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Abstract

Traditional generalization results in statisti-
cal learning require a training data set made
of independently drawn examples. Most of
the recent efforts to relax this independence
assumption have considered either purely
temporal (mixing) dependencies, or graph-
dependencies, where non-adjacent vertices
correspond to independent random variables.
Both approaches have their own limitations,
the former requiring a temporal ordered
structure, and the latter lacking a way to
quantify the strength of inter-dependencies.
In this work, we bridge these two lines of work
by proposing a framework where dependen-
cies decay with graph distance. We derive
generalization bounds leveraging the online-
to-PAC framework, by deriving a concentra-
tion result and introducing an online learning
framework incorporating the graph structure.
The resulting high-probability generalization
guarantees depend on both the mixing rate
and the graph’s chromatic number.

1 INTRODUCTION

Consider the problem of predicting house prices based
on data collected from a variety of locations. The value
does not only depend on factors like home size, age,
and amenities, but is also influenced by the neighbor-
hood. In the language of probability theory, this can
be modeled with a set of dependent random variables,
with prices of neighboring houses showing positive cor-
relation that decays with distance. Similar dependen-
cies occur between users’ opinions on social networks,
where connected members are more likely to share sim-
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ilar views (Montanari and Saberi, 2010). In this pa-
per, we study the generalization ability of learning al-
gorithms trained on such correlated data sets, where
dependencies are encoded in graph structures.

In machine learning, a model’s gap in accuracy on
training data and new, previously unseen, inputs is
known as generalization error. Controlling this quan-
tity offers theoretical guarantees on the typical perfor-
mance on future data, reflecting the algorithm’s abil-
ity to infer patterns (Shalev-Shwartz and Ben-David,
2014). In the past decades, a vast body of literature
on this area has emerged, developing tools such as
Rademacher complexity, VC dimension, uniform sta-
bility, and PAC-Bayesian inequalities (Vapnik, 2000;
Bousquet and Elisseeff, 2002; Bousquet et al., 2004;
Alquier, 2024). Yet, the great majority of current
analyses consider training data sets made of indepen-
dent and identically distributed (i.i.d.) examples, a
strong requirement unrealistic for many applications
(e.g., traffic forecasting (Yu et al., 2018), stock price
prediction (Ariyo et al., 2014), or the examples above).

Recently, interest in statistical learning frameworks
accounting for data correlations has surged. A ma-
jor research line models these dependencies via mixing
assumptions (see Bradley 2005 for several notions of
mixing, such as α-, β-, ϕ-, and ψ-mixing), which con-
trol how quickly the influence between random vari-
ables decays as the (temporal, spacial, etc.) distance
between them grows. This setting provide a quanti-
tative measure of the dependencies among the data
points, but has the major drawback of requiring data
to have a well defined ordered structure. An alter-
native common framework takes a more qualitative
approach, where the dependencies are captured by a
dependency graph that assigns an edge to any pair of
vertices whose associated data are dependent. This
approach can encode correlations among non-ordered
data, but leads to loose results when the actual de-
pendencies are weak (Janson, 2004). In this work, we
propose combining the mixing and graph-based per-
spectives to tackle situations where the strength of the
dependencies is somehow known, yet the data lack an



Online-to-PAC generalization bounds under graph-mixing dependencies

ordered structure. In this graph-mixing scenario, the
correlations decay as the graph distance increases.

To prove our generalization results, we follow an algo-
rithmic approach that derives guarantees for statistical
learning using tools for regret analysis in online learn-
ing. Online learning is a framework that deals with
sequential decision problems, where a learner (a.k.a.
player) interacts with an evolving environment. The
learner’s goal is to select actions over time to minimize
the regret (a quantity comparing the player’s actions
to the best fixed action in hindsight). We refer to
Cesa-Bianchi and Lugosi (2006) and Orabona (2019)
for thorough introductions to the subject. A recent
line of research (commonly called algorithmic statis-
tics) has explored unconventional ways to tackle classi-
cal statistical challenges, drawing connections with on-
line learning. This approach has successfully addressed
problems such as hypothesis testing (Grünwald et al.,
2024), decision making (Foster et al., 2021), mean es-
timation (Orabona and Jun, 2024), and martingale
concentration (Rakhlin and Sridharan, 2017). This
strategy has also been applied to study generaliza-
tion in statistical learning, for instance leading to
Rademacher (Kakade et al., 2008) and PAC-Bayesian
bounds (Jang et al., 2023; Lugosi and Neu, 2023;
Abeles et al., 2024; Chatterjee et al., 2024). Most
of these methods split the problem into two parts, a
worst-case one that is dealt with online regret analysis,
and a probabilistic one. When studying generaliza-
tion with i.i.d. data (as in Jang et al. 2023 and Lugosi
and Neu 2023), the probabilistic part reduces to upper
bounding the deviations of a martingale. This martin-
gale structure is lost if dependencies among the train-
ing data are present. Abeles et al. (2024) addressed
this issue for mixing processes, imposing a delayed-
feedback constraint on the player’s strategy in the
framework of Lugosi and Neu (2023), which allowed
them to decompose the overall error into the regret
of a delayed online learning strategy and the fluctua-
tions of a stationary mixing process. Here, we follow a
similar approach to tackle more complex graph-mixing
dependencies, by introducing a novel online learning
framework on graphs, and studying the concentration
of what we name graph-mixing processes.

