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Abstract

We investigate the problem of learning
a Single Index Model (SIM)—a popular
model for studying the ability of neural net-
works to learn features—from anisotropic
Gaussian inputs by training a neuron us-
ing vanilla Stochastic Gradient Descent
(SGD). While the isotropic case has been
extensively studied, the anisotropic case
has received less attention and the impact
of the covariance matrix on the learning
dynamics remains unclear. For instance,
Mousavi-Hosseini et al. (2023b) proposed
a spherical SGD that requires a sepa-
rate estimation of the data covariance ma-
trix, thereby oversimplifying the influence
of covariance. In this study, we analyze
the learning dynamics of vanilla SGD un-
der the SIM with anisotropic input data,
demonstrating that vanilla SGD automati-
cally adapts to the data’s covariance struc-
ture. Leveraging these results, we derive
upper and lower bounds on the sample
complexity using a notion of effective di-
mension that is determined by the struc-
ture of the covariance matrix instead of the
input data dimension. Finally, we validate
and extend our theoretical findings through
numerical simulations, demonstrating the
practical effectiveness of our approach in
adapting to anisotropic data, which has
implications for efficient training of neural
networks.
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1 Introduction

In many high-dimensional applications, data sets
are often assumed to have an underlying low-
dimensional structure (e.g., images or text can be
embedded in low-dimensional manifolds). This as-
sumption provides a way to circumvent the curse of
dimensionality.

The Single Index Model (SIM) provides a simple yet
powerful statistical framework to evaluate the abil-
ity of an algorithm to adapt to the latent dimension
of the data. In SIM, the response variable y ∈ R
is linked to the covariates x ∈ Rd through a link
function f that depends only on a rank-one pro-
jection of x. More formally, y = f(⟨w∗, x⟩), where
w∗ ∈ Rd represents the direction of the latent low-
dimensional space and is referred to as the single-
index. This versatile model generalizes the well-
known Generalized Linear Model (GLM) when the
link function is known. Additionally, SIM can be ex-
tended to capture multiple directions, leading to the
Multi-Index Model (Abbe et al., 2023; Oko et al.,
2024).

In recent years, SIM has become a popular gener-
ative model for studying the ability of neural net-
works trained with SGD or a variant. This is be-
cause the usage of SIM effectively adapts to the la-
tent dimension of the data, in contrast to the ker-
nel method (Ghorbani et al., 2020; Damian et al.,
2022). In particular, the isotropy of the covariates x
plays an important role: when x are sampled from
an isotropic Gaussian distribution, it is well-known
that the difficulty of estimating w∗ depends on d and
the information exponent associated with f (Arous
et al., 2020; Bietti et al., 2022) in the online setting,
or the generative exponent if one can reuse samples
(Damian et al., 2024b; Arnaboldi et al., 2024; Lee
et al., 2024).

However, while anisotropy of input data is common



in real-world applications such as classification, only
a few works extend beyond the simplifying assump-
tion of isotropic Gaussian data, limiting their ap-
plicability to more realistic, complex scenarios. To
overcome this limitation, several works handle the
anisotropy of x, for instance, Zweig et al. (2023) ex-
tends the SIM analysis to inputs generated from an
approximately spherically symmetric distribution.
Ba et al. (2023); Mousavi-Hosseini et al. (2023b) con-
sider a setting where the inputs are sampled from a
Gaussian distribution with a covariance matrix hav-
ing a spike aligned with the single-index w∗. The
first work proposes a layer-wise training method,
whereas the second work studies a version of spheri-
cal SGD that requires an estimate of the covariance
matrix of x. To the best of our knowledge, the only
algorithm that comes with general theoretical guar-
antees is the mean-field Langevin dynamic analyzed
by Mousavi-Hosseini et al. (2024). Unfortunately, it
is impractical due to computational inefficiencies.

In practice, the structure of the covariance matrix
is often unknown, and rather than specialized algo-
rithms, simple and generic methods such as vanilla
SGD are typically employed. This observation mo-
tivates our central research question:

“Can vanilla SGD learn a SIM model under a
general class of covariance structures?”

Answering this question will not only demonstrate
the learnability of non-isotropic covariance struc-
tures but also highlight that widely-used, simple al-
gorithms like vanilla SGD can successfully achieve
this goal. Moreover, this work represents a first step
toward extending the analysis to more complex in-
put data, such as Gaussian mixtures or functional
data (Balasubramanian et al., 2024).

In this study, we analyze the vanilla SGD to learn
a SIM from general anisotropic inputs and show its
adaptability to general covariance Q. This contrasts
with the result of Mousavi-Hosseini et al. (2023b)
that shows spherical SDG fails if the algorithm is
not modified to incorporate information about Q.
Specifically, we show that our estimator has a con-
stant correlation with the single-index w∗ after T
SGD iterations and characterize T as a function of
Q, the alignment of Q with w∗ and the information
exponent of the link function f . Interestingly, our
bound depends on an effective dimension determined
by Q, instead of the input data dimension d. We
also establish a Correlated Statistical Query (CSQ)
lower bound, suggesting that our effective measure
of the dimension is correct on average over w∗. We
illustrate and complement our theoretical findings

through numerical simulations.

One of the main technical challenges is that, un-
like spherical SGD, the evolution of the correlation
with w∗ also depends on the evolution of the norm
of weights. We tackle this problem by developing
a method that simultaneously controls the evolu-
tion of all the parameters. Our analysis provides
insight into the interplay between correlation and
weight evolution, which could be instrumental in un-
derstanding the training dynamics of wider neural
networks.

