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Abstract
Logic reasoning has been critically needed in problem-solving and decision-making. Although
Language Models (LMs) have demonstrated capabilities of handling multiple reasoning tasks (e.g.,
commonsense reasoning), their ability to reason complex mathematical problems, specifically propo-
sitional logic, remains largely underexplored. This lack of exploration can be attributed to the lim-
ited availability of annotated corpora. Here, we present a well-labeled propositional logic corpus,
LOGICPRPBANK, containing 7093 Propositional Logic Statements (PLSs) across six mathematical
subjects, to study a brand-new task of reasoning logical implication and equivalence. We bench-
mark LOGICPRPBANK with widely-used LMs to show that our corpus offers a useful resource for
this challenging task and there is ample room for model improvement.
Keywords: Propositional Logic, Logical Reasoning, Language Models, Few-shot Learning

1. Introduction

Propositional logic deals with propositions (i.e., statements that can be true or false) and logical re-
lationships between propositions. It has been used to solve many scientific problems (e.g., computer
logic gates, distributed computing, and game strategies) (Pietarinen, 2001) and facilitate educational
applications such as Intelligent Tutoring Systems (ITSs) (Galafassi et al., 2020; Mandal and Naskar,
2021). However, reasoning with propositional logic is different from reasoning in a Natural Lan-
guage Processing (NLP) task (e.g., causal inference, commonsense reasoning, etc.) as propositional
logic is a formal language formed with a set of symbols and rules that are distinct from those in
natural languages (Traylor et al., 2021). Table 1 shows a truth table of logical implication and
equivalence using a propositional theory for reasoning. As an illustration, the entailment of Propo-
sitional Logic Statement (PLS) P → Q1, “If the sum of the interior angles of a triangle is greater
than 180 degrees, then a square has five sides”, is a true statement given both P and Q are false, but
these statements (P → Q, P, Q) are all incorrect from the commonsense perspective.

Recently, Language Models (LMs) have demonstrated strong abilities to solve mathematical
problems, e.g., approximating solutions to Partial Differential Equations (Li et al., 2022), solv-
ing simple math word problems (Patel et al., 2021), and reasoning arithmetic and logical prob-
lems (Wang et al., 2021). It has been proven that increasing the scale of LMs (e.g., the size of
model parameters) can lead to better performance and sample efficiency in many NLP tasks (De-
vlin et al., 2019; Brown et al., 2020; Kasneci et al., 2023). However, this claim is questionable in
the propositional logic field because LMs are pre-trained with corpora that incorporate rationale in
natural languages while reasoning with propositional logic requires understating rationale defined
in formal languages. While Traylor et al. (2021) study a simple set of propositional logic (e.g., and,
or, negation) by investigating under which conditions LMs can successfully emulate the meaning
of formal languages, this only reveals a small portion of propositional logic problems, but more

*. These authors contributed equally to this work.
1. Note that statements P and Q do not need to be semantically related in propositional logic.
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Table 1: The truth table of logical implication (P → Q) and equivalence (P ↔ Q). Note that the
logical implication is always true given statement P is false, regardless of the truth value
of statement Q, which is counterintuitive in commonsense.

P Q P → Q P ↔ Q

T T T T
T F F F
F T T F
F F T T

complex ones (e.g., implication and equivalence) are underexplored. To bridge the gap, we present
LOGICPRPBANK that contains 7093 PLSs in six mathematical subjects (algebra, arithmetic, cal-
culus, geometry, number theory (numbers), and statistics) to investigate the LMs’ capabilities of
reasoning complex propositional logic. This endeavor is beneficial to mathematical ITSs.

