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Abstract

We explore the general problem of learning to predict which teaching actions will result in
the best learning outcomes for students in online courses. More specifically, we consider the
problem of predicting which hint will most help a student who answers a practice question
incorrectly, and who is about to make a second attempt to answer that question. In
previous work (Schmucker et al., 2023) we showed that log data from thousands of previous
students could be used to learn empirically which of several pre-defined hints produces the
best learning outcome. However, while that study utilized data from thousands of students
submitting millions of responses, it did not consider the actual text of the question, the
hint, or the answer. In this paper, we ask the follow-on question “Can we train a machine
learned model to examine the text of the question, the answer, and the text of hints, to
predict which hint will lead to better learning outcomes?” Our experimental results show
that the answer is yes. This is important because the trained model can now be applied to
new questions and hints covering related subject matter, to estimate which of the new hints
will be most useful, even before testing it on students. Finally, we show that the pairs of
hints for which the model makes most accurate predictions are the hint pairs where choosing
the right hint has the biggest payoff (i.e., hint pairs for which the difference in learning
outcomes is greatest).
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1. Introduction

Providing students with support while they solve practice problems is known to have positive
effects on their learning outcomes (Hattie and Timperley, 2007), but determining precisely
what support will be the most helpful is a nontrivial task for designers of intelligent tutoring
systems (ITSs) (Nathan et al., 2001). In this paper we consider a case study of this problem,
in which the task is to choose which of several pre-defined hints will best help a student
when they answers a practice problem incorrectly, but before they make a second attempt
to answer it. The work we report here builds on our previous work, in collaboration with the
online learning platform ck12.org, in which we used log data from over a hundred thousand
students creating millions of question answers Schmucker et al. (2023). We used this data to
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learn, for each practice question, which of its pre-defined hints was most successful. Success
of the hint in this previous work was defined in terms of the correctness rate of students in
their second attempt to answer the question, and final score over the entire current lesson.

While that work succeeded in discovering useful hints, and has now been deployed to
hundreds of thousands of students using the ck12.org learning platform, our approach there
did not consider the actual text of the question, its answer, or the hints. In the current
paper we present a new approach that does consider this text content. In particular, we
train a classifier that takes as input the text embeddings of the question, of two hints, of
the answer, and additional features described below, to predict which of the two hints will
be most successful. Here we define success in terms of the rate of correct responses obtained
from the second attempt of students in answering this question. We use student log data
to obtain these second response correctness rates as supervision for training, but once the
model is trained it can take new questions and hints as inputs and needs no log data to
make its predictions of which hint will work best.

We frame our problem as a classification problem (classifying which action is better)
rather than a regression problem (predicting the exact second attempt correctness rate for
each hint) for the following reasons: 1.) The goal is to decide which hint is better, rather
than predicting the actual reattempt correctness rate. 2.) A voting consensus mechanism
can be adapted to pick out the best hint within the set of 4-6 hints typically available for
each question, and 3.) Pairwise comparison is an easier and more interpretable task. The
main contributions of this paper include:

• We develop a classifier that predicts differences in the effectiveness of hints based on
their text content, along with the text of the question and answer, showing that this
classifier can be successfully trained on questions and hints from two different courses:
Physical Science and Biology.

• We perform an analysis of which features are most useful for this classifier, considering
additional input features such as the prediction of GPT-3.5 / GPT-4 regarding which
hint will be most effective.

• We study how classifier accuracy is related to the magnitude of the difference in hint
effectiveness, finding that the classifier is most accurate in the most important cases
(i.e., when the actual difference in learning outcomes for the two hints is greatest).

The results of our study suggest that trained classifiers such as ours may play an impor-
tant role in the design and continuous improvement of future online education platforms.

2. Related Work

Early research evaluated design principles for intelligent tutor systems (ITS) on the sys-
tem level, where all decisions points inside the ITS implemented the same design choice
(e.g., step-wise hints during problem solving) (Kulik and Fletcher, 2016). Since then, the
focus shifted towards data-driven approaches that leverage student data to identify effective
teaching actions for individual decision points often via bandit algorithms and randomized
experiments (e.g., (Selent et al., 2016; Ostrow et al., 2017; Williams et al., 2018; Fancsali
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et al., 2022; Schmucker et al., 2023)). Our work also focuses on building a system to identify
the best teaching action (e.g., hint). With the advent of online ITSs, large scale student
log data is available, and with this data it has become possible to apply machine learning
methods in practice to improve online education.

The action of providing assistance (e.g., a hint) when a student answers a question
incorrectly, and before they reattempt the question, inherently provides a training signal
about the effectiveness of the assistance, which can be used to improve student learning.
As such, a survey of using reinforcement learning is described in (Doroudi et al., 2019).

One key difference and benefit of our approach is that prior work relies on student log
data to determine which teaching actions are most effective necessitating the collection of
new log data for each new teaching action. In this work, we use data from prior large-scale
action evaluations as supervision to train a model capable of assessing new teaching hints
for which no student log data is available yet based on textual content. The evaluations
provided this model can reduce the need for online content evaluations and mitigates the
new content cold-start problem (Schmucker and Mitchell, 2022).

