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Abstract

The recent program development industries have required problem-solving abilities for
engineers, especially application developers. However, AI-based education systems to help
solve computer algorithm problems have not yet attracted attention, while most big tech
companies require the ability to solve algorithm problems including Google, Meta, and
Amazon. The most useful guide to solving algorithm problems might be guessing the
category (tag) of the facing problems. Therefore, our study addresses the task of predicting
the algorithm tag as a useful tool for engineers and developers. Moreover, we also consider
predicting the difficulty levels of algorithm problems, which can be used as useful guidance
to calculate the required time to solve that problem. In this paper, we present a real-world
algorithm problem multi-task dataset, AMT, by mainly collecting problem samples from
the most famous and large competitive programming website Codeforces. To the best of our
knowledge, our proposed dataset is the most large-scale dataset for predicting algorithm
tags compared to previous studies. Moreover, our work is the first to address predicting the
difficulty levels of algorithm problems. We present a deep learning-based novel method for
simultaneously predicting algorithm tags and the difficulty levels of an algorithm problem
given.

Keywords: Algorithm Tag Prediction, Problem Difficulty Level Prediction, Education for
Computer Algorithm, Competitive Programming Dataset Benchmarks

1. Introduction

To solve a given algorithm problem, in general, the developer guesses the intention of
the problem and classifies the algorithm tag of the problem after reading the problem
description. Then, the developer writes a source code for solving the algorithm problem.
From this perspective, a problem-solving guide (PSG) is a useful tool for learners and
engineers who are facing algorithm problems. For example, predicting algorithm tags
properly for a given problem description can provide useful direction to understand the
problem for the participants. Moreover, the order of problems to solve also does matter
because we may not have enough time to solve all problems. Thus, we note that predicting
the difficulty level is also informative in deciding the order to solve problems. In this paper,
we introduce an AI-based problem-solving guide (PSG) as a useful tool for programmers
facing an algorithm problem. Given algorithm problems, our PSG is a multi-task solution
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Title: Beautiful Year

It seems like the year of 2013 came only yesterday. Do you know
a curious fact? The year of 2013 is the first year after the old
1987 with only distinct digits.

Now you are suggested to solve the following problem: given a
year number, find the minimum year number which is strictly
larger than the given one and has only distinct digits.

Time limit: 2 seconds

Memory limit: 256 megabytes

Input: The single line contains integer 𝑦 (1000 ≤ 𝑦 ≤ 9000).

Output: Print a single integer.

Template
Bank

Feature Extractor
(Language Model)

Problem-Solving Guide (Ours)

Programmer

Feature vectors

Multi-label Classifier

Difficulty Predictor

Tag: brute force

Difficulty: 800

y = int(input())
answer = 0
# write your solution.
print(answer)

Selection
Algorithm

Figure 1: Our proposed method, problem-solving guide (PSG) predicts the tags (categories)
and the difficulty (required time) of an algorithm problem simultaneously.

providing simultaneously (1) a predicted algorithm tag, and (2) a predicted difficulty level
of the problem. For educational purposes, our proposed method can be used to reduce
effectively the time for users to understand and solve various algorithm problems.

Recent work Athavale et al. (2019) has shown that the deep learning-based classifier can
be used for predicting the algorithm tags of a problem given. However, they have a limitation
in that their method is able to only predict an algorithm tag for a problem and shows poor
classification accuracy. For a generalized problem-solving guide, we should design proper
architectures that predict the tags and difficulty of the problem properly by understanding
the intent of the problem comprehensively. Especially, the algorithm problem set consists
of long sentence texts. We note that the deep learning models based on recurrent neural
networks Hochreiter and Schmidhuber (1997); Zaheer et al. (2020); Beltagy et al. (2020) are
difficult to recognize these long sentences. In this work, we utilize a useful deep-learning
architecture to effectively address these long-sequence texts. We adopt transformer-based
large language models Vaswani et al. (2017); Devlin et al. (2018); Clark et al. (2020) and
show the recent transformer architectures that address long sequences are useful for solving
our task Beltagy et al. (2020); Zaheer et al. (2020).