There have been available corpora for evaluating LMs’ abilities to understand and reason. Bow-
man et al. (2015) present the SNLI corpus that focuses on single-step inferences (e.g., entailment,
contradiction, irrelevance) between two pieces of text. SNLI is unable to explain reasoning chains,
although an extension has been later implemented in Camburu et al. (2018). Neves Ribeiro et al.
(2022) introduce ENTAILMENTBANK corpus that investigates the entailment relations of natural
language text. However, these datasets focus on propositional logic inference (e.g., entailing con-
clusions from premises) but not the fundamental correctness of PLSs in mathematical subjects.
Recently, Ontanon et al. (2022) collected a propositional logic corpus LOGICINFERENCE, which
validates the subset of first-order propositional logics using sequence-to-sequence LMs. In compar-
ison to LOGICINFERENCE which focuses on reasoning between premises and conclusions, LOG-
ICPRPBANK has two major differences. First, we focus on mathematical PLSs which can be used
for building educational applications (e.g., ITSs). Second, instead of dealing with logical inference
(e.g., inference chains), LOGICPRPBANK investigates the correctness of PLSs (e.g., the truth values
of PLSs).

With LOGICPRPBANK, our work investigates two research questions: RQ1 Are LMs capable
of reasoning complex propositional logic (e.g., implicating and equivalence) in real mathematical
subjects? RQ2 Are large-scale LMs better than small-scale LMs in reasoning propositional logic?
We benchmark LOGICPRPBANK and make the following contributions:

• We leverage the state-of-the-art ChatGPT to generate real atomic PLSs in six mathematical sub-
jects and then develop a proposition composer to compose atomic to compound PLSs.

• We investigate LM’s capability of reasoning complex implication and equivalence PLSs which is
different from reasoning in existing NLP tasks.

• We conduct experiments on LogicPrpBank with various scales of LMs to study the pros and cons
of LMs in reasoning with propositional logic.

2. Corpus

We use ChatGPT API2 to generate atomic PLSs. In particular, we develop a data collection prompt
to collect True and False PLSs: please list [X] [Y] atomic statements in [Z],

2. https://openai.com/blog/chatgpt

2

https://openai.com/blog/chatgpt


LOGICPRPBANK: A CORPUS FOR LOGICAL IMPLICATION AND EQUIVALENCE

Table 2: The examples of the proposed LOGICPRPBANK corpus.
IDs Types Subjects Propositional Logic Statements Truth Values

1 Atomic Arithmetic The median of 3, 4, 5, 6, 7 is 6. F

2 Atomic Geometry The distance between two parallel lines is the same at all points. T

3 Atomic Numbers The sum of the first n odd integers is n(n+1). F

4 Implication Geometry
The distance between two parallel lines is the same at all points is necessary
and sufficient for the area of a circle is always pi * r * r, where r is the diameter.

F

5 Equivalence Calculus
The derivative of log(x) with respect to x is equal to 1/x is equivalent
to the implicit function theorem only applies to functions of two variables.

T

where [X] is the number of PLSs (e.g., X=20), [Y] is chosen from True or False, and [Z] is chosen
from one of the subjects (algebra, arithmetic, calculus, geometry, number theory, and statistics). We
run the same prompts multiple times until having substantial True and False PLSs for each subject.

We use ChatGPT as a corpus source rather than open sources (e.g., online articles) or human
annotations for two reasons. First, ChatGPT is trained with vast amounts of data from the inter-
net written by humans, which covers propositional logic lectures across educational and tutoring
webpages, thus it is able to generate a large number of high-quality PLSs. Also, using ChatGPT
to generate a corpus is a new exploration of LMs’ applications in corpus construction which min-
imizes labor costs associated with collection and reduces annotation costs. Second, understanding
mathematical PLSs necessitates annotators acquire mathematical knowledge at the college or even
higher education levels, thus it is not feasible for annotators to create a large number of PLSs from
scratch. Therefore, we conduct a pilot exploration of corpus construction using ChatGPT. Note
that a ChatGPT-generated PLS contains two-dimensional information: one is the statement itself;
another is the truth value of the statement. To validate the correctness (true/false) of ChatGPT-
generated PLSs, we employ qualified human annotators who pass a qualification test to check the
ChatGPT-generated PLSs. Annotators are asked to check whether or not a ChatGPT-generated PLS
is matched to its truth values by using annotators’ expert knowledge, checking online resources,
or referencing textbooks. Each ChatGPT-generated PLS is checked by one annotator. We observe
that the ChatGPT-generated PLSs have a 17.4% error rate, where a ChatGPT-generated false PLS is
proved to be True; and vice versa. We then ask annotators to manually correct the wrong statements
by revising the PLSs to match their correct truth values. We randomly sample 10% atomic PLSs
from each subject and ask two annotators to annotate their truth values without seeing ChatGPT-
generated truth values. The Cohen’s kappa between the two annotators is 0.77.