3. Dataset

We used the dataset from (Schmucker et al., 2023) to train our models. This data was
collected during a randomized experiment inside the Flexbook 2.0 system hosted by the
CK-12 foundation. The dataset is comprised of the questions, hints, and student-provided
answers for each. In addition, data was aggregated across students to calculate the rate
of correct reattempts by students who got a question wrong and were provided a hint
before reattempting the question. From the large scale randomized study, each hint has a
corresponding reattempt score (correctness rate) which summarizes how effective that hint
is in helping the student answer the question correctly on their second attempt.

We focus on two different courses in the CK-12 dataset, Biology, and Physical Science.
From these courses we obtain the questions, answers, hints, and student log data. The
dataset is based on data from over 300,000 students. For each of the two courses, this yields
over 7000 examples, where each example consists of a question, two available hints for that
question, and the second attempt score for each hint.

4. Approach

Text Embeddings We process the data from each lesson using Large Language Models
(LLMs) to retrieve vector embeddings for each question, hint, and answer text. We choose
ADA (OpenAI, 2020) for our embeddings. The embeddings represent the text content, and
are used as an input to our model.

Embedding Feature Engineering In addition to the raw text embeddings of questions,
answers, and hints, we also introduce a vector which is the z-scored difference between the
two input assistance embeddings.

Embedding Classification Model. As shown in Figure 1, our baseline model is a fully
connected two layer neural network using a sigmoid output, trained with a cross entropy
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Figure 1: Model Architecture. The neural network to the left (the ”Embedding Model”)
first predicts the probability that hint 1 is better than hint 2, based on text
embeddings of the question, the difference between the hint embeddings, and
optionally the embeddings of the correct answer and incorrect answers. The
prediction of this baseline model is then input to the rightmost neural network
(the ”combination model”), which combines this prediction with additional inputs
to make the final prediction.

loss function, so that the output can be interpreted as the probability that input Hint 1
is more helpful than input Hint 2. The baseline model uses elastic net to regularize the
cross entropy loss. The hidden layer contains 208 neurons which is then followed by batch
normalization, ReLU activation and a dropout layer before the output layer. We trained
two of these embedding classification models using ADA text embeddings described in our
previous section. The first uses the question text and difference between embeddings of
Hint 1 and Hint 2 text. The second uses these same input features plus the embeddings of
the correct answer text, and incorrect answer text (e.g., for multiple choice questions, the
embedding of all incorrect answers).

Combination Model. To train our downstream combination model (the rightmost net-
work in Figure 1), we first picked the most accurate embedding classification model. Inputs
to our combination model include the binary classification prediction of our embedding
model, the question type (a one-hot encoding of alternatives ”fill-in-the-blank”, ”multiple-
choice”, ”short-answers”, and ”select-all-that-apply”), types of the two hints being com-
pared and classification labels from GPT-3.5 Instruct Turbo or GPT-4 when they are asked
which hint is likely to work best (Figure 4). There are three types of hints that we consider:
short hint (1-2 sentences), vocabulary (relevant keyword definitions), and paragraph (short
excerpt from lesson text). Our combination model as shown in Figure 1 has the same archi-
tecture as the embedding classification model. The only difference being the input features
and the hidden layer’s size which increased to 613 neurons. When querying GPT-3.5 Turbo
and GPT-4 to ask which hint is more helpful, we used the prompt shown in Figure 4.
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You are a high school {subject name} teacher. A student was asked a practice question, but
answered incorrectly. Which of the following two hints (hint A or hint B) is more likely to help
the student answer correctly on their 2nd attempt? The question, its solution and the two hints
provided below: Question: {question text}
Solution: {answer text}
Hint A: {hint 1 text}
Hint B: {hint 2 text}
Write your decision in the following format: Hint A OR Hint B

Figure 2: Prompt to GPT-3.5 Turbo and GPT-4 when asking it to compare two hints. We collected
both the LLM response, and the token probability for ”A” and ”B.”

5. Results

5.1. Evaluation Metrics

For each example, we evaluate the correctness of the model’s prediction based on the actual
observed students’ reattempt success rate for each question and hint. We evaluate model
performance using both Accuracy and Area under ROC curve (AUC). We report average
standard deviation performance for each metric using a 5-fold cross-validation on the ques-
tion level. In separating train from test sets, we assure that train and test sets contain only
disjoint sets of questions, to avoid the problem of potential overfitting when overlapping
content is in train and test set.

5.2. Feature Evaluation

Our embedding classification model, presented in the top row of Table 1, used only ques-
tion and assistance embeddings as its inputs. We hypothesized that integrating additional
textual data, student log data, and LLM predictions could enhance our classifier’s accu-
racy. We therefore trained alternative models, each of which included a single additional
feature from this feature pool. As shown in Table 1, adding these features as inputs yielded
only slight improvements. This indicates that the essential factors for our neural network’s
assistance decisions are primarily the question and assistance text.