Several works established generalization guarantees
under mixing assumptions. Mohri and Rostamizadeh
(2007, 2010) obtained generalization bounds for uni-
formly stable algorithms under stationary ϕ- and β-
mixing, leveraging concentration tools from Yu (1994)
and Kontorovich and Ramanan (2008). Fu et al.
(2023) tightened these results, adapting stability tech-
niques from Feldman and Vondrak (2019) and Bous-
quet et al. (2020) to achieve optimal rates under
ψ-mixing assumptions. Stability bounds were also

proved by He et al. (2016), in the context of rank-
ing, under ϕ-mixing assumptions. Rademacher bounds
under β-mixing stationary conditions were first es-
tablished by Mohri and Rostamizadeh (2008) via the
blocking technique from Yu (1994), and later ex-
tended to the non-stationary case by Kuznetsov and
Mohri (2017). Excess risks bounds, comparing the
algorithm’s output with the best predictor in some
given class, were established by Steinwart and Christ-
mann (2009) under geometrically α-mixing conditions.
Later, Alquier and Wintenberger (2012) and Alquier
et al. (2013) employed PAC-Bayesian tools to upper
bound the excess risk in model selection, when data
are coming from a time series generalizing the stan-
dard notion of mixing (following ideas by Rio 2000).
Excess risk was also studied by Agarwal and Duchi
(2013), who extended the online-to-batch conversion
of Cesa-Bianchi et al. (2001) to the case of β- and
ϕ-mixing data, under the hypothesis of a bounded,
convex, and Lipschitz loss function. Finally, we men-
tion the two results that are the closest to our current
work. Both Chatterjee et al. (2024) and Abeles et al.
(2024) build on the online-to-PAC framework intro-
duced by Lugosi and Neu (2023). The former follow
the approach of Agarwal and Duchi (2012) to deal with
ϕ- and β-mixing stationary dependencies, and hence
need strong regularity for the losses. Conversely, the
latter consider a slightly different definition of station-
ary mixing and (as previously mentioned) leverage the
framework of online learning with delayed feedback to
perform the online-to-PAC reduction.

For the standard graph-dependence setting (with inde-
pendent variables for non-adjacent vertices) a classical
result is a Hoeffding-flavored concentration inequality
by Janson (2004), where the graph’s fractional chro-
matic number (a graph-theoretic combinatorial quan-
tity) appears and re-weights the sample size. The core
idea in Janson’s proof consists in splitting the graph
into sets whose vertices are non-adjacent (and hence
independent), an approach that resembles the blocking
technique from Yu (1994) for mixing processes. The
first generalization bound in this framework was mo-
tivated by ranking (whose loss form naturally leads to
these graph-dependencies) and obtained by Usunier
et al. (2005), who built on Janson (2004) to estab-
lish Rademacher-like bounds. Later, Ralaivola et al.
(2010) derived PAC-Bayesian bounds, again leverag-
ing the same blocking technique. More recently, Zhang
et al. (2019) proved a novel McDiarmid-type inequal-
ity for tree-dependent random variables, and extended
it to general graphs by decomposing them into forests.
Via this concentration result they established gener-
alization bounds for uniformly stable algorithms. We
refer to Zhang and Amini (2024) for a recent survey
on these and other results of generalization on graphs.
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Finally, of special interest is the work of Lampert et al.
(2018), establishing concentration inequalities for the
sum of random variables with graph-encoded corre-
lations. Their way to deal with dependencies shares
many similarities with our model, which could actu-
ally be seen as an instance of their broader setting.
However, this higher generality comes at the price of a
rather convoluted technical analysis, introducing more
complex notions of interdependence. Their approach
is based on an approximation theorem from Bradley
(1983) that allows to replace a set of dependent ran-
dom variables with independent copies, at a price of
an additive term involving a suitably defined separa-
tion coefficient. Another closely related approach is
the work of Féray (2018), proving central limit theo-
rems by encoding dependencies into a weighted graph,
whose edges’ weights measure the strength of the de-
pendencies. In the present paper, we opted to develop
a simpler framework which, while slightly less flexi-
ble, allowed us to conduct a more transparent analysis,
easier to adapt to practical needs. We defer to future
research combining our analysis with the techniques
developed in these two works.

2 THE GENERALIZATION
PROBLEM

We consider a data set Sn = (Z1, ..., Zn), drawn from a
probability distribution µn over Zn, where Z denotes
a (measurable) instance space. We assume that each
Zi has the same marginal µ. The simplest situation
is when all the element of Sn are i.i.d., in which case
µn = µn, but we will focus on more general situations.
We denote as W a measurable class of hypotheses, and
we let ℓ : W × Z → [0,∞) be the loss function, with
ℓ(w, z) measuring the quality of the hypothesis w ∈ W
on the instance z ∈ Z. The statistical learner’s goal
is to find a hypothesis that performs well on average,
ideally the w ∈ W that minimizes the population loss
L(w) = Eµ[ℓ(w,Z)]. Yet, µ is unknown to the learner,
whose only knowledge comes from the training dataset
Sn. We define the empirical loss to be the average of
ℓ on the training data set, L̂n(w) =

1
n

∑n
t=1 ℓ(w,Zt).

A learning algorithm is a procedure to get a hypothe-
sis w ∈ W starting from a training data set Sn. More
generally, we will consider a randomized learning algo-
rithm, that is, a mapping A : Zn → ∆W , where ∆W
denotes the set of probabilities over W. Note that de-
terministic algorithms (mapping Sn to a single w) can
be seen as a particular case of the randomized setting,
where the output distribution is a Dirac mass. As
previously mentioned, the ultimate goal of the statis-
tical learner is to optimize the population loss. In the
context of randomized algorithms, we aim to control

the expected value of this quantity. For a probability
measure P ∈ ∆W , with a slight abuse of notation, we
define the expected population loss as L(P ) = ⟨P,L⟩,
where ⟨P, f⟩ denotes the expectation under P of a mea-
surable function f on W. Similarly, we define the ex-
pected empirical loss as L̂n(P ) = ⟨P, L̂n⟩.

For convenience, we denote the output of a random-
ized algorithm A as P̂n = A(Sn) ∈ ∆W . We stress

here that P̂n is a stochastic quantity, as it depends on
the random training data set Sn. Hence, the expected
population loss L(P̂n) is stochastic. We call general-
ization bound a high-probability inequality in the form

µn

(
L(P̂n) ≤ B

(
L̂n(P̂n), δ

))
≥ 1− δ , (1)

where B is some function and δ ∈ [0, 1] is the confi-
dence level. For the sake of brevity, we introduce the
notation ≤δ for inequalities holding with probability at
least 1− δ, and (1) becomes L(P̂n) ≤δ B(L̂n(P̂n), δ).

2.1 Online-to-PAC reduction

Lugosi and Neu (2023) have recently established a
framework, which they named online-to-PAC conver-
sion, to obtain generalization bounds for statistical
learning (in the i.i.d. setting) by upper bounding the
regret of an online learner in the following associated
online learning game.