To generate implication and equivalence PLSs, we develop a template-based proposition com-
poser with curated templates to automatically compose two atomic PLSs into one compound PLS.
An implication composer uses a set of templates: (1) if [P] then [Q]; (2) [P] implies
[Q]; (3) [P], therefore, [Q]. An equivalence composer uses a set of templates: (1) [P]
if and only if [Q]; (2) [P] is necessary and sufficient for [Q]; (3) [P]
is equivalent to [Q]. Here [P] and [Q] denote two different atomic PLSs. Accordingly,
the labels (i.e., truth values) of compound PLSs are inferred from their truth table (see Table 1,
where implication is the column of P → Q and equivalence is the column of P ↔ Q). We collect
1277 atomic PLSs that cover axioms, theorems, and practice problems. We randomly sample one P
and one Q from the same subject to generate compound PLSs (P → Q and P↔ Q) by running the
proposition composers. After several rounds of the process, 5816 compound PLSs are generated.
Table 2 shows examples from the LOGICPRPBANK corpus, where a compound PLS is composed
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Table 3: The statistics of LOGICPRPBANK corpus across subjects, atom, implication, and equiva-
lence PLSs. The # before/after slash is the # of True and False PLSs, respectively.

Types Algebra Arithmetic Calculus Geometry Numbers Statistics Total

Atomic 115 / 132 117 / 117 101 / 110 115 / 117 43 / 60 122 / 128 613 / 664
Implication 466 / 144 410 / 138 338 / 107 405 / 133 83 / 23 465 / 160 2167 / 705
Equvilance 338 / 287 295 / 266 236 / 220 299 / 253 53 / 56 363 / 278 1584 / 1360

Total 919 / 563 822 / 521 675 / 437 819 / 503 179 / 139 950 / 566 4364 / 2729

of two atomic PLSs (e.g., the implication PLS in Row#4 uses the atomic PLS in Row#2). Table
3 shows the statistics of atomic, implication, and equivalence PLSs regarding their truth values
(true/false) across six mathematical subjects. Note that implication has more true PLSs than false
PLSs because P→Q is always true given P is false, regardless of the value of Q (see Table 1). The
true/false ratio in atom and equivalence is near one.

3. Experiments and Analysis

In this section, we introduce the benchmark experiments on LOGICPRPBANK corpus for PLS cor-
rectness (true/false) classification. We use small-scale LMs, e.g., DistilRoBERTa (Sanh et al., 2019),
RoBERTa-base (Liu et al., 2019), BERT-base and BERT-large (Devlin et al., 2019), medium-scale
LMs, e.g., GPT2-medium (Radford et al., 2019), and BLOOM-560m (Scao et al., 2022), and large-
scale Language Models (LLMs), e.g., Llama2-7B (Touvron et al., 2023), to reason atomic, implica-
tion, and equivalence PLSs, respectively. We finetune small- and medium-scale LMs with parameter
sizes ranging from dozens million to half a billion (given limited computing resources), and perform
few-shot learning on LLMs. In particular, we evaluate the performance of Llama2-7B on the test
set with zero-shot, 1-shot, 3-shot, 5-shot, and 10-shot learning. In the zero-shot scenario, we predict
the test set results without using any training examples. In the other few-shot experiments, we re-
trieve top-n examples from the training set that are most similar to the test example as context. The
similarity is determined by cosine function between sentence embedding (Reimers and Gurevych,
2019). We split the corpus into the train (70%), validation (10%), and test (20%) sets. We use the
training set to train small- and medium-scale LMs and use the validation set to tune their parameters.
In the training, we optimize the model using Adam optimizer with β1 = 0.9, β2 = 0.999, ϵ = 10−8.
The learning rate is 10−5 and the batch size is 32. We train 20 epochs and select the best model on
the validation. We conduct three-seed runs and report average macro F1 scores on the test set for
both finetuning and zero-shot/few-shot learning. We implement LMs with PyTorch (Paszke et al.,
2019) and initial model weights from HuggingFace 3. Due to space limitation, we introduce prompt
details in our code repository4. The experiments are running on a GeForce RTX 3090 GPU.

