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Abstract

In computer science education, test cases are an integral part of programming assign-
ments since they can be used as assessment items to test students’ programming knowledge
and provide personalized feedback on student-written code. The goal of our work is to pro-
pose a fully automated approach for test case generation that can accurately measure
student knowledge, which is important for two reasons. First, manually constructing test
cases requires expert knowledge and is a labor-intensive process. Second, developing test
cases for students, especially those who are novice programmers, is significantly different
from those oriented toward professional-level software developers. Therefore, we need an
automated process for test case generation to assess student knowledge and provide feed-
back. In this work, we propose a large language model-based approach to automatically
generate test cases and show that they are good measures of student knowledge, using a
publicly available dataset that contains student-written Java code. We also discuss future
research directions centered on using test cases to help students.
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1. Introduction

Large language models (LLMs) have shown great promise in advancing the field of education
by helping instructors create educational resources like quizzes, and questions for domains
like mathematics, programming, and language learning/ comprehension (Baidoo-Anu and
Owusu Ansah, 2023; McNichols et al., 2023; Sarsa et al., 2022; Ashok Kumar et al., 2023).
Particularly, in computer science (CS) education, researchers are leveraging LLMs to auto-
matically generate programming exercises, and provide code explanations, and personalized
feedback to students. The work in (Sarsa et al., 2022) uses the OpenAl Codex model! to
aid educators in teaching a course, significantly reducing t heir manual e ffort. The work in
(Kazemitabaar et al., 2023) has shown that using Codex in instruction can help improve
the students’ ability to learn programming. Their study showed that Codex significantly
increased code-authoring performance and improved student performance on post-tests in
the long term. The work in (Leinonen et al., 2023) uses LLMs to generate code explana-
tions that serve as examples to improve students’ ability to understand and explain code.
Their study shows that LLM-generated code explanations are much more accurate and
significantly easier to understand t han student-written e xplanations. The work in (Liffiton
et al., 2023) develops an LLM-based system, CodeHelp, that provides on-demand assistance
to programming students without directly revealing solutions to them. Their study shows

1. https://openai.com/blog/openai-codex
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that CodeHelp is received well by both students and educators, helping students resolve
their errors better and complementing educators’ teaching efforts. The work in (Phung
et al., 2023b) evaluates two LLMs, OpenAl’s ChatGPT and GPT-4 on six tasks: program
repair, hint generation, grading feedback, peer programming, task synthesis, and contex-
tualized explanation. Their study showed that GPT-4 performs significantly better than
ChatGPT and can be as good as human tutors on some tasks. The work in (Phung et al.,
2023a) designs a human tutor-style programming feedback system that leverages GPT-4
(the “tutor”) to generate hints using the information of failing test cases and validates the
hint quality using a GPT-3.5 model (“the student”). Their evaluation on three diverse
Python-based datasets showed that the precision of their system is close to that of human
tutors.

Despite the recent focus on using LLMs in CS education research, relatively few works
have focused on generating test cases. The work in (Agarwal and Karkare, 2022) proposes
a method, LEGenT, for generating test cases as targeted feedback for an introductory
programming course. They use a programming language-centric approach for generating
targeted test cases and use them as feedback for students. Although their approach gen-
eralizes across 11 programming languages, their work has a key limitation: they generate
test cases at the code level, i.e., test cases that a piece of student-written code will fail
on, without considering generating test cases at the problem level, i.e., generating a set of
test cases to measure students’ programming knowledge from the code they write for the
problem. Therefore, their approach is useful for targeted feedback but ignores the value of
test cases as assessments. We need a scalable way to automatically generate test cases for
(especially novice) students since they exhibit a wide range of errors, which makes manually
generating test cases impractical.

To bridge the gap in the literature on automated test case generation in educational
settings, we propose an LLM-based approach for student code-aware test case generation
for programming problems. Our major contributions are:

e We propose a fully automatic iterative refinement-based approach for test case gen-

eration that leverages representative student codes, using both LLMs and code com-
e
pilers~.

e We evaluate our approach on the publicly available CSEDM Challenge dataset and
show that we can generate test cases that accurately measure student knowledge.

