al., 2024), an architecture that leverages FDEs’ memory
and long-range dependency capabilities to improve modelling performance. Since NFDEs
are in their infancy and have demonstrated theoretical and experimental potential, this
paper proposes further investigation into their capabilities.

Previous work by Coelho et al. (2024) highlighted the promise of NFDEs but also re-
vealed several areas for improvement. The experiments were conducted using standard
hyperparameters and different solver types for NODE and NFDE, which might not provide
a fair comparison. Additionally, the solver used was not batch-capable, supported only
one-dimensional data, and was relatively slow. To fully understand and optimise these al-
gorithms, a more efficient solver and a comprehensive empirical methodology are necessary.
This approach ensures fair comparisons and reduces the potential for author bias.

Systems with memory effects, where past states influence current dynamics, are effec-
tively captured by NFDEs due to their ability to model long-term dependencies without
requiring time as an explicit input. This makes NFDEs particularly well-suited for sys-
tems with fractional dynamics, which involve complex temporal behaviour. Neural ODEs,
in principle, could also capture fractional dynamics if time is included as a feature to the
neural network. However, it remains an open question whether this ability depends on the
explicit availability of time as a feature, and whether it introduces limitations, especially in
tasks like extrapolation, where generalisation to unseen time horizons may suffer. This mo-
tivates our investigation into how these architectures handle time dependencies in systems
with fractional dynamics.

To address these gaps, we propose the following research questions:

• RQ1: Is there a difference in performance between NODE and NFDE when incorpo-
rating time as a feature to the NN?

• RQ2: Can the performance and computational cost of NFDE benefit from a faster,
batch-capable numerical method implementation?

2



Optimising Neural Fractional Differential Equations for Performance and Efficiency

• RQ3: How can we ensure a fair and accurate performance comparison between NFDE
and NODE, using comprehensive methods such as hyperparameter tuning?

These research questions guide our investigation, aiming to enhance the understanding and
application of NFDEs in modelling complex systems. Our study includes the development
of an improved numerical method, a thorough analysis of hyperparameter impact, and a
detailed performance comparison between NODEs and NFDEs.1

This paper is structured as follows: In Section 2 a brief motivation and introduction
to FDEs is given followed by an overview of NODEs and NFDEs. Section 3 details the
implementation improvements of the solver presented in Coelho et al. (2024) and presents
our method to fairly compare NFDE and NODE. Section 4 presents the experimental details
and numerical results for the systems in study. The paper ends with the conclusions and
future work in Section 5. Additionally, a comprehensive appendix provides extensive results
and further details on the experiments conducted.

2. Background and Related work

2.1. Transitioning from ODEs to FDEs

To motivate the transition from integer-order to non-integer-order differential equations,
consider the example of exponential growth. In the case of integer-order derivatives, the
growth rate of a function is directly proportional to its value at a given time t ∈ R+:

dny(t)

dtn
= λy(t), y(0) = y0 (1)

where n ∈ N+ is the derivative order and λ ∈ R is the growth rate. The solution to this
differential equation for n = 1 leads to the well-known exponential function, which exhibits
a constant growth rate and a memory-less property:

y(t) = y0e
λt (2)

where y0 ∈ R is known as the initial state. However, in real-world scenarios, growth rates
may not be constant and depend on the history of the system.

By introducing non-integer order derivatives, one can capture more complex growth
patterns that exhibit both power-law dependencies and memory effects. The non-integer
order derivative of a growth rate function is then given by:

C
0D

α
t y(t) = λy(t), y(0) = y0 (3)

where α is the non-integer order of the FDE the definition of fractional derivative according
to Caputo is C

0D
α
t f(t) = 1

Γ(⌈α⌉−α)

∫ t
0 (t − τ)⌈α⌉−α−1f (⌈α⌉)(τ)dτ .2 Here ⌈·⌉ is the ceiling

function and Γ(n) = (n − 1)! is the gamma function (Diethelm, 2010). This can model
growth rates that gradually change over time, allowing for a more realistic representation
of various phenomena such as population dynamics, tumour growth, and financial market
trends.