Table 4 shows the results of zero-shot/few-shot and finetuned LMs for identifying the correct-
ness of PLSs in six mathematical subjects. We have observed that small-scale LMs perform excel-
lently in calculus, geometry, and statistics but are dramatically poor in arithmetic and number the-
ory. This might be because arithmetic and number theory have many number-related propositions
(see Table 2) that are known deficiencies of LMs. These observations answer RQ1 that LMs are
able to reason complex propositional logic only on specific mathematical subjects. Figure 1 shows

3. https://huggingface.co/
4. https://github.com/JZCS2018/AI4ED2024.git
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Table 4: The F1 scores of zeroshot/fewshot and finetuned LMs on LOGICPRPBANK across six
subjects. The top rows are LLMs, the middle rows are medium-scale LMs, and the bottom
rows are small-scale LMs. The highest F1 scores are in bold.

Models Sizes Algebra Arithmetic Calculus Geometry Numbers Statistics Overall

Llama2-zeroshot 7B 39.07 38.37 34.68 38.53 36.17 40.11 38.28
Llama2-1shot 7B 41.19 38.37 44.43 42.17 40.26 43.89 42.09
Llama2-3shot 7B 45.70 42.29 43.94 45.10 46.67 46.92 45.08
Llama2-5shot 7B 53.30 39.09 54.29 47.69 38.44 48.61 46.94
Llama2-10shot 7B 43.72 39.88 43.29 45.52 35.48 45.39 43.59

BLOOM-560m 560M 39.80 37.96 38.23 39.82 36.23 39.19 38.98
GPT-2-medium 345M 39.08 38.52 37.82 39.34 36.74 38.67 38.69

BERT-large 340M 77.83 49.28 96.40 92.70 52.85 97.03 81.03
RoBERTa-base 125M 83.57 51.71 96.80 95.53 44.22 96.15 83.36

BERT-base 110M 92.00 56.71 98.94 98.19 66.93 99.30 87.65
DistilRoBERTa 82M 91.54 55.78 98.77 97.59 56.67 98.87 87.27

the results of finetuned small- and medium-scale LMs and pre-trained LLMs on atomic, equiva-
lence, and implication. We observe that implication is generally better than the other two. BERT
and RoBERTa (LMs) have good performance but medium-scale LMs (BLOOM-560m and GPT-2-
medium) and LLMs have poor performance. These observations answer RQ2 that small-scale LMs
are able to reason complex propositional logic but Llama2 fails, which suggests that increasing the
size of LMs results in performance degradation (see BERT-base v.s. BLOOM-560m). Although
large-scale LMs are supposed to have better performance and sample efficiency in many down-
stream NLP tasks, they do not hold true in reasoning with propositional logic. We argue that propo-
sitional logic is a formal language that uses different logic theories from those in natural languages
(e.g., commonsense knowledge). Therefore, the medium-scale LMs might not learn propositional
logic well given the limited size of the corpus for training. The LLMs are slightly better than the
medium-scale LMs, which suggests that LLMs may have potential in learning propositional log-
ics, even in a few-shot learning scenario. Moreover, we observe that the 5-shot learning yields the
most favorable overall performance, whereas there is an unexpected decline in performance with
the 10-shot configuration. This implies that it is possible that more examples provided to LLMs
would introduce more noise. In conclusion, the constructed LOGICPRPBANK is helpful for training
small-scale LMs to learn complex propositional logic reasoning in most subjects.