Definition 1 (Generalization game). Fix an arbitrary
data set Sn = (Z1, . . . , Zn) ∈ Zn. For n rounds,
an online player and an adversary play the following
game. At each round t = 1, 2, . . . , n:

• the online learner picks a distribution πt ∈ ∆W ;

• the adversary picks a map gt : w 7→ L(w)−ℓ(w,Zt);

• the learner incurs a cost −⟨πt, gt⟩;
• Zt is revealed to the learner.

Let Π = (πt)t≥1 be an online strategy for the game
above. We remark that the learner’s choice of πt has to
be done before Zt is revealed, and so can only depend
on the past observations (up to round t−1). Fixed an
arbitrary P ∈ ∆W , we define the regret of Π against P
at round n as RΠ,n(P ) =

∑n
t=1(⟨P, gt⟩−⟨πt, gt⟩). The

online-to-PAC reduction is the next decomposition.

Theorem 1 (Theorem 1, Lugosi and Neu 2023). Fix
any online strategy Π for the generalization game. Any
statistical learning algorithm P̂n = A(Sn) satisfies

L(P̂n) ≤ L̂n(P̂n) +
1

n

(
RΠ,n(P̂n) +MΠ,n

)
, (2)

where MΠ,n =
∑n

t=1⟨πt, gt⟩.

A key remark to make use of this decomposition comes
from the fact that, when the training data set Sn is
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drawn from µn (and hence i.i.d.), the negation MΠ,n,
of the online learner’s cumulative cost, is a martin-
gale under the natural filtration induced by Sn, that
is, the σ-fields Ft = σ(X1, . . . , Xt). This follows from
the fact that the online strategy is a predictable se-
quence of actions, as πt does not depend on Zt and
is Ft−1-measurable.1 In particular, one can leverage
classical martingale concentration results to get high
probability generalization bounds in the form of (1).
We remark that in practice it is not necessary to ac-
tually play the generalization game. Indeed, one can
replace the regret RΠ,n by an upper bound, whenever
this is known. The study and derivation of regret up-
per bounds is a main topic of interest in the online
learning community.

For a concrete application of the above observations,
we state a corollary of Theorem 1, which uses the
parameter-free online strategy introduced by Orabona
and Pál (2016) for learning with expert advice.

Corollary 1 (Corollary 6, Lugosi and Neu 2023). As-
sume that ℓ is bounded in [0, 1], fix δ ∈ (0, 1) and an ar-
bitrary P ∈ ∆W (whose choice cannot depend on Sn).
Then, the following generalization bound holds in high
probability, uniformly for all algorithms P̂n = A(Sn),

L(P̂n) ≤δ L̂n(P̂n) +

√
3KL(P̂n|P ) + 9

n
+

√
log 1

δ

2n
.

We notice that the above result is in the typical form
of a PAC-Bayes bound (Guedj, 2019; Alquier, 2024),
which typically involves a complexity term in the form
of the relative entropy, KL, between a data-agnostic
prior P and the data-dependent posterior P̂n. Indeed,
the framework introduced by Lugosi and Neu (2023)
allows to recover several classic PAC-Bayesian results,
and provides a range of generalizations thereof.

2.2 Going beyond the i.i.d. assumption

As it is the case for Corollary 1, also the other appli-
cations of Theorem 1 in Lugosi and Neu (2023) lever-
age the fact that MΠ,n is a martingale to derive high-
probability generalization bound. However, as pre-
viously mentioned, this approach cannot be directly
applied when inter-dependencies among the training
data are present, as these can prevent MΠ,n from be-
ing a martingale. Two solutions (Chatterjee et al.,
2024; Abeles et al., 2024) have been recently pro-
posed to extend the online-to-PAC reduction to sit-
uations where the correlations in the training data set

1In general, one could let πt depend on other sources
of randomness, not encoded in the data. This can be ad-
dressed by suitably adapting the filtration, but leaves all
the results that we present unchanged.

can be controlled by stationary mixing assumptions.
The analysis of Chatterjee et al. (2024) was inspired
by Agarwal and Duchi (2013) and involves controlling
the concentration properties ofMΠ,n under strong reg-
ularity assumptions for the loss, leaving the online for-
mulation untouched. On the other hand, Abeles et al.
(2024) took a perhaps more natural perspective. They
introduced a delayed feedback in the online generaliza-
tion game (a delay of d means that Zt is only revealed
at round t+d), ensuring thatMΠ,n becomes a station-
ary mixing process, whose concentration can be con-
trolled via a standard blocking technique (Yu, 1994).
Our current work extends this approach to more gen-
eral dependencies, encoded by a graph. To do so,
we need to introduce a suitable online framework for
learning on graphs that generalizes the online learn-
ing with delays setting. This will ensure that MΠ,n

is a sum of terms whose correlations can be suitably
controlled, allowing to obtain high-probability gener-
alization guarantees. These ideas will be formalized in
the next section, after the definitions of several graph-
theoretic concepts.

3 TECHNICAL TOOLS

As already mentioned, we will model dependencies be-
tween random variables in the language of graphs, and
will extend the online-to-PAC conversion framework of
Lugosi and Neu (2023) to deal with data points with a
graph-dependency structure. This section presents the
technical background that is necessary for formulating
our assumptions on the data, and formulates an on-
line learning framework defined on a graph structure,
which will serve as basis for our reduction.

3.1 Basic definitions

We first introduce here a few basic definitions related
to graphs, which will be used throughout our analysis.

Definition 2. A graph G is a pair of sets (V,E).
The elements of V are called vertices, or nodes, and
the elements of E are called edges. Each edge is an
unordered pair of elements of V .

We will only consider loopless graphs where each edge
includes two distinct vertices. Given a graph G, the set
of its vertices is denoted as V (G), while E(G) refers
to its edges. Two vertices u and v of G are said to
be adjacent if {u, v} is an edge in E(G), otherwise
they are called non-adjacent. The number of edges a
vertex v belongs to is called the degree of v, and the
degree of the graph is defined as the highest degree
among all its vertices. The order of a graph is the
number of its vertices. A sequence of edges in the form
{v0, v1}, {v1, v2} . . . {vt−1, vt} is called a path of length
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t, connecting v0 to vt. Two vertices are connected if
there is a path connecting them. We define the graph
distance distG(u, v) as the length of the shortest path
from u to v. If u and v are not connected, then we let
distG(u, v) = +∞.

