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Abstract

This paper studies the problem of CPRP, concept prerequisite relation prediction, which
is a fundamental task in using AI for education. CPRP is usually formulated into a link-
prediction task on a relationship graph of concepts and solved by training the graph neural
network (GNN) model. However, current directed GNNs fail to manage graph isomor-
phism which refers to the invariance of non-isomorphic graphs, reducing the expressivity
of resulting representations. We present a permutation-equivariant directed GNN model
by introducing the Weisfeiler-Leman test into directed GNN learning. Our method is then
used for CPRP and evaluated on three public datasets. The experimental results show that
our model delivers better prediction performance than the state-of-the-art methods.

Keywords: Concept Prerequisite Relation, permutation-equivariant GNNs, Weisfeiler-
Leman Test, Directed Graph Learning, AI for Education.

1. Introduction

With the continuous advancement of dissemination methods, an increasing number of edu-
cational resources are becoming available for people to learn Fischer et al. (2020). Therefore,
finding prerequisite relationships among concepts has become an important issue requiring
investigation in the field of AI for education Pan et al. (2017); Roy et al. (2019). Generally,
this Concept Prerequisite Relation Prediction task, CPRP, is modeled as the link prediction
problem in many studies Sun et al. (2022); Roy et al. (2019). Applications of CRPR involve
material recommendation Guan et al. (2023), learning path planning Shi et al. (2020), and
optimization of problem-solving paths Le et al. (2023).

There are numerous approaches to solving the link prediction problem, including proba-
bilistic models, spectral clustering, evolutionary algorithms, and deep graph learning models
Kumar et al. (2020). Currently, graph neural networks (GNNs) have become the benchmark
method and presented state-of-the-art performance in link prediction Cai et al. (2021), in-
cluding many GNN-based solutions to CPRP Roy et al. (2019); Jia et al. (2021); Sun et al.
(2022); Mazumder et al. (2023). To improve the capability of GNNs, Long et al. (2022) and
Chamberlain et al. (2022) proposed to pre-training node features through the method of
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graph reconstruction and utilizing subgraph sketches to pass messages in subgraph GNNs,
aiming to enhance the capabilities of GNNs and reduce computational costs. Thess models
mitigated the expressive limitations, such as the inability to count triangles and distinguish
automorphic nodes. Persistent homology was also adopted in the work of Yan et al. (2021)
to extract topological information from graphs, which was integrated with node features to
enhance the expressive power of GNNs for link prediction. Besides, the Weisfeiler-Leman
test was introduced by Morris et al. (2019) to improve the capability of differentiating graph
isomorphism in undirected GNN learning Huang et al. (2022).

However, the CPRP problem is usually formulated into the directed-link prediction in a
directed graph Sun et al. (2022). Rather than the undirected graph, the edges can indicate
the prerequisite relation, describing the flow of information from one node to another. The
difference makes undirected GNNs not directly applicable to directed graphs. Hence, Salha
et al. (2019) designed a new gravity-inspired decoder to extend the graph Autoencoders,
while Wu et al. (2019) adopted two weight matrixes for forward edges and backward edges,
respectively, to perform message passing between graph nodes. Nevertheless, there is a lack
of studies on improving the expressive power of direct GNNs for CPRP.

In this paper, we extended the Weisfeiler-Leman test-based GNN model, i.e., SpeqNets
recently introduced by Morris et al. (2022), into the directed graphs for CPRP. The proposed
framework contributes to learning the permutation-equivariant direct GNNs and improving
the prediction performance of CPRP by distinguishing non-isomorphism graphs. Experi-
mental results on three public datasets manifest that our method performs better than the
state-of-the-art methods Sun et al. (2022); Jia et al. (2021); Roy et al. (2019).

2. CPRP: Concept Prerequisite Relation Prediction

The problem of CPRP refers to predicting prerequisite relations between knowledge concepts
involved in learning Sun et al. (2022). For example, one should learn the knowledge concept
(KC) of “conditional probability distribution” before learning “Bayesian theory.” As usual,
CPRP can be formulated into the directed-link prediction in a KC graph.