We have also analyzed various programming problems in the broadly used competitive
programming platform, Codeforces. On this website, the categories of problems are labeled
by algorithm experts, and the difficulty levels are determined by the results of the competition
to which the problem belongs except in a few exceptional cases. Predicting the categories of
the problem is a well-defined multi-label problem Liu and Chen (2015); Nam et al. (2014);
Liu et al. (2017); Xiao et al. (2019); Katakis et al. (2008) and predicting the problem’s
difficulty level can be seen as the ordinal classification problem Pan et al. (2018); Liu et al.
(2018); Frank and Hall (2001); Gaudette and Japkowicz (2009); Larichev and Moshkovich
(1994); Dembczyński et al. (2008). Therefore, we consider this problem a multi-task problem
that jointly solves two tasks and also provide a new dataset, AMT. We demonstrate that
our proposed method shows superior classification performance compared to the previous
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Table 1: The data distribution of algorithm tags. This table shows the number of algorithm
problems for each tag category in our presented dataset. We consider the most
frequent 20 categories.

Top-20 Frequent Categories

Labels # of problems Labels # of problems Labels # of problems

Implementation 2394 Sortings 869 Bitmasks 459
Math 2363 Binary Search 862 Two Pointers 438
Greedy 2302 DFS and Similar 776 Geometry 344
DP 1732 Trees 663 DSU 292
Data Structures 1429 Strings 617 Shortest Paths 231
Brute Force 1370 Number Theory 613 Divide and Conquer 227
Graphs 890 Combinatorics 544

SOTA work Athavale et al. (2019). To the best of our knowledge, we are the first to adopt
the multi-task approach to provide useful applications for real-world developers, which
simultaneously predicts the tags and difficulties of an algorithm problem. Moreover, we
additionally provide baseline source code templates for the various algorithm tags, which
can reduce the time effectively for users to solve the algorithm problems.

2. Background and Related Work

2.1. Predicting Problem Tags

A recent study has proposed a new research area PMP (Programming Word Problems) and
presented a dataset for the research purpose of predicting algorithm tags Athavale et al.
(2019). In their work, the authors utilize 4,019 problems and more than 10 algorithm tags.
They have demonstrated that the CNN-based classifier can achieve near-human performance
for the task of predicting the algorithm tags Athavale et al. (2019). However, their adopted
architectures do not address the long sequences effectively. The general algorithm problems
consist of a lot of words whose size is more than 1,000 in the problem description. However,
we have found that the simple CNN architecture with fixed kernel size might not capture
the global representations comprehensively. To remedy this issue, we adopt the recent
transformer-based architectures Vaswani et al. (2017); Devlin et al. (2018); Zaheer et al.
(2020) that are relatively immune to long sequences of the problem description. Moreover,
we extend the number of algorithm problems to construct large-scale datasets.

2.2. Multi-Task Solution Using Deep Learning

We consider our task as a multi-task problem that simultaneously addresses (1) multi-label
classification and (2) ordinal-class classification. Some related studies have presented joint
learning methods for simultaneously training multiple tasks in various research fields Ruder
(2017); Choi et al. (2023); Crawshaw (2020); Yu et al. (2020); Thung and Wee (2018). The
multi-task learning approach can reduce memory complexity while nearly maintaining the
original classification performance of individual single-task models Choi et al. (2023); Ruder
(2017); Lin et al. (2019); Dong et al. (2015).
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Table 2: The difficulty level distribution of our proposed whole dataset. This table shows
the number of algorithm problems according to the difficulty levels. CodeForces
provides 28 different types of difficulty levels.