1. All implementations can be found at https://github.com/zimmer-ing/Neural-FDE.

2. Please note that for 0 < α < 1 the equation reduces to C
0D

α
t y(t) =

1
Γ(1−α)

∫ t

0
(t− τ)−α

[
d
dτ

f(τ)
]
dτ
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One important advantage of FDEs is their ability to describe sub-exponential growth,
referring to systems that show growth rates that are slower than exponential but still ex-
hibiting power-law dependencies:

C
0D

α
t y(t) = λy(t), with α ∈ (0, 1). (4)

The solution of (4) is:
y(t) = y0Eα(λt

α), (5)

where Eα(z) is the Mittag-Leffler function, which is a generalisation of the well-known
exponential function, E1(z) = ez (Diethelm, 2010).

2.2. Neural Approaches to Learning ODEs and FDEs

NODEs (Chen et al., 2018) and NFDEs (Coelho et al., 2024) are sophisticated frameworks
designed to model complex dynamical systems by leveraging NNs to approximate differential
equations from data. Both methodologies share a fundamental conceptual foundation, using
NNs to model system dynamics and employing numerical solvers to integrate these dynamics
over time.

NODEs approximate the right-hand side of an ODE with a NN:

dy(t)

dt
= fθ(y(t), t), with y(t0) = y0, (6)

where fθ : Rm+1 → Rm is a NN parameterised by θ ∈ Rp, and y0 ∈ Rm is the initial
condition (Chen et al., 2018). Here m ∈ N+ represents the number of features and p ∈ N+

number of (trainable) parameters. The solution to the initial value problem (IVP) for
NODEs can be expressed as:

y(t) = y(t− ϵ) +

∫ t

t−ϵ
fθ(y(τ), τ)dτ, (7)

where (t − ϵ), with ϵ ∈ R+, is an arbitrary time step back in the trajectory’s past, used
to compute the current value y(t). The integral is approximated by an ODE solver, which
is implemented in pytorch and supports backpropagation (Chen, 2018). Equation (7)
illustrates that future states depend solely on the immediate past state y(t− ϵ), such as the
initial value y0 or the solution from a previous instant in the numerical procedure.

NFDEs extend the NODE framework to FDEs, enabling the capture of more intricate
and history-dependent dynamics. For NFDEs, the IVP is equivalent to the Volterra integral
equation, particularly when α < 1 (Diethelm et al., 2002):

y(t) = y(0) +
1

Γ(α)

∫ t

0
(t− τ)α−1fθ(y(τ), τ)dτ, (8)

where Γ(α) denotes the gamma function, and fθ is the same trainable NN as in (6). Unlike
Equation (7), the numerical solver for NFDEs must compute the entire integral from 0 to
t for each y(t), reflecting the fractional, history-dependent nature of the system.

Additionally, NFDE is capable of learning the α value from data, thus using a second
NN with parameters ϕ, αϕ. However, in this work the α value will instead be optimised
using hyperparameter search and its value fixed during the training process of NFDE.
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3. Methods

3.1. Advanced Techniques for NFDE Solving

Coelho et al. (2024) introduced an implementation of the Predictor-Corrector (PC) method
by Diethelm et al. (2002), which generalizes the Adams–Bashforth–Moulton algorithm
(Hairer et al., 1993; Hairer and Wanner, 1996) known for solving first-order ODE prob-
lems. This implementation supports backpropagation, enabling the modelling of an FDE
using a neural network (NN) to fit the data. While effective, their implementation can be
further optimised in terms of computational efficiency and scalability. Specifically, opera-
tions such as the summations in the predictor and corrector steps were computed explicitly
in loops, and batch processing was not fully leveraged, limiting the ability to exploit par-
allel computation available in frameworks like pytorch. Additionally, the NN evaluations
were recomputed multiple times without reusing intermediate results, leading to increased
computational cost. Our approach addresses these limitations by precomputing as much
as possible, using pytorch’s parallelisation capabilities, supporting batch processing, and
minimising redundant evaluations of the neural network.