2.1. Problem formulation

Denote by G = (V,E) a directed KC graph with a vertex set V = {v1, v2, . . . , vN}, where vi
represents a KC in our study, and an edge set E = {eij}1≤i,j≤N , where eij is the prerequisite
relation vi → vj meaning that the KC vi is a prerequisite KC vj . Denote by A ∈ RN×N the
adjacency matrix of G with each element being 0 or 1. CPRP on G can be written into

P(vp, vq) =M(G(vp),G(vq)) (1)

where vp and vq are two KCs; P is the probability of whether the relation epq exists; G is
a representation model that integrates KC information into a vector; the functionM aims
to obtain the existing probability of the prerequisite relation epq.

2.2. Previous Methods

Early works of CPRP usually extracted handcrafted features for G, such as the contextual
and structural features Pan et al. (2017), while recent works are focused on designing deep-
learning models, such as Siamese networks Roy et al. (2019) and GNNs Sun et al. (2022).
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Inspired by the promising performance, we implemented G by training a GNN model in
this study. GNNs aim to learn node representations in a graph by iteratively aggregating
the neighborhood features. In each layer, the feature of the node v is updated by merging
the information transmitted from its neighbors, expressed as

f (t)v = FW
(t)
1

mer (f (t−1)
v ,FW

(t)
2

agg ({f (t−1)(u)|u ∈ N (v)})) (2)

where f
(t)
v indicates the feature vector of the node v at the t-th layer; FW t

1
mer is the merging

function with learned parameters W
(t)
1 and FW

(t)
2

agg is the aggregating function with network

parameters W
(t)
2 ; N (v) delivers the neighbors of node v Wu et al. (2020).

With the node representations from GNNs, many methods can estimate the prerequisite
relations by employing similarity metrics or classical classifiers for M Liang et al. (2018).
However, the previous studies fail to consider the problem of graph isomorphism of the KC
graphs, leading to low expressive powers for CPRP.

3. Our CPRP Method

To achieve fine representations of KCs, our method adopts the well-known Weisfeiler-Leman
test Morris et al. (2021) to guide the GNN training in the KC graph G. With the obtained
KC representations, the Siamese network computes the link probability, shown in Fig. 1.

3.1. Weisfeiler-Leman Test

Denote by S = {(s1, s2, ..., sk)|si ∈ V, i ∈ Ik} a k-tuple S of vertices in the KC graph
G, where Ik indicates the first k natural numbers; si is the i-th element of S specified
to a vj ∈ V . Let V k(G) be the collection of all k-tuples from the graph G. Weisfeiler-
Leman (WL) test is to assign labels to each tuple in V k(G) and then iteratively relabel
these tuples by merging their neighborhood labels. Here, the j-th neighborhood of the
tuple S is yielded by replacing its j-th element with every node v ∈ V , i.e., N k

j (S, v) =
{(s1, s2, ..., sj−1, v, sj+1, ...sk)|v ∈ V } Morris et al. (2021). Based on all neighborhoods of
S, the WL test usually uses a predefined route to compute a new label for the merged node
in the i-th iteration, i.e.,

li(S) = {{(Ck
i (N k

1 (S, v),N k
2 (S, v), ...,N k

k (S, v)|v ∈ V }} (3)

where li(S) represents the obtained label and Ck
i indicates a predefined function that maps

all tuples V k to new labels. Then, the iterative labeling for S can be expressed as

Ck
i (S) = Relabel((Ck

i−1(S), li(S))) (4)

where Relabel(a, b) is to achieve a← b.
The k-WL test is a powerful tool for distinguishing isomorphic graphs. Let G and H be

two graphs. If the number of k-tuples with a specific label differs between graphs G and H
at any iteration, then the two graphs are non-isomorphic. Specifically, 1-WL employs the
1-hop neighbors for N in Eq. (3). With the increase of k, the k-WL algorithm can become
more capable of distinguishing non-isomorphic graphs.
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Figure 1: Workflow of the proposed method for CPRP.