1.1 Related work

Single Index Model. As an extension of the
Generalized Linear Model (GLM) (Nelder and Wed-
derburn, 1972), the Single Index Model (SIM) is
a versatile and widely used statistical framework.
It has been applied in various domains, including
longitudinal data analysis (Jiang and Wang, 2011),
quantile regression (Ma and He, 2016), and econo-
metrics (Hardle et al., 1993). In recent years, SIMs
have attracted increasing attention from the theoret-
ical deep learning community, particularly as a tool
to evaluate the ability of neural networks (NNs) to
learn low-dimensional representations, often referred
to as features, in contrast to kernel methods (Ghor-
bani et al., 2020). This distinction is highlighted
by the lazy regime (Jacot et al., 2018), where neu-
ral networks exhibit kernel-like behavior but cannot
learn features.

Several works demonstrate that a Single or Multi-
Index Model can be learned from isotropic Gaussian
inputs by training a two-layer neural network in a
layer-wise manner (Damian et al., 2022; Mousavi-
Hosseini et al., 2023a; Bietti et al., 2022, 2023;
Abbe et al., 2023; Zhou and Ge, 2024). However,
fewer studies have addressed the more challenging
anisotropic case. The most closely related work is
Mousavi-Hosseini et al. (2023b), which analyzes a

specific covariance structure Q = Id+κθθ⊤

1+κ where

θ ∈ Sd−1 is correlated with target index w∗ and κ
measures the intensity of the spike in the direction
θ. In this setting, they show that spherical Gradi-
ent Flow (GF) fails to estimate w∗, but a modified
algorithm using normalization depending on the co-
variance matrix Q succeeds. In contrast, our work
analyzes vanilla SGD and demonstrates that this
simpler algorithm succeeds in learning w∗ without
any prior estimation of Q, making it agnostic to the
covariance matrix. Also, our analysis sheds light on
how the learning rate η should be chosen, whereas
the GF framework is not directly implementable.



Training dynamic. The dynamics of SGD and
its variants in training shallow neural networks have
been extensively studied (Mei et al., 2018; Jacot
et al., 2018). Our analysis builds on the framework
introduced by Arous et al. (2020) for spherical SGD
in the online setting, which provides insight into the
behavior of the estimator’s weights over time. Addi-
tionally, our approach is related to the recent work
by Glasgow (2024), which studies the simultaneous
training of a two-layer neural network to learn the
XOR function. Similar to their method, we project
the weight vector onto signal and noise components
to control their respective growth during training.
Furthermore, recent studies on the edge of stability
(EoS) phenomenon in quadratic models Zhu et al.
(2024a,b); Chen et al. (2024) show that two-layer
neural networks trained with a larger learning rate
than the prescribed one can generalize well after an
unstable training phase.

One of the primary goals of our study is to focus
on vanilla SGD, a practical algorithm widely used
in real-world scenarios, rather than on specialized
theoretical variants like spherical SGD. We believe
that this work contributes to a deeper understand-
ing of SGD’s behavior in non-convex optimization
problems and highlights its effectiveness in solving
complex learning tasks involving anisotropic data.

1.2 Notations

We use ∥·∥ and ⟨·, ·⟩ to denote the Euclidean norm
and scalar product, respectively. When applied to a
matrix, ∥·∥ refers to the operator norm. Any posi-
tive semi-definite matrix Q induces a scalar product
defined by ⟨x, y⟩Q = x⊤Qy. The Frobenius norm of
a matrix A is denoted by ∥A∥F . The d× d identity
matrix is represented by Id. The standard Gaus-
sian measure on R is denoted by γ and the corre-
sponding Hilbert space L2(R, γ) is referred to as H.
The (d − 1)-dimensional unit sphere is denoted by
Sd−1. We use the notation an ≲ bn (or an ≳ bn)
for sequences (an)n≥1 and (bn)n≥1 if there exists a
constant C > 0 such that an ≤ Cbn (or an ≥ Cbn)
for all n. If the inequalities hold only for sufficiently
large n, we write an = O(bn) (or an = Ω(bn)).

2 Learning a SIM

Model. We observe for i = 1 . . . T i.i.d. samples
(x(i), y(i)) ∈ Rd × [−1, 1] generated by the following
process: the inputs x(i) ∼ N (0, Q) are generated
from a Gaussian distribution with covariance matrix

Q. Also, y(i) follows the SIM with given x(i) as

y(i) = f

(〈
x(i),

w∗∥∥Q1/2w∗
∥∥
〉)

, (2.1)

where w∗ ∈ Sd−1 and f : R → [−1, 1] is an unknown
link function. The normalization factor

∥∥Q1/2w∗
∥∥

is introduced so that ⟨x(i), w∗

∥Q1/2w∗∥⟩ ∼ N (0, 1) and

only affects the definition of f .

Assumption A1. We assume that ∥Q∥ = 1 and
that

∥∥Q1/2w∗
∥∥ = c∗ ≤ 1 is of constant order.

This assumption is satisfied for both Q = I and
a spiked covariance matrix of the form Q = (1 +
κ)−1(I + κθθ⊤), where θ ∈ Sd−1 is such that ⟨θ, w∗⟩
is of constant order. While we believe our analysis
could be extended to the setting where

∥∥Q1/2w∗
∥∥ =

o(1), the scarcity of input in the direction of w∗

makes this more challenging. In such cases, it would
be more efficient to correct the sample by estimating
Q.