Difficulty 800 900 1000 1100 1200 1300 1400 1500 1600 1700

# of Problems 686 255 306 305 333 325 329 357 397 381

Difficulty 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700

# of Problems 348 371 363 330 362 297 347 306 242 222

Difficulty 2800 2900 3000 3100 3200 3300 3400 3500

# of Problems 177 165 137 107 105 86 63 112

3. Proposed Methods

Our method solves the multi-label classification problem because each algorithm problem
can belong to one or more labels simultaneously. For example, a competitive programming
problem requires the idea of greedy, sorting, and dynamic programming simultaneously. Our
proposed method also predicts the difficulty of the problems. To the best of our knowledge,
we are the first to address the ordinal-class classification problem for predicting the
degree of difficulty of algorithm problems. We note that predicting the degree of difficulty of
algorithm problems is also crucial for developers in that the difficulty level can be interpreted
as the required time to solve that algorithm problem.

3.1. Problem Definition

We define a function F : X → Z as a feature extractor that extracts representations given a
text x and maps x into an embedding space Z. Then, we use a classification head H : Z → Y
on the top of the feature extractor F . Our proposed framework is designed to solve multiple
tasks. Specifically, our model solves two kinds of problems (1) multi-label classification and
(2) ordinal-class classification simultaneously. Thus, we design deep neural networks for
solving these two tasks using two loss functions l1 and l2 jointly.

E(x,y,d)∈Dtrain
[l1(H1(z), y)) + λ · l2(H2(z), d))]

where z = F (x) and l1 denotes a binary cross-entropy loss for the problem category y.
Dtrain denotes the train data distribution. The second loss l2 is designed for the ordinal
classification task. Thus, we can simply adopt the cross-entropy loss for l2. The d denotes a
problem difficulty level and the λ is a scale factor for weighting two tasks differently. Our
PSG adopts the two-head network architecture. First, we extract a feature representation
vector z and forward this vector into two classification heads, multi-label classifier head H1

and ordinal-class classifier head H2. During the training time, the data x and y are picked
from the train data distribution Dtrain. After training time, we test the trained model on
the test dataset Dtest that is different from Dtrain in the inference time.

In the multi-label classification tasks, the classification model can classify multiple labels
simultaneously, performing binary classification per each label. Thus, we adopt the multi-
label classification approach for solving the algorithm tag prediction task in this work. Given
a problem description, our model outputs the probability for each possible algorithm tag
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label. Thus, we can adopt the binary cross-entropy (BCE) loss function. For the following
equation, yk is set as 1 where the text data x belongs to the k-th class and the value of yk is
0 in the case that x does not belong to the k-th category (tag). Therefore, we can calculate
the full loss value over all possible categories where the number of categories is K for the
multi-label classification and y ∈ RK denotes the true label according to x. We have shown
that this simple BCE loss is well suitable for our multi-label classification problem where a
detection network ψ(·) that informs users of whether a text data belongs to the Dk that is
data distribution of k-th algorithm category (tag), thus, ψ (x) = 0 if x /∈ Dk.

Ltag(ψ(x), y) = − 1

K

K∑
k

yk · log(ψ(x)) + (1 − yk) · log(1 − ψ(x)) (1)

3.2. Proposed Datasets and Architectures

To construct our dataset, AMT, we have mainly collected algorithm problems from Code-
Forces. We have excepted a problem if the problem has no tag information. The total
number of collected problems is 7,976. First, we consider the top 20 frequent algorithm
tags as ground-truth labels, which account for most problems. We represent the number of
programming problems for each problem tag of our proposed dataset in Table 1. Secondly,
our proposed dataset also contains the difficulty information for each problem. The smaller
value denotes the easier problem in Table 2. In our proposed dataset, the difficulty level is
calculated based on their own rating system of Codeforces. To implement the multi-task
deep learning model, our method adopts BERT-based Devlin et al. (2018); Zaheer et al.
(2020); Vaswani et al. (2017) feature extractor and two different classification head networks.
With extensive experiments, we have found that the BigBird Zaheer et al. (2020) architecture
shows the best performance for solving our multi-task problem. Therefore, we report the
performance of BigBird as the main result in the experiment section.