The PC method follows a multi-step approach, where it first calculates an approximation
of the next value ypred ∈ Rm(predictor step) and then uses it to compute the next value
of the solution yj ∈ Rm (corrector step). Diethelm et al. (2002) applied this method to
numerically solve Equation (8), resulting in the predictor equation (9) and the corrector
equation (10):

ypred =y0 +
hα

Γ(α+ 1)

j−1∑
k=0

bj−kf(yk, kh) (9)

yj =y0 +
hα

Γ(α+ 2)

(
f(ypred, jh) +

(
(j − 1)α+1 − (j − 1− α)jα

)
f(y0, 0)

+

j−1∑
k=1

aj−kf(yk, kh)

)
(10)

Here, f(y, t) : Rm+1 → Rm represents the FDE (i.e. the NN in our case), h ∈ R+ denotes
the fixed step size, and bj−k and aj−k are components from the vectors b ∈ Rj and a ∈ Rj ,
respectively, which are calculated based on α (refer to Equations 12 and 14 in Diethelm
et al. (2002)). In these equations, k is the index of the time-step, and yk represents the
solution at the k-th time-step. The index j ∈ N+ refers to the current time-step, and the
sums run over k = 0, 1, . . . , j − 1, leveraging the historical values up to the current time
j · h.

In machine learning contexts, directly implementing these equations can be compu-
tationally intensive. Evaluating f(yk, kh) is resource-demanding, and as j increases, the
number of terms in the sums of Equations (9) and (10) grows linearly with j. Without opti-
misation, this leads to redundant computations of f(yk, kh) for the same k across different
time-steps j, since these values are needed repeatedly. Additionally, the computational
graph used for automatic differentiation must retain all operations, increasing memory us-
age and slowing down performance (Baydin et al., 2017).

To address this inefficiency, we optimise the implementation by caching the evaluations
of f(yk, kh) for each k. Once f(yk, kh) is computed at time-step k, it is stored and reused
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in all subsequent time-steps j > k. Consequently, for each new time-step j, we only need to
compute two new evaluations of the NN: one for f(yk, kh) with k = j − 1 in the predictor
step (9), the corrector step (10), and one for f(yp, jh) in the corrector step (10). The
term f(y0, 0) can be precomputed at the beginning. By storing and reusing these function
evaluations, we avoid redundant computations, significantly reducing the computational
cost. Additionally, we leverage pytorch’s parallelisation capabilities and support batch
processing, which enhances performance by using the parallel processing power of GPUs.
Our full pseudocode can be found in Appendix A.

3.2. Enhancing Experimental Design

The experiments conducted by Coelho et al. (2024) demonstrated the superior properties
of NFDE for modelling sub-exponential growth. These experiments included three inde-
pendent training sessions with different random seeds. However, manual selection of hyper-
parameters – such as the number of layers and neurons, activation functions, and learning
rates – can introduce bias and be a tedious “trial and error” process. Extensive research
underscores that hyperparameter choices critically impact algorithm performance (Krauß,
2022). Furthermore, empirical studies on machine learning algorithms should meet stan-
dard requirements, including a rigorous tuning methodology, such as grid search, random
search, or Bayesian optimisation (Sculley et al., 2018; Vranješ and Niggemann, 2024).

In addition to the standard hyperparameters, the choice of the numerical solver plays
a critical role in NODE performance (Chu et al., 2024). In classical ODE simulations,
the choice of the ODE solver can significantly affect performance (Städter et al., 2021).
This holds true for NODEs as well, since the solver influences the dynamical properties
that the NN can learn (Westny et al., 2023). Coelho et al. (2024) used the default solver
from torchdiffeq, the Dormand–Prince 5 (DOPRI5), which is a widely used single-step,
adaptive solver suitable for non-stiff ODEs. In contrast, the NFDE solver is based on
the Adams–Bashforth–Moulton method, a fixed-step, multi-step solver that achieves higher
efficiency by using results from previous time steps in its calculations. To ensure a fair
comparison, we also employ the Adams–Bashforth–Moulton solver for NODE in this work.