Learning method. Following the approach in
Arous et al. (2020), we employ the correlation loss
function

L(y, ŷ) = 1− yŷ.

Our method involves training a single neuron, de-
fined as

fw(x) = σ(w⊤x)

with w ∈ Rd and σ denotes the ReLU activation
function, using vanilla gradient descent. The steps
are as follows:

• Sample w′ ∼ N (0, Id) and initialize w(0) =

r w′

∥w′∥ where r > 0 is a scaling parameter.

• Update the weight by SGD: w(t+1) = w(t) −
η∇w(t)L(y(t), fw(t)(x(t))) where η > 0 is the
learning rate.

Vanilla gradient descent without constraining the
weights provides two key advantages: (i) computa-
tional efficiency, as it eliminates the need to estimate
the covariance matrix Q and compute terms like∥∥Q1/2w∗

∥∥, and (ii) simplicity, aligning more closely
with standard practices in neural network training.

Remark 1. Previous works such as Arous et al.
(2020); Bietti et al. (2022); Abbe et al. (2023) lever-
age spherical SGD to control the norm of the weights
w(t) at each iteration, simplifying theoretical analy-
sis. However, in the anisotropic setting, spherical
SGD must be modified with knowledge of the covari-
ance matrix Q to succeed, as shown by Mousavi-
Hosseini et al. (2023b).



3 Main Results

Before stating our main results, we will introduce ad-
ditional notations and discuss the required assump-
tions.

3.1 Notation and Assumptions

First, we assume that f has an information exponent
k∗ ≥ 1 and is normalized and bounded.

Assumption A2. We assume that the link function
f : R → [−1, 1] is such that E(f) = 0, E(f2) = 1
and f has information exponent k∗ defined as

k∗ := min{k ≥ 1 : E(fHk) ̸= 0}

where Hk is the order k Hermite polynomial (see
Section A for more details).

Remark 2. We assumed for simplicity that f takes
value in [−1, 1]. Our analysis could be extended to
the class of functions f growing polynomially, i.e.,
there exists a constant C > 0 and an integer p such
that for all x ∈ R, |f(x)| ≤ C(1+|x|p). For example,
using Lemma 16 in Mousavi-Hosseini et al. (2023b),
one could obtain a uniform upper bound on |y(i)| and
reduce to the case where f(x) ∈ [−1, 1] for all x. We
leave the full proof to future work.

The following measure of correlation is defined in
terms of the scalar product induced by Q

mt :=

〈
Q1/2w(t)∥∥Q1/2w(t)

∥∥ , Q1/2w∗∥∥Q1/2w∗
∥∥
〉
.

This is in contrast to the isotropic setting, in which
the correlation between the weights w(t) and the sig-

nal w∗ is measured by

〈
w(t)

∥w(t)∥ , w
∗
〉
.

As in previous work, we also assume that the corre-
lation is positive at initialization.

Assumption A3. At initialization, m0 > 0.

Furthermore, we will need the following assumption
to control the population gradient (see the proof of
Lemma 1).

Assumption A4. Let xf(x) =
∑

k≥k∗−1 ck
Hk(x)√

k!

and σ′(x) =
∑

k≥0 bk
Hk√
k!

be the Hermite basis de-

composition of xf(x) and σ′(x). Assume that there
are constants γ′ > 0, c > 0 such that for all
x ∈ [0, γ′], ∑

k≥k∗−1

bkckx
k ≤ −cxk∗−1.

This assumption allows us to approximate the Her-
mite decomposition of the gradient by its first non-
zero term. A similar assumption was used in Arous
et al. (2020) and Mousavi-Hosseini et al. (2023b).
The relation between the information exponent of f
and x → xf(x) is derived in Proposition 3.

Example of link function. Recall that b0 = 0.5,

b2m = 0 and b2m+1 = (−1)m√
2πm!2m(2m+1)

(Damian

et al., 2022). If k∗ is even, we can choose f∗ =
Hk∗ (x)√

k∗!
. The proof of Lemma 3 shows that xf∗(x) =

Hk∗+1(x)√
k∗!

+
kHk∗−1(x)√

(k∗)!
. Consequently, there are only

two non-zero coefficients in the Hermite decomposi-
tion of xf(x), corresponding to odd Hermite poly-
nomial. Hence Assumption A4 is satisfied for small
enough x, up to a sign factor.

Remark 3. One could possibly remove Assumptions
A4 and A3 by considering a two-layer neural net-
work. Since the assumption on initialization is satis-
fied with probability 1/2, it will be satisfied by a con-
stant proportion of the neurons. Moreover, by train-
ing the second layer, we could approximate f , hence
controlling the sign of the coefficients appearing in
Assumption A4. However, to show that Assumption
A4 is satisfied in the two-layer neural network set-
ting, previous work (Bietti et al., 2022; Lee et al.,
2024) rely on specific (randomized) link functions,
while our analysis relies crucially on the homogene-
ity of the ReLU activation function.

3.2 Upper-bound on the required sample
complexity

We analyze the upper bound on the sample com-
plexity required to recover the single-index w∗. To
simplify its statement, we introduce the following
notation for a ratio:

Θ := Θ(Q,w∗) :=

∥∥Q1/2w∗
∥∥∥∥Q1/2

∥∥
F

. (3.1)

Theorem 1. Assume that Assumptions A1, A2, A3
and A4 hold and the initialization scaling r is such
that

∥∥Q1/2w(0)
∥∥ = cr

∥∥Q1/2w∗
∥∥ for some constant

cr ∈ (0, 1].