2. Related Work

Several works in the domain of software engineering explore the generation of test cases
using LLMs. (Lemieux et al., 2023) proposes to use OpenAl Codex for improving search-
based-software-testing systems by using Codex to generate test cases for under-covered
functions. (Vikram et al., 2023) explores the use of LLMs for generating property-based
tests for testing code that implements functions of certain Python libraries like NumPy.
The motivation and problem setting of these works are not the same as ours and their goal
is not to generate test cases to measure student knowledge in educational settings. In the

2. The code for our paper can be found at: https://github.com/umass-ml4ed/test_case_generation
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domain of education, (Sarsa et al., 2022) conducts preliminary experiments using Codex to
generate test cases. Their approach of simply prompting the model sometimes generates
faulty test cases as unlike our approach they do not have a feedback mechanism to improve
the generated test cases. (Agarwal and Karkare, 2022) proposes a programming language-
centric method for generating test cases, LEGenT. LEGenT compares buggy student code
with correct code to generate test cases that are used to provide personalized feedback to
students. Their approach relies heavily on the structural similarities of the buggy code and
the correct code and does not work on complex concepts like arrays, pointers, and recursion.
Since we use a LLM based system our method is more generic and not heavily dependent
on the structure of the code. Besides, their method can be used to only generate test cases
that do not pass the buggy code, whereas the goal of our system is to generate test cases
that both pass as well as fail a particular code based on some constraints.

+—ieedback
Write a Java program that takes two integers 1TC — g“""c‘ Java
as input and returns the sum if both are even s g 0 Compiler
else returns the product. 3 |20 20 4
public int sumProd(int| |public int sumProd(int feedback 4 |7 5 test
a, int b){ a, int by — s / cases STOP
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Figure 1: Visualizing our overall approach for test case generation. TC stands for test case.

3. Test Case Generation Methodology

We now detail the overall prompting process, summarized in Equation (1), for test case
generation. Our approach uses iterative refinement: in each iteration, we select a pair of
representative student code samples for a given problem to help the LLM generate a set of
@ < T meaningful and relevant test cases.

(YL, = LLM (prb, {code}S.,) (1)

Code Pair Prompting In each iteration, we design a prompt for the LLM consisting of
i) the programming question and ii) a pair of codes (c;, c;-), which represent buggy student
code and the correct student code, respectively, as shown in Equation (2). Let s; € [0,1)
denote the scores for the buggy code c¢;j; we instruct the LLM to specifically generate test
cases {t}gg:1 such that on executing the test cases, the correct code c} passes all @) test
cases and the buggy code c¢; passes exactly P = @ X s; test cases. This way, we instruct

the LLM to generate test cases that are responsive to common errors contained in actual
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student code with a certain degree of correctness, which is reflected by the target score s;.
To improve the test case generation ability of the LLM, we prompt the model to generate
test cases in a Chain-of-Thought (Wei et al., 2022) manner, by asking it to first output an
explanation of the bug in the code and then generate a test case that will not pass the code
because of the existence of that bug.

{t}&.) = LLM (prb, c;, c)) (2)

Code Pair Selection To capture common errors students make, we devise a strategy
to select three code pairs ¢; and c} since using all student codes is impractical. For c;-
we randomly sample a fully-correct student code. For buggy codes, we first sample a code
whose score is equal to the median of all student codes. We then sample a code whose score
is closest to the full score but not perfect. We then sample a code whose score is the median
of the scores between the first two sampled codes. This procedure ensures that we choose
representative student codes with few errors, which increases the coverage of the test cases
to capture individual bugs since it is difficult to ask the LLM to generate test cases for

codes with low scores that may have many bugs or are substantially wrong.

Compiler Feedback and Iterative Refinement Since the LLM by itself cannot ex-
ecute the generated test cases, we use a code compiler to automatically execute both the
buggy code ¢; and the correct code c; against the @) test cases generated by the LLM to
obtain the estimated scores for each code. Then, we construct a feedback prompt (Madaan
et al., 2023) with this information and re-prompt the LLM to update the set of test cases
(if necessary). This feedback process encourages the LLM to adjust its initial generated
test cases using code compiler feedback. We repeat this process for K iterations to get a
total of T' > () unique test cases.