To mitigate bias and ensure a robust comparison between NODE and NFDE, we conduct
1000 hyperparameter trials per run using the Tree-Parzen-Estimator (TPE) (Ozaki et al.,
2020) in a multidimensional search space. TPE was selected for its efficiency in handling
high-dimensional optimisation (Valsecchi et al., 2021). We perform multiple runs, each with
a distinct seed assigned to both the training and hyperparameter tuning processes. This
setup, combined with 1000 hyperparameter trials per run, ensures thorough exploration of
the search space and robust model evaluation.

Each set of hyperparameters is evaluated using a validation dataset, ensuring that the
test dataset is not involved in either training or hyperparameter optimisation. This practice
is crucial to avoid overfitting and to provide an unbiased assessment of model performance.
Specifically, we calculate the mean and standard deviation of the performance metrics across
different runs, providing insights into the stability and reliability of the models under slightly
different hyperparameter sets.
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4. Numerical Experiments and Results

4.1. Evaluating Solver Efficiency and Accuracy

Since the numerical method implementation in Coelho et al. (2024), referred to as original,
was improved with the main goal of reducing computational cost, this optimised version
was validated by comparison with the FDE C

0D
α
t y(t) + y(t) = 0, t ∈ (0, T ], α ∈ (0, 1),

with initial condition y0 = 1, and analytical solution given by y(t) = Eα,1(−tα), where

Eα,γ(z) =
∑∞

k=0
zk

Γ(αk+y) , α, γ > 0 is the Mittag-Leffler function with two parameters (Liu

et al., 2018). We used an python implementation of the Mittag-Leffler function that is
based on Garrappa (2015).

To validate and compare the performance and computational costs of original and the
herein proposed optimised version, α = 0.6 and four different step sizes, ∆t ∈ {1, 0.1, 0.01, 0.05},
over the time interval [0, 10]. Our choice of α is typically considered low for FDEs and in-
dicates a strong fractional behaviour, thereby challenging the accuracy of the solver.

To ensure high precision, we utilise the float64 data type for all computations. We
use a batch size of one, to fairly compare the solvers as the original implementation would
have to process a batch of samples sequentially and would thus be much slower. For each
numerical method implementation five independent runs 3 were done to measure elapsed
time in seconds, memory consumption in megabytes (MB) 4 and the difference between
numerical and analytical solution (Error). The mean results are shown in Table 1.

Experiments were conducted on an Intel(R) Core(TM) i9-10900KF CPU, featuring 10
cores and 20 threads, with a base clock speed of 3.70 GHz and a maximum turbo frequency
of 5.30 GHz. This processor supports both 32-bit and 64-bit operation modes.

Table 1: Mean performance of original and optimised solver over five runs.

∆t Time (s) Memory (MB) Error

Original Optimised Original Optimised Original Optimised

0.005 185.934 0.325 15811 15678 1.28e-08 1.62e-10
0.010 46.166 0.157 4305 3588 5.77e-08 1.27e-09
0.100 0.489 0.016 506 500 9.91e-06 1.03e-06
1.000 0.008 0.003 461 460 6.43e-03 1.03e-03

The results in Table 1 show substantial improvements with the optimised solver. It is
approximately 570 times faster on average, with the most significant speedup observed at
∆t = 0.005 (from 185.934 seconds to 0.325 seconds). Memory usage is slightly reduced.
Importantly, the optimised solver is also more accurate, with error reductions up to a
factor of 79 for ∆t = 0.005. These results underscore the efficacy of the optimised solver
in reducing computational costs while enhancing precision. Detailed results including the
standard deviation can be found in Table 4 in Appendix C.1.

3. The execution order of the solvers, ODE and FDE, was chosen randomly within each run. Before every
single run, sleep is called for one second to minimise side effects caused by other background tasks.

4. Memory consumption is measured separately from runtime performance as memory measurement heavily
influences the runtime.
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4.2. Empirical Comparison of NODE and NFDE

To compare the performance of NODE and NFDE, we apply the methodology described in
Section 3.2 for a sub-exponential growth system described by

C
0D

α
t y(t) = −

y(t)

2
, y(0) = y0, y0 ∼ U(a, b) (11)

with α = 0.8, and analyse the architectures’ behaviour on the two tasks: reconstruction
and extrapolation.