(1) When k∗ ≥ 3, choose η = ϵ2dm
k∗−2
0 Θ2 where

ϵd → 0 as d → ∞. Then, after T =

ϵ−2
d m

2(2−k∗)
0 Θ−2 iterations, w(T ) weakly recov-

ers w∗, i.e. with probability 1 − o(1), mT ≥ δ
for some constant δ > 0.

(2) If k∗ = 1, the same result holds with the choices
η = ϵ2dΘ

2 and T = ϵ−2
d Θ−2.

(3) If k∗ = 2, the result holds with the choices η =
ϵ2d(logm0)

−1Θ2 and T = ϵ−2
d log2(m0)Θ

−2.



This theorem gives conditions on the sample com-
plexity and the learning rate to ensure that vanilla
SGD weakly recovers w∗. The proof of this theorem
can be divided into two parts. First, we analyze the
population dynamic in Section 4.1. Then, we con-
trol the effect of the noise in Section 4.3. We discuss
the extension to strong consistency, i.e., obtaining
mt → 1 in Section E.3 in the appendix.

Remark 4. The typical order of magnitude of m0 is
∥Qw∗∥ ∥Q1/2w∗∥−1∥Q1/2∥−1

F , as shown by concen-
tration inequalities. See Section E.1 in the appendix.

In particular, when Q = Id, m0 ≈
√
d
−1

and our up-
per bounds matches the one obtained by Arous et al.
(2020). When the covariance matrix is aligned with

w∗, one can have
√
d
−1

≪ m0. This accelerates the
convergence, as experimentally shown in Section 5.

Remark 5. Our bound is, in general, weaker than
the one obtained by Mousavi-Hosseini et al. (2023b)

that is of order dm
(2−2k∗)
0 . However, their analysis

is based on gradient flow and hence cannot be imple-
mented directly, whereas we analyzed a simple and
popular algorithm used in practice. The discretiza-
tion of the gradient flow is not a straightforward
task. As highlighted by our analysis, the choice of
the learning rate is crucial and has an effect on the
required sample complexity. We believe this is the
main reason one can obtain a better bound with gra-
dient flow. Notice, however, that when Q is approx-
imately low-rank, one could have T ≪ d whereas
the bounds of Mousavi-Hosseini et al. (2023b) are
always at least linear in d.

3.3 Correlated Statistical Query (CSQ)
lower-bound

A common way to provide a lower bound on the
required sample complexity for SGD-like algorithms
is to rely on the Correlated Statistical Query (CSQ)
framework. It is described in Section C.

Theorem 2 (CSQ lower-bound). Assume that∥∥Q1/2
∥∥2
F

≳ ∥Q∥F
√
log d and ∥Q∥F ≳

√
log d. Let

us denote

v = min

(
∥Q∥F∥∥Q1/2

∥∥2
F

,
1√
d

)
.

Then, for any integer k ≥ 1, there exists a class Fk

of polynomial functions of degree k such that any
CSQ algorithm using a polynomial number of queries
q = O(dC) requires a tolerance of order at most

τ2 ≤ ϵk/2

where ϵ = v
√
log(qvk/2).

Proof. The main difficulty is constructing a large
vector family with small correlations measured by
the scalar product induced by Q. It is detailed in
Section C.

Remark 6. The quantity v can be interpreted as
the typical value of m0 at initialization. Since one
could always use an oracle knowledge of Q to reduce

to the isotropic case (where v =
√
d
−1

), our bound is

only useful when
∥Q∥F

∥Q1/2∥2

F

≥ 1√
d
. Note that the term

∥Q∥F

∥Q1/2∥2

F

corresponds to the average value of m0 when

w∗ ∼ N (0, Id). Hence, our bound is only meaningful
for values of w∗ close to the average alignment with
Q.

Remark 7. By using the heuristic τ = 1√
n

we ob-

tain n = Ω(log dk/2d

(
∥Q∥F

∥Q1/2∥2

F

)k/2

). Similarly to

previous work (Damian et al., 2022), there is a gap
in the dependence in k between the upper-bound pro-
vided by Theorem 1 and the lower bound. Damian
et al. (2024a) show this gap can be removed in the
isotropic case by using a smoothing technique.

Remark 8. Theorem 2 does not cover the cases
where ∥Q∥F ≪

√
log d or

∥∥Q1/2
∥∥2
F

≳ ∥Q∥F
√
log d,

i.e. the cases where the eigenvalues of Q are quickly
decreasing. In these settings, estimating the matrix
Q and incorporating it into the algorithm could lead
to qualitatively better bounds.

4 Proof Outline of Theorem 1

First, we analyze the population dynamic in Section
4.1. Then, in Section 4.3, we control the impact of
the noise.

4.1 Analysis of the Population Dynamics

In this section, we assume direct access to the pop-
ulation gradient, meaning that the weights are up-
dated by:

w(t+1) = wt − ηEx∇w(t)L(y(t), fw(t)(x(t))). (4.1)

First, we will show that contrary to spherical SGD,
the evolution dynamic of mt also depends on w(t)

and Q, making the analysis more difficult. More
specifically, Lemma 1 shows that

mt+1 ≈
∥∥Q1/2w(t)

∥∥∥∥Q1/2w(t+1)
∥∥mt + η

∥∥Q1/2w∗
∥∥2∥∥Q1/2w(t+1)
∥∥cmk∗−1

t .