A subset S of V (G) is called a stable subset of the
graph G if any two vertices u and v in S are non-
adjacent.2 A family {Sk}k of stable subsets of G is
a stable cover if ∪kSk = V (G). Moreover, a stable
cover such that all the Sk are disjoint is called a stable
partition of G. The chromatic number χ of a graph G
is the cardinality of the smallest stable partition of G,
namely the minimum number of stable subsets needed
to form a stable partition of G.

More broadly, one can consider weighted families
{(wk, Sk)}k of stable subsets of G, where the wk are
non-negative coefficients. A stable fractional cover is
a weighted family such that

∑
k wk1v∈Sk

≥ 1, for each
vertex v ∈ V (G). If

∑
k wk1v∈Sk

= 1 for any v, we
speak of a stable fractional partition. The fractional
chromatic number χf of G is the minimal value of∑

k wk, among all the stable fractional partitions of
G. As any stable partition is a stable fractional parti-
tion with all the weights set to 1, we see that χf ≤ χ.

The previous definitions can be generalized by replac-
ing the non-adjacency condition with one involving a
minimal distance. We give formal definitions for the
resulting objects, which play a key role in our analysis.

Definition 3. A d-stable subset S of G is a subset
of V (G) such that distG(u, v) ≥ d for any two distinct
elements u and v in S.

Note that the 2-stable subsets of G are exactly its sta-
ble subsets, while any subset of V (G) is 1-stable.

Definition 4. A d-stable fractional partition of G is a
weighted family of d-stable subsets of G, {(wk, Sk)}k,
such that

∑
k wk1v∈Sk

= 1 for all v ∈ V (G).

Definition 5. The fractional d-chromatic number χ(d)

f

of G is the minimal value of
∑

k wk, among all the d-
stable fractional partitions of G.

Another way of thinking about d-stable sets is in terms
of power graphs. The d-th power graph of G is a graph
Gd such that V (Gd) = V (G), with an edge for any
two vertices whose distance (in G) is at most d. The
d-stable subsets of G are exactly the stable subsets of
Gd−1, and therefore χ(d)

f = χf (G
d−1).

2Stable subsets are also known as independent subsets.
However we preferred the (also commonly used) term ‘sta-
ble’ to avoid confusion with probabilistic independence.

3.2 (G,ϕ)-mixing processes

We will consider a dependency structure between the
training data Sn = {Z1, . . . , Zn} specified in terms of
a graph G = (V,E), with the set of nodes V asso-
ciated to the set of data points, and the edges E de-
scribing the pairwise dependencies between them. The
strength of the dependence between any two points
Zi and Zj is assumed to decay with the graph dis-
tance between the corresponding nodes vi and vj in
the graph, with the graph distance between any pair
(u, v) defined as the length of the shortest path be-
tween the two nodes. In order to define the precise
dependence structure between the data points (which
will be formalised in Assumption 1), we will make use
of the concept of a dependence structure that we call
a (G,ϕ)-mixing process, defined as follows.

Definition 6. Let XG = {Xv}v∈V (G) be a family of
centred random variables, labelled on a graph G. We
say that XG is a (G,ϕ)-mixing process if there exists
a non-negative non-increasing sequence ϕ = (ϕd)d>0

such that, for any v ∈ V ,

E [Xv |Fv,d ] ≤ ϕd ,

where Fv,d = σ({Xv′ : distG(v, v
′) ≥ d}).

When G is a chain (with nodes indexed by time t, and
edges connecting consecutive time indices), the above
definition is closely related to standard mixing assump-
tions, suggesting that the process effectively forgets
random variables that are sufficiently far apart in time.
The two main differences are that our condition fo-
cuses on expectations rather than total variation dis-
tance (or alike), and, since we use undirected graphs, it
does not account for the direction of time as in typical
mixing processes. Furthermore, the graph-dependency
structure considered by Janson (2004), Usunier et al.
(2005), and Zhang et al. (2019) is recovered by let-
ting ϕ be a threshold sequence, such that ϕd = 0 for
all d > d⋆, and ϕd = +∞, for d ≤ d⋆. In a way,
the (G,ϕ)-mixing processes capture both the qualita-
tive aspect of the standard graph-dependence, and the
quantitative side of the mixing conditions.

Intuitively, one can expect the empirical mean of
(G,ϕ)-mixing processes to concentrate around their
true mean (zero) at a rate that is determined by the
overall strength of dependencies: densely connected
graphs are expected to yield poor concentration as
compared to graphs with fewer connections. The mea-
sure of “connectedness” of the graph that we use is
the fractional d-chromatic number χ(d)

f . The following
proposition (see Appendix A.1 for the proof) provides
a bound on the empirical mean of (G,ϕ)-mixing pro-
cesses with bounded range.
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Proposition 1. Let XG be a (G,ϕ)-mixing process,
where G is a graph of order n. Assume all the Xv take
values in a bounded interval of length ∆, are centered,
and have all the same marginal distribution. Then,
for any δ > 0, the following high probability inequality
holds:

1

n

∑
v∈V (G)

Xv ≤δ min
d=1...n

(
ϕd +

√
∆2χ(d)

f

2n
log

1

δ

)
.

3.3 Sequential learning on graphs

We aim to generalize the online-to-PAC approach in-
troduced in Section 2 to derive generalization bounds
for data with a graph-dependency structure. In order
to do this, we need to define a class of online learning
games that respects the graph structure that underlies
the data. This section presents this class of games,
which we call sequential learning on graphs.

Let A and B be two sets, dubbed the action space
and the outcome space. We assume that A is a vector
space. Given a graph G of order n, for each v ∈ V (G)
we define two sets Av ⊆ A and Bv ⊆ B. We assume
that Av is a convex subset of A. We also define a cost
function Cv : A×B → R. We consider an arbitrary or-
dering {vt}nt=1 of G, constituting a permutation of the
vertices of G. In each round t = 1, 2, . . . , n, the player
moves to node vt and picks an action at ∈ Avt . Then,
the outcome bt ∈ Bvt is revealed. The player incurs
a cost ct(at, bt), where ct = Cvt . The player can se-
lect their actions using past information only, namely
at round t the action can depend on b1, . . . , bt−1 and
on the previous actions, but not on the present and
future outcomes. For a fixed comparator a ∈ A and a
player’s strategy Π = (at)t∈[n], we define the regret of
Π against a at round T ≤ n as

RΠ,T (a) =

T∑
t=1

(
ct(at, bt)− ct(a, bt)

)
.