For the reconstruction task, 25 trajectories with distinct initial conditions are sampled
independently for the training, validation, and test sets. The initial conditions for the
training set are sampled from the uniform distribution y0 ∼ U(−1, 1), and the time horizon
is fixed at t ∈ [0, 20] with a time step of dt = 0.1. For the validation set, the initial
conditions are sampled from y0 ∼ U(−1.5, 1.5), and for the test set, they are sampled from
y0 ∼ U(−2, 2). This setup tests the models’, ability to generalise to new initial conditions
while keeping the time horizon consistent across datasets.

For the extrapolation task, 25 trajectories with distinct initial conditions are sampled
randomly from the same uniform distribution y0 ∼ U(−1, 1) for the training, validation,
and test sets. However, the difference lies in the time horizons used. The training set uses
a time range t ∈ [0, 1.5], the validation set uses t ∈ [0, 3], and the test set uses t ∈ [0, 10], all
with a time step of dt = 0.1. This task evaluates the models’, ability to predict over longer
time horizons, while the initial conditions remain consistent within each dataset.

The datasets were generated using the CaputoLSchema FDE solver from the python

library brainpy (Wang et al., 2023), with fixed seeds (42, 43, 44) for the train, validation,
and test sets, respectively. These seeds ensure consistent dataset generation across evalua-
tions, but differ between sets to provide distinct samples from the same distribution ranges.
It is important to note that these dataset seeds are separate from the random seeds used
for hyperparameter tuning, as described in Section 3.2. In both tasks, the solver always
incorporates time t, while the NN is trained either with t as an explicit input (i.e. fθ(y(t), t))
or using only the state y(t) (i.e. fθ(y(t))).

For each architecture and each task, 1000 hyperparameter tuning trials were conducted
using TPE. The hyperparameters include the learning rate, number of layers (up to 4),
number of hidden neurons (up to 100), and α ∈ [0.5, 1] (for NFDE). For further details on
the search space, refer to Appendix B. Additionally, an exponential learning rate scheduler
and the Adam optimiser (Kingma and Ba, 2014) were employed, with all samples processed
in a single batch (i.e., full-batch training). Performance was evaluated by Mean Squared
Error (MSE) and, to ensure robustness, four independent runs with distinct seeds were
performed for each architecture. Each run includes a hyperparameter search, where the
train and validation data set was used to evaluate the different hyperparameter sets, found
by the TPE. The final evaluation was performed on a distinct test set. Table 2 shows
the mean and standard deviation on the test set. The results in Table 2 show that for the
extrapolation task, the NFDE model performs significantly better without the time feature,
achieving much lower MSE. A similar trend is observed for the NODE model, where the
absence of the time feature also results in improved performance. For the reconstruction
task, the NFDE model again shows better performance without the time feature, while the
NODE model performs better with the time feature. These results highlight the crucial
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Table 2: MSE over four seeds, after 100 Epochs, for the test set over four runs.

Extrapolation
with Time without Time

NFDE 1.69e-04 ± (9.17e-05) 3.34e-05 ± (1.02e-05)
NODE 3.47e-02 ± (3.53e-02) 2.90e-03 ± (8.65e-05)

Reconstruction
with Time without Time

NFDE 1.07e-04 ± (1.11e-04) 4.40e-06 ± (1.90e-06)
NODE 1.86e-04 ± (6.42e-05) 4.04e-04 ± (1.03e-04)

role the time feature plays in model accuracy, demonstrating that its impact can vary
significantly depending on the model and task at hand. More results, including box plots,
plots of the behaviour over epochs for all data sets can be found in Appendix C.2.

5. Conclusion

This work systematically addressed critical research questions comparing NODEs and NFDEs
for modeling dynamical systems. The key findings are summarized below:

Time Feature Impact (RQ1): Our results demonstrate that NFDEs perform signif-
icantly better in both extrapolation and reconstruction tasks when time is excluded as an
input feature to the neural network for systems with fractional behaviour. While NODEs
can theoretically model fractional behaviour by learning time-varying dynamics, they of-
ten rely on time as an explicit feature in the neural network. This dependency on time
introduces challenges in extrapolation tasks, as the model’s predictions become sensitive to
the time variable and struggle to generalise beyond the observed time range. In contrast,
NFDEs excel due to their ability to capture long-range dependencies without requiring
time as an explicit feature, making them well-suited for systems with fractional dynamics.
Therefore, the superior performance of NFDEs in extrapolation applies specifically to sys-
tems with fractional behaviour and is not a general rule. The solver, in both cases, continues
to operate using time.