4. Experiments
We now evaluate our approach on a publicly available student code dataset.

Datasets, Setup, and Metrics We use CSEDM challenge dataset®, which contains
time-stamped code submissions from over 300 students to 50 Java coding problems grouped
by 5 assignments, each of which requires 10-26 lines of code. Each code is scored between 0
and 1, which corresponds to the fraction of test cases passed by the student code. We use
GPT-4 as the underlying LLM since GPT-3.5-turbo and smaller models are not as good
at following the instructions in the prompt. We set the temperature of the generation to
0 and the maximum sequence length to 1000 tokens. We use a total of K = 1 iterations
since GPT-4 is good at incorporating compiler feedback; more iterations are necessary for
smaller models. We evaluate whether our approach can accurately score student-written
code; 3;; denotes the estimated score for code ¢;; using the generated test cases {t}qul.
Here, I(c;4,t,) is a binary-valued function which is 1 if student j’s code for problem i passes
test case t; and 0 otherwise. We consider all the code attempts of student j for the same
problem ¢ and do not explicitly index attempts for notation simplicity. We report the error
e; j between the estimated score and the ground truth score, as in Equation (3).

3. https://sites.google.com/ncsu.edu/csedm-dc-2021/home
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Figure 3: Error and frequency distribution for stu-
dent code with different scores for one problem.

Results and Discussion Table 2 shows the input data type and the mean of errors
across all problems under each assignment. In general, we observe that assignments with
the input data types of “string” and “int array” have a lower mean of the error as compared
to assignments with the input data type of “int” and “boolean”. This difference is due to
the former case involving more complex concepts and as a result, student-written codes
exhibit similar kinds of misconceptions and bugs. Therefore, our approach yields a good set
of generic test cases that are well-suited for these assignments. On the contrary, assignments
involving simpler concepts like “int” and “boolean” result in student-written code that has
a wide range of diverse bugs, which require a lot of test cases to capture them. Therefore,
a single, limited set of 10 — 20 test cases does not generalize well across all students and
problems. We also note that the number of code submissions for categories “int” and
“boolean” is double the number of code submissions for categories “string” and “int array”.
Our code pair selection strategy to select only three code pairs to represent a particular
assignment might not be effective for categories like “int” and “boolean” as they represent
a wide variety of bugs owing to many student submissions. In the future, we can work
on sampling diverse code pairs proportional to the number of code submissions for that
assignment to ensure a lower mean error.

Analysis Figure 3 shows the error and frequency of code for problem 46 in assignment 494,
ordered by their actual score. The problem is about checking if a given value is present in at
least one of the adjacent pairs in a given array. Each blue point represents the mean error of
the codes with a particular ground truth score. Each green bar represents the total number
of codes corresponding to a particular range of the ground truth code score. The number
of (almost) completely correct and incorrect codes, with the lowest and the highest scores,
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respectively, is much higher than the number of partially correct codes with intermediate
scores. Most common student codes that are completely erroneous reflect programming
conceptual misunderstanding including early returning of “true” or “false” from the method
without processing the entire array or improper usage of control statements like “continue”
and “break”. The partially correct student codes that have intermediate scores are more
subtle and do not generally portray misunderstanding in concepts. The errors are mostly
about misunderstanding the problem and including incorrect array indices like “i4-2” instead
of “i+1” or incorrect conditions like “==" in the place of “!=".

We observe that the generated set of test cases obtains the smallest error on codes with
either the lowest or the highest score. This observation shows that most of the generated
test cases either pass all the correct codes or fail on the worst-scored codes. Moreover, since
the number of such codes (with either the highest or the lowest ground truth code score) is
higher, the mean error turns out to be quite low. On the contrary, codes with intermediate
ground truth scores are less frequent and have higher errors. This observation shows that
the generated test cases still cannot always capture the subtle differences between partially
correct codes with a few problems and completely correct code, which justifies our code pair
selection approach that selects buggy codes with scores higher than the median and asks
the LLM to generate test cases for them.