In the specific game that we consider, the graph struc-
ture G is used to pose further constraints on how the
player is allowed to select their actions. In particu-
lar, we will consider sheltered players, who are only
allowed to use information from nodes that are “suf-
ficiently far” from the currently selected node vt. To
make this formal, we define the d-exterior of a node v
(where d ∈ [n]) as Uv,d = {u ∈ G : distG(u, v) ≥ d}.
Definition 7. In the online game defined above, a d-
sheltered learner is a player whose action at in round
t can only depend on outcomes bs, from rounds s < t
such that vs ∈ Uvt,d.

The following result shows that an upper bound on
the regret of a standard learner often translates into
an upper bound for the regret of a d-sheltered learner.

Proposition 2. Assume that, for all v ∈ V (G), the
cost Cv is convex in a. If there exists a standard online
strategy Π achieving regret RΠ,T (a) ≤ F (T ) for any
T ≤ n, where F is a concave function, then, for any
d ∈ [n], there is a d-sheltered learner with strategy Πd,
whose regret is bounded as

RΠd,n(a) ≤ χ(d)

f F
(
n/χ(d)

f

)
.

We obtain the above result (proof in Appendix A.2) in
a constructive way, by explicitly devising a d-sheltered
learner’s strategy by averaging the actions of several
standard players. Notably, the resulting class of games
generalizes the well-studied setting of online learning
with delayed feedback (Weinberger and Ordentlich,
2002; Joulani et al., 2013). Indeed, this setting is seen
as the special case where G is a chain and the player
is constrained to be d-sheltered, with d corresponding
to the delay in observing the feedback, and χ(d)

f = d.
The rates of Weinberger and Ordentlich (2002) and
Joulani et al. (2013) are recovered by our result. We
defer a discussion of other related online settings to
Section 5.

4 GENERALIZATION BOUNDS
UNDER GRAPH-MIXING

We are now ready to state our assumptions on the
dependence structure of the training data, and provide
our main results: the graph-mixing counterparts of the
generalization bounds of Section 2.

Our main assumption on the dependencies is that, for
any hypothesis w ∈ W, the losses ℓ(w,Zt) constitute
a (G,ϕ)-mixing process. This is formalized as follows.

Assumption 1. Let Sn = (Z1, . . . , Zn) be a train-
ing data set drawn from a distribution µn on Zn, such
that each Zt has the same marginal distribution µ. We
assume that there exists a graph G (of order n), a bi-
jection ι : G→ [n], and a non-negative non-increasing
sequence ϕ = (ϕd)d>0, such that, for all w ∈ W, the
graph-labelled process XG(w) =

(
Xv(w)

)
v∈V (G)

is a

(G,ϕ)-mixing process, where

Xv(w) = L(w)− ℓ(w,Zι(v)) .

This assumption is essentially an extension to the
graph setting of the mixing condition proposed by
Abeles et al. (2024). It comes from the intuition
that the loss associated with the observations Zv be-
comes almost independent with respect to the family
of points which are at least d edges away in the asso-
ciated graph.

We can now state the graph-mixing counterpart of
Theorem 1. First, we notice that the generalization
game of Definition 1 induces an online problem on G.
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Definition 8 (Generalization game on G). Consider
a training data set Sn satisfying Assumption 1 with
graph G and bijection ι. Consider the following online
game on G. For all v ∈ V (G), let Av = A = ∆W ,
Bv = B be the space of measurable functions on W,
and Cv(a, b) = −⟨a, b⟩. For n rounds, an online player
and an adversary play the following game. At round
t = 1, . . . , n:

• the online player moves on vt = ι−1(t);

• the online player picks a distribution πt ∈ ∆W ;

• the adversary picks a map gt : w 7→ L(w)−ℓ(w,Zt);

• the learner incurs a cost −⟨πt, gt⟩;
• Zt is revealed to the learner.

Combining the results from Sections 3 and 3.3 we ob-
tain the following generalization result.

Theorem 2. Consider a data set Sn that satisfies As-
sumption 1. Fix d ∈ [n] and an arbitrary strategy Π
of a d-sheltered player for the game of Definition 8.
For v ∈ V (G), define X̃v = ⟨πι(v), gι(v)⟩. Then, any

statistical learning algorithm P̂n = A(Sn) satisfies

L(P̂n) ≤ L̂n(P̂n) +
RΠ,n(P̂n) +MΠ

n
, (3)

with MΠ =
∑

v∈V (G) X̃v. Moreover, X̃G is a (G, ϕ̃)-

mixing process, where we let ϕ̃d′ = ϕd′ for d′ ≥ d, and
ϕ̃d′ = +∞ for d′ < d.

Proof. (3) is equivalent to (2), so we will only need to

show that X̃G is (G, ϕ̃)-mixing. Clearly, when d′ < d,

we have E[Xv|Fv,d′ ] ≤ ϕ̃d′ = +∞. For d′ ≥ d,
Fv,d′ ⊇ Fv,d, and so πι(v) is Fv,d′ -measurable, by def-

inition of d-sheltered learner. Hence, E[X̃v|Fv,d′ ] =

⟨πι(v),E[gι(v)|Fv,d′ ]⟩, and E[gι(v)(w)|Fv,d′ ] ≤ ϕd′ = ϕ̃d′

for all w ∈ W by Assumption 1.

The usefulness of the above result comes from the fact
that we know how to upper bound (in high probability)
(G,ϕ)-mixing processes. Hence, we can derive a graph-
mixing counterpart of Corollary 1.

Corollary 2. Consider a data set Sn that satisfies
Assumption 1, assume that ℓ is bounded in [0, 1], fix
δ ∈ (0, 1), d ∈ [n], and an arbitrary P ∈ ∆W (whose
choice cannot depend on Sn). Then, the following gen-
eralization bound holds in high probability, uniformly
for all algorithms P̂n = A(Sn),

L(P̂n) ≤δ L̂n(P̂n) + ϕd

+

(√
3KL(P̂n|P ) + 9 +

√
1

2
log

1

δ

)√
χ(d)

f

n
.