Solver Efficiency and Accuracy (RQ2): We introduced an optimised solver for
NFDEs that is approximately 570 times faster and up to 79 times more accurate than
the original implementation. These improvements significantly enhance the feasibility of
NFDEs for large-scale, high-precision applications, making them a practical tool for real-
world systems governed by fractional dynamics.

Fair Comparison via Hyperparameter Tuning (RQ3): A rigorous hyperparame-
ter search, combined with multiple independent runs, confirmed that NFDEs consistently
outperform NODEs for systems exhibiting fractional behaviour, especially in extrapolation
tasks. This highlights the importance of proper hyperparameter tuning for ensuring fair
comparisons and optimal performance.

In conclusion, NFDEs provide a robust, efficient, and accurate approach for modelling
systems with fractional dynamics, especially in tasks requiring extrapolation. Future work
will focus on further improving the computational efficiency of NFDEs, particularly in terms
of memory usage, and exploring their broader applicability.
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Appendix A. Pseudocode of the Optimised FDE Solver

Algorithm 1 Optimised Predictor-Corrector implementation from Diethelm et al. (2002) in
python and pytorch. Bold symbols indicate tensors (batch, time, features). Blue indicates
calls to the NN f .

1: function FDE Integrator(f , t, y0, α, h)
2: Input: Function f , time points t, initial condition y0, fractional order α, step-size

h
3: Output: Approximate solution y at time points t
4: N ← number of time steps based on t and h
5: yint ← tensor of shape (batch size, N + 1, dim y) ▷ Internal memory for solution
6: tint ← tensor of shape (batch size, N + 1, 1) ▷ Internal memory for time
7: fmem ← tensor of shape (batch size, N + 1, dim y) ▷ Memory for previous eval-

uations of f()
8: yint[:, 0, :]← y0 ▷ Add initial condition to results as it is not

computed in the main loop
9: k← range from 1 to N ▷ Indices for coefficients a and b

10: b← ((kα)− (k − 1)α) ▷ Precompute coefficient b from Equation (9)
11: a← ((k + 1)α+1 − 2kα+1 + (k − 1)α+1) ▷ and a from Equation (10)
12: Γα1 ← γ(α+ 1) ▷ Gamma terms for Equation (9)
13: Γα2 ← γ(α+ 2) ▷ Gamma terms for Equation (10)
14: f0 ← f(y0, t[:, 0, :]) ▷ Precompute f0 for the corrector (Equation (10))
15: fmem[:, 0, :]← f0 ▷ and store results
16: ynew ← y0 ▷ Initialise last solution with the initial value
17: for j = 1 to N + 1 do ▷ Main loop of solver
18: tact ← j · h ▷ Calculate the current time
19: tint[:, j]← tact ▷ and store it
20: fmem[:, j, :]← f(ynew, tact) ▷ Compute and store the value of f

at the current step
21: k← kn[: j] ▷ Get indices of all previous values
22: bjk ← b[j − k] ▷ Retrieve necessary values for b in

reverse order
23: yp ← y0 +

(
hα

Γα1

)∑
(bjk · fmem[:, : j, :]) ▷ Compute the predictor step (Equa-

tion (9)) using torch’s parallel com-
putation for the sum term

24: ajk ← a[(j − k)[1 :]] ▷ Retrieve necessary values for a in
reverse order

25: ynew ← y0 +
(

hα

Γα2

)
·
(
f(yp, tact) + ((j − 1)α+1

−(j − 1− α)jα) · f0
+
∑

ajk · fmem[:, 1 : j, :]
)

▷ Compute the corrector step (Equa-
tion (10)) using torch’s parallel
computation for the sum term

26: yint[:, j, :]← ynew ▷ Store the new value for the solution
27: end for
28: return LinearInterpolation(yint, tint, t)
29: end function
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Algorithm 1 continued

30: function LinearInterpolation(yinternal, tinternal, t)
31: tinternal is a fixed, evenly spaced time grid
32: t contains arbitrary, potentially uneven time points
33: Find indices of tinternal just before (t0) and after (t1) for each t
34: Gather corresponding yinternal values at t0 and t1

35: yout = y0 + (y1 − y0) ·
(t− t0)

(t1 − t0)
36: return yout

37: end function

Appendix B. Hyperparameter Space Details

Table 3: Hyperparameter ranges for NODE and NFDE models.