In Section 4.2, we will show that w
(t)
sig :=

⟨w(t), w∗⟩w∗, the projection of the weight onto the



signal component, grows as mt whereas the grow-

ing rate of w
(t)
⊥ := w(t) − w

(t)
sig, the projection of the

weight onto the component orthogonal to the signal,
is slower. As a consequence, as long as mt ≤ γ1 for
some constant 0 < γ1 < 1,

∥∥Q1/2w(t+1)
∥∥ remains of

the same order than
∥∥Q1/2w(0)

∥∥. By further using
the approximation∥∥Q1/2w(t)

∥∥∥∥Q1/2w(t+1)
∥∥ ≈ 1

that will be formally justified in Section 4.3 (control
of E1) we hence obtain the simplified dynamic

mt+1 ≈ mt + η̃mk∗−1
t (4.2)

where η̃ = cη
∥Q1/2w∗∥2

2∥Q1/2w(0)∥ .

From equation (4.2), one can show by using Propo-
sition 5.1 in Arous et al. (2020) that, if m0 > 0, one
needs k∗−2

η̃mk∗−2
0

iterations to obtain a correlation mt

of constant order when k∗ ≥ 3 (the other cases can
be treated separately). This result can also be de-
rived heuristically by solving the associated differen-
tial equation f ′ = η̃fk∗−1. The population analysis
suggests that we should use a large learning rate η̃
to accelerate the convergence. However, we will see
in Section 4.3 that in order to control the noise, η̃
should be small enough.

4.1.1 Evolution dynamic of mt

By projecting equation (4.1) onto Qw∗

∥Q1/2w∗∥ and di-

viding by
∥∥Q1/2w(t+1)

∥∥ we obtain:

mt+1 =

∥∥∥Q1/2w(t)
∥∥∥

∥Q1/2w(t+1)∥
mt−

η

∥Q1/2w(t+1)∥
Exyσ

′(⟨ w(t)

∥Q1/2w(t)∥
, x⟩)⟨x, Qw∗

∥Q1/2w∗∥
⟩.

(4.3)

Unlike spherical SGD optimization, which con-
strains the norm of the weights at each iteration,
the evolution of mt here depends crucially on the
evolution of

∥∥Q1/2w(t)
∥∥. For instance, if ∥∥Q1/2w(t)

∥∥
becomes too large, then the information provided by
the gradient may be lost. Furthermore, in contrast
to the isotropic setting, it is not straightforward how
to express the expectation of the gradient as a func-
tion of mt. Lemma 1 addresses this point.

Lemma 1. Assume that Assumption A4 is satisfied.
Then, there exists a constant γ1 > 0 such that as

long as the sequence (mt)t is bounded from above by
γ1, it satisfies the following relation

mt+1 ≥
∥∥Q1/2w(t)

∥∥∥∥Q1/2w(t+1)
∥∥mt + η

∥∥Q1/2w∗
∥∥2∥∥Q1/2w(t+1)
∥∥cmk∗−1

t .

(4.4)

Proof. By writing Qw∗ = λw∗ + λ′w∗
⊥ where w∗

⊥ is
a unit vector orthogonal to w∗, λ = ⟨Qw∗, w∗⟩ =∥∥Q1/2w∗

∥∥2 and λ′ =

√
∥Qw∗∥2 −

∥∥Q1/2w∗
∥∥4, we

can decompose the population gradient as

Exyσ
′
(〈

w(t)

∥Q1/2w(t)∥
, x

〉)〈
x,

Qw∗

∥Q1/2w∗∥

〉
= G1 +G2

where

G1 = λExyσ
′
(〈

w(t)

∥Q1/2w(t)∥
, x

〉)〈
x,

w∗

∥Q1/2w∗∥

〉
G2 = λ′Exyσ

′
(〈

w(t)

∥Q1/2w(t)∥
, x

〉)〈
x,

w∗
⊥

∥Q1/2w∗∥

〉
.

Control of G1. To simplify the notations, let us

write z∗ = ⟨x, w∗

∥Q1/2w∗∥⟩ and zt = ⟨x, w(t)

∥Q1/2w(t)∥⟩.
Notice that z∗, zt ∼ N (0, 1). Recall that y = f(z∗).
So we need to evaluate Ez∗,ztz

∗f(z∗)σ′(zt). By us-
ing the Hermite decomposition of these functions
and Proposition 2, we can see that this expectation
depends essentially on the information exponent of
x → xf(x) and the correlation between z∗ and zt.
But by Proposition 2 with n = 1 (see Section A in
the appendix) we have Ez∗zt = mt.

By using Hermite decomposition, Proposition 2,
Lemma 3 , and Assumption A4, we obtain

G1 = λ
∑

l≥k∗−1

clblm
l
t ≤ −λcmk∗−1

t . (4.5)

Control of G2. Denote z∗⊥ = ⟨x, w∗
⊥

∥Q1/2w∗
⊥∥

⟩ and

notice that Eztz∗⊥ = qt where

qt = ⟨ w(t)∥∥Q1/2w(t)
∥∥ , w∗

⊥∥∥Q1/2w∗
⊥
∥∥ ⟩Q.