Proof. The proof combines Theorem 2, Proposition 1,
and Proposition 2. Fix P ∈ ∆W and d ∈ [n]. By a
slight generalization of Corollary 6 in Orabona and
Pál (2016) (see the proof of Corollary 6 in Lugosi
and Neu, 2023), we know that for any d there is
a (standard) online strategy for the game of Defini-
tion 8, whose regret (for any comparator P ′) is upper
bounded by

√
(3 + KL(P ′|P ))3n. By Proposition 2,

there is a d-sheltered online strategy Πd whose re-
gret is upper bounded by

√
(3+KL(P ′|P ))3nχ

(d)
f . Ap-

ply Theorem 2. Since ϕ̃d = ϕd, by Proposition 1
1
nMΠ

(d)
n

≤δ ϕd+
√

1
2nχ

(d)
f log 1

δ , and so we conclude.

We stress that this is only one of the many possible
bounds that can be derived from our framework, given
that different online learning algorithms may lead to
different regret bounds. We refer to Section 3 of Lu-
gosi and Neu (2023) for further examples, including
generalized PAC-Bayesian bounds where the relative
entropy, KL, appearing in the above bound is replaced
by other strongly convex functionals of P̂n.

The tightness of these bounds relies on the chromatic
number of the power graph, and the coefficients ϕ
characterizing the strength of dependencies. Typical
assumptions regarding the latter include functions of
the form ϕd = Ce−d/τ , for some C, τ > 0 (called ge-
ometric mixing), or ϕd = Cd−r for some C, r > 0
(called algebraic mixing). As for the chromatic in-
dices, it is known that they can always be bounded as

χ
(d)
f = O(∆d) where ∆ is the degree of the original

graph. It is often possible, though, to show tighter
bounds for graphs that arise naturally in practical ap-
plications. We demonstrate a few concrete examples
below, and refer to Alon and Mohar (2002) for a more
exhaustive treatment.

Temporal processes. The simplest non-trivial ex-
ample is the class of mixing processes in time, which we
have already mentioned extensively. These processes
can be modeled by a graph G, whose nodes corre-
spond to the time indices 1, 2, . . . , n, and edges connect
neighboring indices, namely E(G) = ({(t, t + 1})t∈[n].
This can model a variety temporally-dependent data
sequences, such as stock prices, energy consumption,
or sensor data from physical environments (see, e.g.,
Ariyo et al., 2014; Takeda et al., 2016). In this case,

one can easily see that χ
(d)
f = d. Thus, in this set-

ting our guarantees almost exactly recover the recent
results of Abeles et al. (2024). We refer the reader to
their work for details.

Processes on a spatial grid. A direct general-
ization of the previous case is where the graph is
a 2-dimensional grid of size n = I × J , for some
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integers I and J . Such graphs can model spa-
tially organized data like the house-price example
mentioned in the introduction. A straightforward

calculation shows that χ
(d)
f is of order d2 for this

class of graphs3. For the sake of concreteness, let
us suppose that the mixing is geometric. Then,
the guarantee of Corollary 2 implies a generalization

bound of order O
(
Ce−d/τ+

√
d2

n (KL(P̂n|P )+log 1
δ )

)
. Set-

ting d = τ log(Cn), neglecting log factors this be-

comes Õ
(√

τ2(KL(P̂n|P )+log 1
δ )/n

)
, thus demonstrating

a linear dependence with the mixing-time parameter
τ . This argument can be easily extended to other pla-
nar graphs of similar regularity, and generalized to k-
dimensional grids where the chromatic indices scale as
dk, eventually yielding a dependence of order τk/2 on
the mixing time.

5 CONCLUSION

We have introduced a new model for statistical learn-
ing with dependent data, and provided a general
framework for developing generalization bounds for
learning algorithms. A key tool in our analysis was
a reduction to a family of online learning games. We
conclude by discussing some further related work and
highlighting some interesting open problems.

The tightness of our bounds. Our upper bounds
on the generalization error depend on variations of the
chromatic number of the dependency graph. While it
is easy to construct hard examples where this depen-
dence is tight (e.g., when G is composed of several dis-
connected cliques), it is not clear if our bounds can be
further improved to scale with more fine-grained graph
properties. On a related note, it is also easy to con-
struct examples where our bounds are vacuous, yet it
still should be possible to estimate the test error with
good rates. To this end, consider a graph of size n,
with n/2 isolated vertices and the remaining n/2 ver-
tices forming a clique. The chromatic number of this
graph is n/2, which makes our bounds trivial. How-
ever, in such a case it is clearly a bad idea to measure
the training error on all samples: the heavy depen-
dence of the second half of the data points leads to a
massive bias. This bias, however, can be completely
removed by simply discarding the second half of obser-
vations and only using the i.i.d. samples. This patho-
logical case suggests that the empirical mean can be
an arbitrarily poor estimator of the mean, and much
more efficient estimators can be constructed by tak-

3To see this, note that the set of nodes reachable
through a path of length d roughly corresponds to the
nodes falling into a square of diagonal 2d on the two-
dimensional plane.

ing the graph structure into account. Our analysis
suggests an obvious way to do so: find the largest d-
stable subset and then use only data points from this
set. Our techniques can be used to show the same gen-
eralization bound for this method as for the empirical
mean, but the example above indicates that its actual
performance could be much better. The downside, of
course, is that this approach requires full knowledge
of the graph and requires additional computation. In
contrast, our bounds need only high-level information
about the graph, as they only assume knowledge of the
chromatic numbers, which might be easier to estimate
than finding stable sets. We leave a detailed investiga-
tion of this interesting question open for future work.