Qualitative Example Listings 1 and 2 show a pair of buggy and correct codes, respec-
tively, for problem 45 in assignment 502, and Table 1 shows the problem statement and
the generated test cases. The bug in the buggy code is that it only checks for 7 in the
immediate next index after 6 and not anywhere after 6. As a result, the buggy code and
the correct code have different outputs for test cases 2 and 3, while having the same output
for test cases 1 and 4. This example shows that by explicitly referencing a buggy code, our
approach for LLM prompting enables it to generate test cases that reflect student errors.

Listing 1: Buggy Code Listing 2: Correct Code

11 . .
EE: ;Zml?toéum67(lnt[] nums) { I | public int sum67 (int [] nums){
. ’ > |int sum = 0; boolean sixMode = false;
if (nums.length == 0){return 0;} i . . .
. ) . 3 |for (int i = 0; i < nums.length; i++){
else{for (int i = 0; i < nums. . )
length: i+4){ 4 | if (sixMode){
, gL - |if (nums[i] == 7) sixMode = false;}
if (nums[i] == 6){ 6 |else if (nums[i] == 6) sixMode = true;
if (nums[i + 1] == 7){i = i + 1;}} |’ . ’
] 7 |else sum += nums[i]; }
else{sum = sum + nums[il];}}
s | return sum;}
return sum;}}

5. Conclusions and Future Work

In this work, we propose a fully automatic iterative refinement-based approach for student
code-guided test case generation using large language models. We craft a series of prompts
that include selected representative student codes for automated test case generation and
use compiler feedback to refine them. We evaluate our approach on a real-world student
coding dataset and show that we can generate test cases that (sometimes) accurately capture
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Table 1: A qualitative example that shows our method can generate test cases that reflect
the bug in student-written buggy code. “Buggy” and “Correct” refer to the output of the
buggy and the correct code respectively.

Programming Question Test Case Buggy Correct
Given an int array, return the sum of the numbers in the array, int[]{6,7,1,2,3} 6 6

except ignore sections of numbers starting with a 6 and int[]{6,1,2,3,4,7} 17 0
extending to the next 7 (every 6 will be followed by at least one  int[]{1,2,6,3,7} 13 3

7). Return 0 for no numbers. int[]{1,2,3,4,5,6,7} 15 15

student performance. There are plenty of avenues for future work. We can improve our
approach by developing a diverse student code selection strategy that captures a wider
variety of bugs, to further improve the diversity of the generated test cases. We also plan to
conduct a human evaluation to assess the validity of our generated test cases and compare
them to ones generated by computer science education experts. Along another direction,
we can investigate whether test cases can be used as a formative assessment tool to measure
students’ programming knowledge. Then, we can use them in an adaptive testing setting,
where the goal is to select and/or generate relevant test cases for students so as to assess
their knowledge efficiently. Finally, we can also use these test cases to design modules that
provide personalized feedback for student-written code to help them understand their errors
and correct them.
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Appendix A. Iterative Prompt Engineering

In our work, we propose a fully automatic method for generating test cases which involves
prompting an LLM using feedback from a code compiler (Java compiler). To enable the
process of automatic feedback, we had to ensure some engineering details. We ensure that
the LLM prompt is in the form of a dictionary or a JSON-serializable object so that we
can easily extract the test cases. Our feedback prompt is constructed to contain tabular
information (represented as text) about each test case generated along with the output
of the buggy and the correct code. This explicit way of representing feedback reduces
hallucination in LLMs by giving point-wise test case feedback to the LLM. With regard
to automatically executing the generated test cases against the buggy student codes, we
observed that a few test cases triggered run-time errors including infinite loops thus causing
the execution to never end. We use some engineering techniques like multi-threading and
timing to cap the execution of a single test case on each student code. In case of run-time
errors, we terminate the test case execution and provide feedback to the LLM regarding the
run-time error so that it can rectify the test cases.
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