We can write zt = mtz
∗ +

√
1−m2

t z
⊥
t , where z⊥t ∼

N (0, 1) is independent from z∗. Similarly, we can

decompose z∗⊥ = qtz
⊥
t +

√
1− q2t ξ where ξ ∼ N (0, 1)

is independent from z∗ and z⊥t .

Let pt =
m2

t

2(1−m2
t )
. By combining Lemma 4 and 5

(see Section B), we obtain

Ef(z∗)σ′(mtz
∗ +

√
1−m2

t z
⊥
t )z∗⊥ =

qt√
2π(2pt + 1)

Ez∼N (0,1)f(
z√

2pt + 1
).



We can evaluate Ef( z√
2pt+1

) by applying the mul-

tiplicative property of Hermite polynomials recalled

in Lemma 6 in the appendix with γ =
√
2pt + 1

−1
.

Notice that for odd n, ⟨Hn(γx), H0(x)⟩ = 0 and for
n = 2m, we have

⟨Hn(γx), H0(x)⟩ = (γ2 − 1)m
(2m)!

m!
2−m

Since by definition f(x) =
∑

k≥k∗
ak√
k!
Hk(x) we get∣∣∣∣⟨f( x√

2ct + 1
), H0(x)⟩

∣∣∣∣
=

∣∣∣∣∣∣
∑

k≥k∗/2

a2k√
(2k)!

(
1

2pt + 1
− 1)k

(2k)!

k!
2−k

∣∣∣∣∣∣
≲

√∣∣∣∣∑ a22k
(2k)!

4k(k!)2

∣∣∣∣√∣∣∣∑ p2kt

∣∣∣
(by Cauchy-Schwartz)

≲ p
k∗/2
t ≲ mk∗

t .

Here we used the fact that by Stirling formula
(2k)!

4k(k!)2
∼ 1 so the sequence is bounded, and the fact

that by definition of f ,
∑

a2k = O(1). This shows
that G2 is of order at most λ′mk∗

t and is negligible
compared to G1 as long as mt is small enough, since
λ′ ≤ 1.

The lower bound obtained in Lemma 1 is only useful
when mt > 0. This is ensured by Assumption A3.

In the next two sections, we are going to control
the growth of

∥∥w(t)
∥∥. We are going to show that

as long as mt ≤ γ1 for some constant γ1 > 0, the
weights remain bounded and do not evolve quickly,
i.e.

∥∥Q1/2w(t)
∥∥ ≈

∥∥Q1/2w(0)
∥∥ so that equation (4.4)

is equivalent to

mt+1 ≥ mt + η̃mk∗−1
t (4.6)

where η̃ = cη
∥∥Q1/2w∗

∥∥2 /2 ∥∥Q1/2w(0)
∥∥. This last

relation is similar to the one derived in the isotropic
case by Arous et al. (2020).

4.2 Control of the growth of
∥∥Q1/2w(t)

∥∥
In this section, we justify the approximation∥∥Q1/2w(t)

∥∥ ≈
∥∥Q1/2w(0)

∥∥ for t ≤ T . By recursion,
we obtain

Q1/2w(t) = Q1/2w(0) + η
∑

l≤t−1

Eyσ′(⟨w(l), x⟩)Q1/2x.

(4.7)

Let w
(l)
⊥ be the projection of w(l) onto the space

orthogonal to w∗. There are only two directions,

Q3/2w∗ and Q3/2w
(l)
⊥ , in which the projections of the

vector Eyσ′(⟨w(l), x⟩)Q1/2x are non zero. Indeed, if
v is orthogonal to Q3/2w∗ then

Ex⟨Q1/2x, v⟩⟨x,w∗⟩ = ⟨Q1/2v, w∗⟩Q = 0

and similarly for w
(l)
⊥ . As a consequence ⟨Q1/2x, v⟩

is independent of z and zt, and the resulting expec-
tation is zero. To evaluate

∥∥Q1/2w(t)
∥∥ it is sufficient

to evaluate the projection of the expectation in the
directions identified previously. By a similar analy-
sis as in Lemma 1 we obtain

Ef(z∗)σ′(zt)⟨x,
Q2w∗∥∥Q3/2w∗

∥∥ ⟩ ≈ λ2cmk∗−1
t .

We can also show that

Ef(z∗)σ′(zt)⟨x,
Q2w

(l)
⊥∥∥∥Q3/2w
(l)
⊥

∥∥∥ ⟩ ≤ Cmk∗

t .

The details of the calculations can be found
in Section D.1. This shows that as long
as λ2cη

∑
t≤T mk∗−1

t and Cη
∑

t≤T mk∗

t remains

smaller to 0.5
∥∥Q1/2w(0)

∥∥, we have

0.5
∥∥∥Q1/2w(0)

∥∥∥ ≤
∥∥∥Q1/2w(t)

∥∥∥ ≤ 1.5
∥∥∥Q1/2w(0)

∥∥∥ .
The previous conditions are satisfied by choice of
the initialization scale, η and T : the contribution in
the direction Q3/2w∗ grows slower than mt+1, and
similarly for the contribution in the other direction.

4.3 Analysis of the noisy dynamic

In this section, we will describe how the noise can
be controlled so that after T iterations, mt is well
predicted by the population dynamic analysis per-
formed in Section 4.1.

We decompose the gradient into two components:
the population version and the stochastic noise Vt

∇w(t)L = E(∇w(t)L) + Vt.