Online learning on graphs. To our knowledge,
the sequential learning framework we introduce in
Section 3.3 has not appeared in the previous liter-
ature. That said, several similar models have been
studied. The works of Guillory and Bilmes (2009)
andCesa Bianchi et al. (2010) consider learning label-
ings on graphs via actively querying a subset of the
labels, and provide mistake bounds that depend on
a joint notion of complexity of the labeling and the
graph. Obtaining guarantees in terms of such problem-
dependent notions of complexity would be desirable in
our setting as well, but unfortunately their model is
rather different from ours. A more relevant setting
is the one studied by Cesa-Bianchi et al. (2020), who
study an online learning protocol defined on a network
of agents. In each round, one agent wakes up, needs to
make a prediction, suffers a loss, and shares the obser-
vation with its neighbors. In a certain sense, this prob-
lem is the dual of ours: in our setting, a sheltered on-
line learner is not allowed to use information from the
neighbors of the currently active node, whereas their
setting only allows using information from neighbor-
ing nodes. The two settings can be transformed into
each other by taking the complements of the under-
lying graphs. Applying their algorithm to our setting
in the most straightforward way yields guarantees that
can be recovered by Proposition 2. We find it plausible
that approaching our problem from this alternative di-
rection may lead to improved data-dependent guaran-
tees (as suggested by existing follow-up work like that
of Achddou et al. 2024), but so far we do not see suf-
ficient evidence to prefer this rather roundabout route
over our rather simple formulation that addresses our
overall problem in more natural terms. We remain op-
timistic nevertheless that further progress on online
learning with graph structures will enable improve-
ments in the statistical learning setting we study in the
present paper. As a final remark, the online framework
that we introduced, and the way we developed to cou-
ple it with graph-mixing processes’ concentration, are



Baptiste Abélès, Eugenio Clerico, Gergely Neu

likely to be useful to adapt other algorithmic statistics
approaches to graph-mixing dependent settings.
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Checklist

The checklist follows the references. For each ques-
tion, choose your answer from the three possible op-
tions: Yes, No, Not Applicable. You are encouraged
to include a justification to your answer, either by ref-
erencing the appropriate section of your paper or pro-
viding a brief inline description (1-2 sentences). Please
do not modify the questions. Note that the Checklist
section does not count towards the page limit. Not
including the checklist in the first submission won’t
result in desk rejection, although in such case we will
ask you to upload it during the author response period
and include it in camera ready (if accepted).

In your paper, please delete this instructions
block and only keep the Checklist section head-
ing above along with the questions/answers be-
low.

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes, see section 2 and section 3]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Not Applicable]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Not Applicable]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes, see section 3 and
section 4]

(b) Complete proofs of all theoretical results.
[Yes either in the main text or in the ap-
pendix.]

(c) Clear explanations of any assumptions. [Yes,
the main assumption we consider in this pa-
per is assumption 1. We provide a concrete
intuition in section 3 and gives concrete ex-
ample in section 4]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Not Applicable]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Not
Applicable]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Not Applicable]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Not Applicable]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Not Applicable]

(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]
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Supplementary material

A Omitted proofs

A.1 Proof of Proposition 1

The proof leverages the approach introduced by Janson (2004). Fix d and consider a d-stable fractional partition
{(wk, Sk)}k of G. We can write∑

v∈V (G)

Xv =
∑

v∈V (G)

Xv

∑
k:v∈Sk

wk =
∑
k

wk

∑
v∈Sk

Xv .

In particular, for any λ > 0, we have

logE
[
e

λ
n

∑
v∈V (G) Xv

]
= logE

[
e

λ
n

∑
k wk

∑
v∈Sk

Xv

]
≤
∑
k

pk logE
[
e

λ
n

wk
pk

∑
v∈Sk

Xv

]
, (4)

where p is a probability vector (
∑

k pk = 1 with pk > 0 for all k), and in the last step we have applied Jensen’s
inequality, since f 7→ logE[ef ] is a convex mapping.

Now, for any k we can label arbitrarily the elements in Sk as v
(k)
1 , . . . , v

(k)
nk , where nk is the cardinality of Sk. Let

us denote as F (k)
i the sigma algebra σ({X

v
(k)
j

: j ≤ i}). Since Sk is a d-stable subset of G, recalling the notation

introduced in Definition 6, we have that F (k)
i−1 ⊆ F

v
(k)
i ,d

. In particular, the fact that XG is a (G,ϕ)-mixing process

implies that

E[X
v
(k)
i

|F (k)
i−1] = E

[
E[X

v
(k)
i

|F
v
(k)
i ,d

]
∣∣F (k)

i−1

]
≤ ϕd

by the tower property of conditional expectation. Now, this implies that for any i ≤ nk we have

E
[
e

λ
n

wk
pk

∑i
j=1 X

v
(k)
j

∣∣∣∣F (k)
i−1

]
≤ E

[
e

λ
n

wk
pk

∑i−1
j=1 X

v
(k)
j

]
E
[
e

λ
n

wk
pk

(X
v
(k)
i

−E[X
v
(k)
i

|Fi−1])
∣∣∣∣F (k)

i−1

]
exp

(
λϕd
n

wk

pk

)
.

Moreover, the fact that each Xv is bounded in an interval I of length ∆ implies that it is ∆2/4-subgaussian with
respect to any measure, and hence

E

[
e

λ
n

wk
pk

(
X

v
(k)
i

−E[X
v
(k)
i

|Fi−1]

)∣∣∣∣∣F (k)
i−1

]
≤ exp

(
λ2∆2

8n2
w2

k

p2k

)
.

Applying these arguments recursively nk times we obtain

logE
[
e

λ
n

wk
pk

∑
v∈Sk

Xv

]
≤ nk

(
λ2∆2

8n2
w2

k

p2k
+
λϕd
n

wk

pk

)
.

We can hence rewrite (4) as

logE
[
e

λ
n

∑
v∈V (G) Xv

]
≤
∑
k

nk

(
λ2∆2

8n2
w2

k

pk
+
λϕd
n
wk

)
=
∑
k

λ2∆2

8n2
nkw

2
k

pk
+ λϕd ,

where in the last equality we used that∑
k

wknk =
∑
k

wk

∑
v∈Sk

1 =
∑
k

∑
v∈V (G)

wk1v∈Sk
=

∑
v∈V (G)

∑
k:v∈Sk

wk =
∑

v∈V (G)

1 = n . (5)

We can now optimize the choice of p, by setting pk =
wk

√
nk∑

k′ wk′
√

Nk′
. With this choice we have

logE
[
e

λ
n

∑
v∈V (G) Xv

]
≤ λ2

2n2

(∑
k

wk
√
nk

)2

+ λϕd .
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By Cauchy-Schwarz inequality we have∑
k

wk
√
nk =

∑
k

√
wk

√
wknk ≤

√∑
k

wk

√∑
k

wknk =

√
n
∑
k

wk ,

where again we used (5). Since the choice of the d-stable fractional partition is arbitrary, we can chose an optimal
one, such that

∑
k wk = χ(d)

f . In particular, we get

logE
[
e

λ
n

∑
v∈V (G) Xv

]
≤ λ2∆2χ(d)

f

8n
+ λϕd .