Hyperparameter NODE NFDE

Learning Rate [1× 10−5, 0.5] [1× 10−5, 0.5]
Gamma Scheduler [0.999, 1.0] [0.999, 1.0]
Hidden Size [10, 100] [10, 100]
Number of Hidden Layers [1, 4] [1, 4]
Activation Function {relu, leaky relu, elu, none} {relu, leaky relu, elu, none}
Alpha (Non-integer Order) - [0.5, 1.0]
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Appendix C. Additional Results

C.1. Detailed Results for Numerical Method Implementations Comparison

Table 4: Performance comparison between original and optimised solver including standard
deviation from over five runs for each value.

∆t Original Solver Optimised Solver

Time (s)

0.005 1.86e+02 (2.51e+00) 3.25e-01 (4.79e-03)
0.01 4.62e+01 (9.28e-01) 1.57e-01 (2.05e-03)
0.1 4.89e-01 (1.21e-02) 1.61e-02 (1.42e-04)
1.0 8.06e-03 (1.34e-03) 2.51e-03 (4.69e-04)

Memory (MB)

0.005 1.58e+04 (1.29e+03) 1.57e+04 (7.43e+02)
0.01 4.31e+03 (3.24e+02) 3.59e+03 (1.72e+03)
0.1 5.07e+02 (7.06e+00) 5.00e+02 (2.16e+01)
1.0 4.61e+02 (6.99e-02) 4.61e+02 (8.39e-01)

Error

0.005 1.28e-08 (0.00e+00) 1.62e-10 (0.00e+00)
0.01 5.77e-08 (0.00e+00) 1.27e-09 (0.00e+00)
0.1 9.91e-06 (0.00e+00) 1.03e-06 (0.00e+00)
1.0 6.43e-03 (0.00e+00) 1.03e-03 (0.00e+00)

C.2. More results of the empirical comparison for NODE and NFDE.

Table 5: Mean MSE, after 100 Epochs, for the training set over four runs.

Extrapolation
with Time without Time

NFDE 1.90e-06 ± (4.84e-07) 2.00e-06 ± (2.27e-07)
NODE 3.70e-06 ± (3.10e-06) 7.56e-05 ± (1.30e-06)

Reconstruction
with Time without Time

NFDE 1.13e-04 ± (1.17e-04) 6.40e-06 ± (4.40e-06)
NODE 1.87e-04 ± (6.99e-05) 4.01e-04 ± (8.76e-05)
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Table 6: Mean MSE, after 100 Epochs, for the validation set over four runs.

Extrapolation
with Time without Time

NFDE 4.20e-06 ± (1.40e-06) 2.30e-06 ± (6.43e-07)
NODE 2.50e-04 ± (2.89e-04) 6.67e-04 ± (2.23e-05)

Reconstruction
with Time without Time

NFDE 1.24e-04 ± (1.39e-04) 6.60e-06 ± (4.40e-06)
NODE 2.17e-04 ± (8.21e-05) 4.38e-04 ± (1.21e-04)
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Figure 1: Mean MSE over four seeds on the training set over 100 epochs for the recon-
struction and extrapolation tasks.
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Figure 2: Mean MSE over four seeds on the validation set over 100 epochs for the recon-
struction and extrapolation tasks.
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Figure 3: Mean MSE over four seeds on the test set over 100 epochs for the reconstruction
and extrapolation tasks.
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Figure 4: Box plot of MSE for the training set after 100 epochs.
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Figure 5: Box plot of MSE for the validation set after 100 epochs.
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Figure 6: Box plot of MSE for the test set after 100 epochs.
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