4.3.1 Control of
∥∥Q1/2w(t)

∥∥
As shown in the analysis of the population dynamic,
it is critical to control

∥∥Q1/2w(t)
∥∥. In the noisy set-

ting, we obtain the following counterpart of equation
(4.7)

Q1/2w(t) = Q1/2w(0) + η
∑

l≤t−1

Eyσ′(⟨w(l), x⟩)Q1/2x

+ ηQ1/2
∑
t≤T

Vt. (4.8)



By using Doob’s maximal inequality (see Lemma 10

in appendix), we can show that η
∥∥∥∑t≤T Vt

∥∥∥ = o(1).

Hence, the result follows the population dynamic
analysis.

4.3.2 Evolution of mt

Instead of controlling directly mt, it is more conve-
nient to study the dynamic of the related quantity
m̃t := ⟨w(t), w∗

∥Q1/2w∗∥⟩Q that avoids dividing by the

random quantity
∥∥Q1/2wt

∥∥. Since for t ≤ T we have

0.5
∥∥Q1/2w0

∥∥ ≤
∥∥Q1/2wt

∥∥ ≤ 1.5
∥∥Q1/2w0

∥∥, one can
easily relate m̃t to mt. By definition, we have

m̃t+1 = m̃t − ηEyσ′(⟨w(t), w∗⟩)⟨x, Qw∗∥∥Q1/2w∗
∥∥ ⟩

+ η⟨Vt,
Qw∗∥∥Q1/2w∗

∥∥ ⟩.
The expectation term corresponds to G1 analyzed in
Lemma 1 and the stochastic term forms a martingale
that Doob’s Lemma can control, see Lemma 9 in the
appendix. Hence, we have obtained a recursion of
the form

m̃T+1 ≥ η′
∑
t≤T

m̃k∗−1
t + ηHT

where HT =
∑

t≤T ⟨Vt,
Qw∗

∥Q1/2w∗∥⟩ and η′ =

c′
∥∥Q1/2w(0)

∥∥k∗−1
λη. We used the fact that mt ≥

2
3

∥∥Q1/2w(0)
∥∥ m̃t for t ≤ T .

To conclude the proof of Theorem 1, it remains to
understand how many iterations T are necessary so
that mt becomes of constant order. Sequence satis-
fying ct+1 ≥ ct + ηml

t have been analyzed formally
in Arous et al. (2020) based on Bihari–LaSalle in-
equality. Here, we present a heuristic way to recover
the result. The continuous analogous of the relation
ct+1 ≥ ct + ηml

t is f ′(t) = ηf l(t). By integrating
between 0 and T , we obtain 1

f l−1(0)
− 1

f l−1(T )
= ηT

for l ≥ 2. Since f(T ) should be of constant or-
der, it is negligible compared to 1

f l−1(0)
= m−l+1

0 .

Given the choice η = ϵ√
T∥Q1/2∥

F

(necessary to con-

trol the stochastic error), solving the equation leads

to T =
∥∥Q1/2

∥∥2
F
ϵ−2m

−2(l−1)
0 .

5 Numerical Experiments

In this section, we illustrate our theoretical results
through numerical simulations 1. The implementa-

1The code is available at https://glmbraun.githu
b.io/AniSIM

tion details are provided in Section F.

Anisotropy can help. We consider the follow-
ing setting: y = H2(⟨x, w∗

∥Q1/2w∗∥⟩) where H2(x) =

x2 − 1, w∗ ∈ Sd−1, and x ∼ N (0, Q) with a

covariance matrix of the form Q = Id+κw∗(w∗)⊤

1+κ ,
parametrized by κ > 0. The information exponent
of H2 is 2. We set the dimension d = 1000, the sam-
ple size T = 40000, and the learning rate 0.00002.
The learning dynamics when κ = 0 (isotropic case)
is plotted in Figure 1a, while those for κ = 6 in
Figure 1b. The improved alignment at initialization
when κ = 6 significantly accelerates learning.

(a) Isotropic setting κ = 0

(b) Anisotropic setting κ = 6

Figure 1: Comparison of learning dynamics in
isotropic and anisotropic settings.

Comparison between SGD and Spherical
SGD. We compare the performance of vanilla
SGD (SGD) with spherical SGD (SpheSGD). We used
an oracle knowledge of the covariance matrix to im-
plement the algorithm. Figure 2 shows that the two

https://glmbraun.github.io/AniSIM
https://glmbraun.github.io/AniSIM


Figure 2: Comparison of learning dynamics between
vanilla SGD and spherical SGD.

SGD algorithms behave similarly.

Adaptive Learning Rate. As shown in Section
F, progressively increasing the learning rate is ben-
eficial to accelerate the learning dynamic. This is
consistent with the theoretical insight that the learn-
ing rate should be small enough to control noise at
each iteration; however, as the signal increases dur-
ing training, higher noise can be tolerated.

Batch Reuse. We demonstrate in Appendix F
that reusing the same batch can significantly reduce
the required sample complexity.

6 Conclusion

We analyzed the problem of learning a SIM from
anisotropic Gaussian inputs using vanilla SGD. Un-
like previous approaches relying on spherical SGD,
which require prior knowledge of the covariance
structure, our analysis shows that vanilla SGD can
naturally adapt to the anisotropic geometry without
estimating the covariance matrix. Our theoretical
contributions include an upper bound on the sam-
ple complexity and a CSQ lower bound, depending
on the covariance matrix structure instead of the
input data dimension. Numerical simulations val-
idated these theoretical findings and demonstrated
the practical effectiveness of vanilla SGD.