By Markov’s inequality, we have that for any t > ϕd

P

 1

n

∑
v∈V (G)

Xv ≥ t

 ≤ inf
λ>0

E
[
e

λ
n

∑
v∈V (G) Xv

]
eλt

≤ inf
λ>0

exp

(
λ2∆2χ(d)

f

8n
− λ(t− ϕd)

)
= exp

(
− 2n

χ(d)

f

(t− ϕd)
2

∆2

)
.

The conclusion now follows by setting the RHS above equal to δ and solving for t.

A.2 Proof of Proposition 2

First, let us fix an arbitrary d-stable fractional partition {(wk, Sk)}k of G. The idea is that we will run an
independent player on each Sk. Each of them will also be a d-sheltered learner, as, by definition, in a d-stable
fractional partition any two distinct vertices are distant at least d from each other. We will see that, by carefully
averaging the actions of these players, it is possible to obtain a d-sheltered learner on the full graph G, whose
regret can be upper bounded as desired.

First, note that the ordering of V (G) induces an ordering on Sk, and we will write Sk = (v
(k)
1 , . . . , v

(k)
nk ), where

nk is the cardinality of Sk. We now introduce some notation which will be helpful for what follows. Any vertex
v ∈ V (G) corresponds to an element in the ordered sequence v1, . . . , vn. We denote as ι(v) the index of this
element (so that ι(vt) = t for all t). Similarly, given an element v ∈ Sk, we denote as ιk its index in the sequence

(v
(k)
1 , . . . , v

(k)
nk ).

For each Sk, we let run an independent copy of the standard player, and we denote their strategy as Πk =

(a
(k)
1 , . . . , a

(k)
nk ). We assume that although these players’ choices of the action are independent from each other,

for each vertex each player who passes through it receives the same outcome,4 which corresponds to the outcome
that the d-sheltered learner running on the full graph sees. By assumption, we can choose the strategy of the
standard player so that we can upper bound the regret of each Πk as

RΠk,nk
(a) =

nk∑
t=1

(
c
(k)
t (a

(k)
t , b

(k)
t )− c

(k)
t (a, b

(k)
t )
)
≤ F (nk) ,

where c
(k)
t = C

v
(k)
t

and b
(k)
t = bι(v

(k)
t ) is the outcome on v

(k)
t (which, as previously stated, only depends on the

vertex and not on which player is observing it, as it corresponds to the outcome that the d-sheltered learner sees

at round ι(v
(k)
t )).

We will now define the d-sheltered learner’s strategy Π = (a1, . . . , an) on the full graph. For any v ∈ V (G), let
κ(v) = {k : v ∈ Sk}. We set at = A(vt), with

A(v) =
∑

k∈κ(v)

wka
(k)
ιk(v)

.

First, we notice that A(v) ∈ Av, since Av is assumed to be convex and A(v) is a convex mixture of elements in
Av (note that

∑
k∈κ(v) wk = 1 by definition of d-stable fractional partition).

4This is somehow limiting the power of a potential adversary for each of these games, but this does not affect the regret
bounds that hold for any possible outcome sequence. Also, notice that for the d-sheltered game a potential adversary is
allowed to choose freely for any vertex v, and indeed it is this chosen outcome that each of the players of the d-stable
subsets will see when passing on v.
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We now show that the above definition of at define an admissible strategy for a d-sheltered learner. First, we

see that at only depends on what has happened on the set Ht = {v(k)s : k ∈ κ(vt) and s ≤ ιk(vt)− 1}. Clearly,
Ht ⊆ ∪k∈κ(vt)Sk. Since for any k ∈ κ(vt) all the element in Sk (excluded vt itself) are distant at least d from
vt, the d-sheltered property of the learner is ensured. Moreover, one can easily check that, for any v and any
k ∈ κ(v), it holds that ιk(v) ≤ ι(v). Thus, Ht ⊆ {vs : s < t}, which means that the learner is only allowed to
access past information, as required. We have hence proven that the strategy that we defined is admissible for
a d-sheltered learner.

We now study the regret of this d-sheltered learner. For any v, let r(v) = cι(v)(aι(v), bι(v)) − cι(v)(a, bι(v)), and,

for v ∈ Sk, define rk(v) = cι(v)(a
(k)
ιk(v)

, bι(v)) − cι(v)(a, bι(v)), where we used that, for any v ∈ Sk, c
(k)
ιk(v)

= cι(v)

and b
(k)
ιk(v)

= bι(v). With these definitions in mind we can rewrite

RΠ,n(a) =
∑

v∈V (G)

r(v) and RΠk,nk
(a) =

∑
v∈Sk

rk(v) .

Now, notice that thanks to the convexity of the cost we have that

cι(v)(aι(v), bι(v)) ≤
∑

k∈κ(v)

wkcι(v)(a
(k)
ιk(v)

, bι(v)) ,

by Jensen’s inequality, as
∑

k∈κ(v) wk = 1. In particular, r(v) ≤
∑

k∈κ(v) wkrk(v) =
∑

k 1v∈Sk
wkrk(v), and

hence
RΠ,n(a) =

∑
v∈V (G)

r(v) ≤
∑

v∈V (G)

∑
k

1v∈Sk
wkrk(v) =

∑
k

wk

∑
v∈Sk

rk(v) =
∑
k

wkRΠk,nk
(a) .

The fact that RΠk,nk
(a) ≤ F (nk) yields

RΠ,n(a) ≤
∑
k

wkF (nk) =

(∑
k

wk

)∑
k

wk∑
k′ wk′

F (nk) ≤

(∑
k

wk

)
F

(
n∑
k wk

)
,

where the last inequality follows from Jensen’s inequality (since F is concave) and (5). Finally, notice that
what we have proven so far holds for any arbitrary d-stable fractional partition. In particular, we can select the
partition such that

∑
k wk = χ(d)

f , and hence obtain

RΠ,n(a) ≤ χ(d)

f F
(
n/χ(d)

f

)
,

which is the regret upper bound that we wanted to prove.