4. Related Work

Previous research has focused on addressing mathematical problems within the field of NLP (Wang
et al., 2017; Saxton et al., 2019; Dua et al., 2019). These studies utilize a question-answering
framework to tackle these mathematical problems. The Math23L corpus (Wang et al., 2017) consists
of basic English contextual information, equations, and corresponding answers, primarily involving
arithmetic problems. DeepMind’s research (Saxton et al., 2019) investigates reasoning processes
in algebra. The DROP corpus (Dua et al., 2019) is a reading comprehension corpus that includes
various types of mathematical tasks, such as subtraction and selection. Notably, all answers to its
questions can be directly or indirectly inferred from the provided passages. These questions bear
similarities to those found in Math23L, and the corpus is sourced from elementary school math
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Atomic Equivalence Implication

Figure 1: LM performance on LOGICPRPBANK across atom, implication, and equivalence PLS.

word problems. Based on their limitations, we propose LOGICPRPBANK corpus to address PLSs in
six subjects, which poses a brand-new task of reasoning propositional logic.

5. Conclusion

Reasoning propositional logic (e.g., implication and equivalence) differs from reasoning in NLP
tasks (e.g., commonsense reasoning), since the former involves adhering to a set of rules expressed
in formal languages, while the latter requires understanding about the real world and the common
knowledge conveyed in natural language. To date, there are limited corpora and studies focusing
on propositional logic, especially in mathematical subjects. To bridge the gap, we present LOG-
ICPRPBANK, a corpus containing 7093 atom, implication, and equivalence proposition statements,
designed to facilitate LMs to reason complex mathematical propositional logic. The experiments
indicate that LLMs (e.g., Llama2-7B) and medium-LMs (e.g., BLOOM-560m) perform worse than
the lighter and faster LMs (e.g., BERT and RoBERTa), and LMs struggle with reasoning arithmetic
and number theory but promising in calculus, geometry, and statistics. In future work, we plan to
extend the LOGICPRPBANK corpus to encompass a wider range of subjects, including physics and
chemistry, in order to support the development of interdisciplinary ITSs.

6. Limitations

Our corpus was collected from ChatGPT and then verified and/or annotated by a qualified annotator,
thus there could be annotating errors that would influence the accuracy of the experiments. Using
ChatGPT to generate a corpus is a brand-new design, which brings challenges to verify and validate
the quality of the data, e.g., the inter-agreement rate used in a traditional data annotation pipeline.
But our designed verify-then-correct process for data collecting is proven to save time and labor.
Also, ChatGPT is not free for the whole community so it would not be available to researchers from
specific areas, thus using ChatGPT to generate or annotate data needs extra ethical considerations.
In addition, our corpus is relatively small, which makes it difficult to train or even finetune LLMs.
Although zeroshot/fewshot learning with Llama2 shows promising results but still not better than
trained/finetuned small-scale LMs, which suggests that LLMs are not always the best options while
solving specific tasks that have small annotated data. Furthermore, we only focus on propositional
logic in mathematical fields, however, logical reasoning is not limited to math subjects but to many
real-world scenarios that we have not covered. Moreover, we only benchmark the corpus on a
small number of LMs due to computational resource limitations. And, the error analysis regarding
the performance of LMs on our proposed corpus is not extensively studied because most LMs are
difficult to visualize and/or explain their reasoning steps (e.g., Llama2, CPT-2, BLOOM, etc.).
Therefore, we have limited discussions about error analysis in this work.

Acknowledgements. This work was supported by the NSF award IIS-2145411.
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