3.2. Main Steps

3.2.1. KC Graph Construction

The first step of the proposed method is to achieve the node features for the given directed
KC graph G using the pre-trained BERT 1. More specifically, the textual descriptions of
KCs from the datasets or Wikipedia were obtained and fed into BERT to extract the KC
embedding for V . With the given E, we achieved the KC graph G Devlin et al. (2018).

3.2.2. Weisfeiler Leman Guided Directed GNNs

On the resulting graph G, we proposed the directed GNN model guided by the k-WL test to
achieve KC representations in this step. To be different from undirected graphs, we denote
by Nout(v) the set of all out-neighbors of the node v. For two connected nodes v and w
in a directed graph, if there exists an edge pointing from v to w, node w is defined as an
out-neighbor of node v. In the proposed method, we redefined the k-tuple as follows,

V̂ (G)k := {(s1, s2, ..., sk)|si ∈ V, i ∈ Ik;∃j ∈ Ii−1 : si ∈ Nout(sj) ∪ {sj}}. (5)

The feature representation of k-tuple (s1, s2, ..., sk) is here given by [n1 : n2 : ... : nk],
where ni denotes the embedding of node si; [· : ·] denotes the concatenation of vectors. For
∀S ∈ V̂ (G)k, the j-th out-neighbor of S can be cast as:

N̂ k
j (S) := {(s1, s2, ..., sj−1, v, sj+1, ...sk)|v ∈ Nout(sj)} (6)

For all k-tuples, the neighbor relationships generated on the j-th element are used to con-
struct a graph representation as Gj . For all graphs Gi(i ∈ Ik), each node in the graph Gi

represents a k-tuple in V̂ (G)k. For all graphs Gi, graph neural networks are constructed
separately for training. After each layer of training is completed, the features of the same
k-tuple on different graphs Gi are fused using multilayer perceptron (MLP). The expression
of k-tuple S at the t-th layer is as follows:

f̂S = FMLP (F (1)
S ,F (2)

S , ...,F (k)
S ) (7)

1. https://huggingface.co/bert-large-uncased
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where f̂S is defined as the representation of k-tuple S at layer t. For ∀i ∈ Ik, F
(i)
S denotes

the representation of k-tuple S in graph Gi after passing through the GCN Kipf and Welling
(2016) designed for graph Gi. FMLP denotes the multilayer perceptron. After several layers
of learning, we obtain the representations of all k-tuples.

The representations of k-tuples obtained through GNN training are finally distributed
to the nodes of G using an average allocation scheme, shown as follows:

x
(i)
j =

1

#{S |∀S ∈ V̂ (G)k, si = vj}

∑
{S |∀S∈V̂ (G)k,si=vj}

hS (8)

where si represents the i-th element in the k-tuple S. x
(i)
j represents the transmission of

feature expressions of k-tuples back to the representations of concept vj , based on the i-th
element in each k-tuple. hS denotes the feature of k-tuple S. #{...} denotes the number

of elements in the set {...}. For ∀i, all x(i)
j vectors are merged and fed into a multi-layer

perceptron to obtain node representations in G.

fj = FMLP ([x
(1)
j : x

(2)
j : ... : x

(k)
j ]) (9)

where fj represents the learned concept vj representations.

3.2.3. Prediction Network

After obtaining the KC representations, the Siamese network is employed here to predict
the probability that the concept vp is a prerequisite concept of concept vq in Eq. (1). Let ẽp
and ẽq be the representations of vp and vq from the two feed-forward networks with shared
weights in the Siamese network. The probability between vp and vq is achieved via

P(vp, vq) = σ (W [ẽi : ẽj : ẽi − ẽj : ẽi ⊙ ẽj : 1]) (10)

where σ represents the sigmoid operator and ⊙ is Hadamard product. Finally, we used the
cross-entropy loss to compute the training loss for the deep framework.