5.3. Comparison of Trained Model Against Alternative Approaches

To further test our model, we compared it against two other approaches: (1) asking GPT-
3.5 or GPT-4 to select the best hint for the question, and (2) ”paragraph when possible”, in
which we choose the paragraph whenever it is one of the available hints, and choose randomly
in the case the neither or both hints are paragraphs. Note that among the alternative hints
used by CK12, a paragraph hint consists of one paragraph of text taken from the reading
material for this lesson. Averaged across all questions, these paragraph hints have the
greatest success rate, so this ”paragraph if possible ” hint baseline is considerably more
accurate than the baseline of simply selecting hints at random.

Table 2 presents the results of this comparison. Here ”Random” refers to the approach of
randomly choosing one of the two hints, ”Best Embedding Classification” refers to the best
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Table 1: Feature evaluation. Each entry reports average ACC and AUC for a MLP classifier trained
using question, assistance action, and answer text embeddings augmented with a single
additional feature in an ensemble model. Mean and standard error are computed using
five-fold test data.

Biology Physical Science
Method Accuracy AUC Accuracy AUC

Embedding Classification (quest. + assist.) 0.641 ± 0.007 0.698 ± 0.013 0.628 ± 0.007 0.666 ± 0.004
Embedding Classification (quest. + assist. + answ.) 0.643 ± 0.006 0.696 ± 0.010 0.617 ± 0.010 0.654 ± 0.008

Best Embedding Model w/ assistance type 0.647 ± 0.010 0.708 ± 0.011 0.636 ± 0.016 0.678 ± 0.012
Best Embedding Model w/ question type 0.643 ± 0.008 0.658 ± 0.007 0.626 ± 0.008 0.659 ± 0.011
Best Embedding Model w/ GPT-3.5 predictions 0.647 ± 0.010 0.678 ± 0.016 0.636 ± 0.004 0.655 ± 0.008
Best Embedding Model w/ GPT-4 predictions 0.664 ± 0.011 0.700 ± 0.015 0.659 ± 0.004 0.681 ± 0.009

Table 2: Classifier evaluation. We report accuracy (ACC) and AUC for different classifiers trained
to identify the more effective assistance action in pairwise comparisons. Mean and stan-
dard error are computed using five-fold test data. AUC scores were not available for
GPT-4 because its prediction probabilities were unavailable.

Biology Physical Science
Method Accuracy AUC Accuracy AUC

Random 0.500 0.500 0.500 0.500
Paragraph if possible 0.641 0.701 0.602 0.657
GPT-3.5 Prediction 0.616 0.617 0.622 0.627
GPT-4 Prediction 0.666 - 0.659 -
Best Embedding Classification 0.643 ± 0.006 0.696 ± 0.010 0.628 ± 0.007 0.666 ± 0.004
Combination 0.679 ± 0.014 0.740 ± 0.012 0.664 ± 0.006 0.718 ± 0.007

trained embedding classification model, and ”Combined” refers to our combined model aug-
mented by all of the additional features shown in Table 1 and the output of the best embed-
ding classification model for their respective subject. Notice here that GPT-3.5 and GPT-4
both perform considerably better than the Random baseline in choosing hints, though our
combined trained model perform the best by a slight margin.

Finally, we study what are the hint pairs for which our model performs well, versus
those for which it does not. Figure 3 shows for each course subject the prediction accuracy
of our model plotted against the difference in the effectiveness of the two hints (labeled
”effect delta”). We find that for hint pairs with a large effect delta our model exhibits quite
high prediction accuracy. As the effect size decreases so does our prediction accuracy. This
result shows that the model is best at choosing the most effective hint precisely in the cases
where the choice is most important: when the difference in hint effectiveness is greatest.

6. Conclusion and Future Work

This paper presents the first demonstration, to our knowledge, that a classifier can be trained
to choose the best hint for a question, based solely on the text of the question and hints.
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Figure 3: Pairwise classification accuracy for Biology [Left] and Physical Science [Right]. We sort
the hints comparison problems based on the difference in effects sizes between the two
hints, and group them into deciles. For each group we compute average classifier accuracy
(left axes) and effect difference (right axes). We observe highest classification accuracy
for hint pairs with large effect size differences.

The classifier is trained to choose the hint with the best learning outcome as determined
from high-volume student log data. However, once trained, the model can be applied to new
hints and questions on related course topics, even before any student log data is available.
This opens up the possibility of taking in new hints suggested by educators, or generated
by LLMs, and automatically filtering them with our trained classifier. In this study, we
also examined a range of possible input features for the classifier, finding that the text of
the question and hints provide most of the information on which successful predictions are
based. Most importantly, we find that our model is most accurate in the cases where it’s
predictions are most critical, that is, when the difference in learning outcomes for the two
hints is greatest. In the future, we would like to explore training a more complex model
on all subjects instead of separating them by the subject. In doing so, we hope to discover
how to best utilize student log information alongside textual information to build a model
that leverages the best of both modalities.
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