4. Experimental Results

We have extensively experimented with various text classification methods to validate
the effectiveness of our proposed dataset. We also construct a smaller version of our
AMT dataset, AMT10, that only considers the main 10 categories for experiments. A
recent work Athavale et al. (2019) has applied various deep learning-based methods for
predicting algorithm tags and has demonstrated CNN architectures Kim (2014); Lai et al.
(2015) could show improved performance. However, we observe that the recently proposed
large-scale transformer architectures Zaheer et al. (2020); Devlin et al. (2018) can show
better classification performance compared to the reported classification performance of
previous methods as shown in Table 3. With extensive experiments, we have found that
the BERT-based architectures can be greatly useful for our task, especially the BigBird can
comprehensively process the long embedding tokens and relatively well recognize the implicit
feature representations of an algorithm problem. In conclusion, our proposed method for
multi-task learning, PSG, results in a competitive classification performance comprehensively.
We note that the number of parameters of PSG is smaller by approximately 2 times compared
to the parameter size of the combination of two single-task models. This memory efficiency
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Table 3: Performance on the test dataset. The symbol ↑ indicates larger values are better.
We have reported the best performance of each method by finding the best learning
rate using a grid search. In conclusion, we use the learning rate of 5e-6 for BigBird
models solving each single task. Moreover, we also use the learning rate of 5e-6
for our proposed multi-task solver PSG. We note that the hyper-parameter λ is
crucial to obtain improved classification performance. For the tag prediction, the
AUROC and F1-Macro indicate the average value over all the categories. We also
report the performance of some baseline methods of the previous work.

Architectures λ
Rating Prediction T1 Tag Prediction T2

Accuracy CS (θ=3) Pan et al. (2018) CS (θ=5) Pan et al. (2018) MAE AUROC F1-Macro
↑ ↑ ↑ ↓ ↑ ↑

SVM BoW + TF-IDF Athavale et al. (2019) N/A N/A N/A N/A N/A 79.26 40.33
CNN Ensemble TWE Athavale et al. (2019) N/A N/A N/A N/A N/A 58.12 20.14

XGBoost N/A N/A N/A N/A N/A 73.47 43.09
CatBoost N/A N/A N/A N/A N/A 74.39 42.91

LightGBM N/A N/A N/A N/A N/A 74.52 42.94
Gradient Boosting Machine N/A N/A N/A N/A N/A 73.21 40.99

BigBird-based Single Model for T1 (Ours) N/A 11.24 23.71 34.54 4.55 N/A N/A
BigBird-based Single Model for T2 (Ours) N/A N/A N/A N/A N/A 80.70 42.78

Multi-Task PSG (Ours) 1 8.35 19.07 32.68 4.74 69.08 25.16
Multi-Task PSG (Ours) 10 10.10 20.41 33.71 4.79 79.12 41.08
Multi-Task PSG (Ours) 100 8.76 15.46 23.20 7.09 79.59 41.63

comes from the property of the multi-task models that we can extract feature representations
by forwarding the input texts into the feature extractor network F (·) only once.

Figure 2: The ROC curves of various models, derived on the test dataset. The first figure
represents the ROC curve of our PSG model trained with λ = 10. The second
figure shows the ROC curve of our PSG model trained with λ = 100. The
third figure shows the ROC curve of the single-task BigBird model to solve only
the second task T2. Our multi-task learning method can obtain a competitive
classification performance for the tag prediction task T2 compared to the single-
task learning method while maintaining the ability to solve two different tasks.

5. Conclusion

In this work, we present a novel algorithm problem classification dataset, AMT, that contains
about 8,000 algorithm problems and provides two kinds of annotations (the algorithm tag and
difficulty level) for each problem. To validate the effectiveness of the proposed dataset, we
also train a variety of text classification models on the dataset and analyze their classification
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performance. To solve the multi-task problem effectively, we introduce a novel multi-task
approach, PSG, that simultaneously predicts the tag and difficulty level of an algorithm
problem given. In the experimental results, we demonstrate our proposed method shows
significantly improved classification performance compared to the previously presented SOTA
methods. We provide all the source codes, datasets, and trained models publicly available.1

We hope our proposed dataset and model architectures could contribute to the programming
industries for educational purposes.
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