4. Experiments

We used LectureBank Li et al. (2019), University Courses Liang et al. (2017), and ML of
MOOCs Pan et al. (2017) to evaluate the performance and compare to the state-of-the-art
methods, including binary classification models (SVM, LR, NB, RF) Pan et al. (2017),
RefD Liang et al. (2015), GAE Li et al. (2019), VGAE Li et al. (2019), PREREQ Roy
et al. (2019), CPRL Jia et al. (2021), and Conlearn Sun et al. (2022). Besides, we employed
precision, recall, and F1-score as evaluation metrics to measure the performance.

For BERT, we leveraged a combination of course lecture information and Wikipedia
for concept description extraction in the MOOC and University Courses datasets. For the
LectureBank dataset, we utilized the text information from the Wikipedia URLs of each
concept in the dataset. When extracting vectors from texts, the max token size of BERT
was set to 256 for all three datasets.

For our method, the parameter k of k-WL was set to 2. We used Adam as the optimizer
with a learning rate of 0.00002 for all experiments. The batch size was set to 256 for the
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Table 1: Comparison between the results of the baseline model and our model
Datasets Metric NB SVM LR RF RefD GAE VGAE PREREQ CPRL ConLearn Ours

MOOCs

Precision 0.577 0.668 0.748 0.375 0.784 0.293 0.266 0.448 0.800 0.895 0.915

Recall 0.623 0.577 0.270 0.669 0.188 0.733 0.647 0.592 0.642 0.850 0.860

F1-score 0.599 0.619 0.397 0.481 0.303 0.419 0.377 0.510 0.712 0.872 0.887

LectureBank

Precision 0.670 0.857 0.744 0.855 0.666 0.462 0.417 0.590 0.861 0.831 0.857

Recall 0.640 0.692 0.744 0.681 0.228 0.811 0.575 0.502 0.858 0.960 0.960

F1-score 0.655 0.766 0.744 0.758 0.339 0.589 0.484 0.543 0.860 0.891 0.906

University Courses

Precision 0.478 0.796 0.595 0.739 0.919 0.450 0.470 0.468 0.689 0.611 0.822

Recall 0.649 0.635 0.546 0.480 0.415 0.886 0.694 0.916 0.760 0.966 0.74

F1-score 0.550 0.707 0.569 0.582 0.572 0.597 0.560 0.597 0.723 0.749 0.778

MOOC dataset and LectureBank dataset and 512 for the University Course dataset. The
models were trained for 4000 epochs for all experiments until the loss stabilized. As for the
baseline methods, we used default parameters as in their original implementations.

For all three datasets, we selected 80% of the concept prerequisite pairs as the training set
and 20% of the concept prerequisite pairs as the test set. Negative samples were generated
by randomly selecting unrelated phrase pairs from the vocabulary, along with the reverse
pairs of the original positive samples. The results are recorded in Table 1.

From Table 1, we can draw the following observations: the four binary classifiers, i.e.,
NB, SVM, LR, and RF, perform weak on the three datasets due to hand-crafted features,
as well as RefD; GAE, VGAE, and PREREQ exploit the prerequisite relation information
between KCs, resulting in improved performance; the CPRL method fails to delve into the
textual information behind the concepts, leading to better performance; finally, both our
algorithm and ConLearn extract prior information using the large-scale language model
BERT and yield the best evaluations. Importantly, compared to ConLearn, our method
uses 2-WL to integrate the structural information of the graph deeply, resulting in the best
performance in terms of F1-score. All observations manifest that the introduced WL test
into direct GNN is effective for CPRP.

5. Conclusion

This paper proposes a directed graph neural network based on the Weisfeiler-Leman algo-
rithm to address the CPRP problem. Our method leverages BERT for KC text embeddings
and redefines the k-tuple in the directed KC graph. Then, the 2-WL test is implemented to
train a permutation-equivariant GNN. With the KC representation from GNN, the Siamese
network computes the prediction probability of a KC link. Extensive experiments on three
datasets demonstrate the superiority of the proposed method, achieving a more advanced
performance than the state-of-the-art approaches of CPRP. Our future work will consider
more evaluation results and topological information on the graph.
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