This work opens up several avenues for future re-
search. First, our analysis has focused on the train-
ing dynamics of a single neuron, but extending these
insights to deeper or wider neural networks would be

valuable for a broader understanding of how vanilla
SGD performs in more complex architectures. Addi-
tionally, achieving the generative exponent in sample
complexity by reusing data remains an open ques-
tion.
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Supplementary Material

We provide background on Hermite polynomials, including key properties that are crucial to our analysis.
Technical lemmas involving the evaluation of Gaussian integrals are collected in Section B. In Section C, we
introduce the CSQ framework and prove Theorem 2. In Section E, we complete the proof of Theorem 1.
Finally, in Section F, we present additional numerical experiments along with implementation details.

A Hermite polynomials

Consider the probability space (R,B(R), γ) where γ denotes the standard Gaussian measure on R and let
H = L2(R, γ) the associated Hilbert space of squared integrable function with respect to γ.

We will define Hermite polynomial following the approach of Nualart and Nualart (2018). Toward this end,
let us define two differential operators. For any f ∈ C1(R) we define the derivative operator Df(x) = f ′(x)
and the divergence operator δf(x) = xf(x)− f ′(x). The following lemma show that the operators D and δ
are adjoint.

Lemma 2. Denote by C1
p(R) the space of continuously differentiable functions that grows at most polyno-

mially, i.e., there exists some integer N ≥ 1 and constant C > 0 such that |f ′(x)| ≤ C(1 + |x|N ). For any
f, g ∈ C1

p(R), we have

⟨Df, g⟩H = ⟨f, δg⟩H.

Proof. The result is derived directly by using integration by parts.

The Hermite polynomials are defined as follows:

H0(x) = 1,

Hn(x) = δn1.

Proposition 1. The sequence of normalized Hermite polyniomials ( 1√
n!
Hn)n≥0 is an orthonormal basis of

H.

Another particularly useful property of the Hermite polynomial that we will rely on heavily is the simple
characterization of the correlation between two Hermite polynomials with correlated Gaussian inputs.

Proposition 2. Let x ∼ N (0, Id). For any w,w′ ∈ Sd−1(R) we have

ExHn (⟨x,w⟩)Hn′ (⟨x,w′⟩) = 1{n=n′}n!⟨w,w′⟩n.

This result can be extended straightforwardly to anisotropic inputs.

Corollary 1. Let x ∼ N (0, Q) for some general covariance matrix Q. For any w,w′ ∈ Rd we have

ExHn

(
⟨x, w∥∥Q1/2w

∥∥ ⟩
)
Hn′

(
⟨x, w′∥∥Q1/2w′

∥∥ ⟩
)

= 1{n=n′}n!

(
⟨ w∥∥Q1/2w

∥∥ , w′∥∥Q1/2w′
∥∥ ⟩Q

)n

.

The following lemma relates the information exponent of f to x → xf(x), the function naturally appearing
in the population gradient.

Lemma 3. Assume that f ∈ H has information exponent k ≥ 1. Then, the function x → xf(x) ∈ H has
information exponent k − 1.

Proof. Assume that k ≥ 2. Recall that the Hermite’s polynomials satisfy H ′
n(x) = nHn−1 (e.g. it derives

easily as an application of Lemma 2) and Hn+1(x) = xHn(x)−H ′
n(x) (by definition Hn+1 = δn+11 = δHn).



By consequence, for all n ∈ N∗, we have

⟨xf(x), Hn(x)⟩H = ⟨f(x), xHn(x)⟩H
= ⟨f(x), Hn+1(x)⟩H + ⟨f(x), H ′

n(x)⟩H
= ⟨f(x), Hn+1(x)⟩H + n⟨f(x), Hn−1(x)⟩H.

If n < k − 1 all the terms are null. But for n = k − 1, ⟨f(x), Hn+1(x)⟩H ̸= 0, while n⟨f(x), Hn−1(x)⟩H = 0
by definition of k. The case where k = 1 can be treated similarly.

B Technical lemmas

Recall that σ′ is the sign function, formally defined as

σ′(x) =


1 if x > 0,

0 if x = 0,

−1 if x < 0.

Lemma 4. Let p ∈ [0, 1] and X,Y be two independent standard Gaussian r.v. We have

EY σ
′
(
pX +

√
1− p2Y

)
Y =

1√
2π

e
− p2

2(1−p2)
X2

.

Proof. By symmetry, we have

2EY σ
′(pX +

√
1− p2Y )Y = EY

(
σ′(pX +

√
1− p2Y )− σ′(pX −

√
1− p2Y )

)
Y

= EY 1{|Y |≥ p√
1−p2

|X|}|Y |

=
2√
2π

e
− p2

2(1−p2)
X2

.

Lemma 5. Let c > 0, X ∼ N (0, 1) and f ∈ H. We have

EXf(X)e−cX2

=
1√

2c+ 1
EXf

(
X√
2c+ 1

)
.

Proof. Use the change of variable u =
√
1 + 2cx.

Lemma 6. For every γ > 0, n ∈ N∗ we have

Hn(γx) =

n
2∑

k=0

γn−2k(γ2 − 1)k
(
n

2k

)
(2k)!

k!
2−kHn−2k(x).

Proof. This idendity is classical, but since we didn’t find a proper reference, we provide a simple proof.
Recall that the Hermite polynomials satisfy the following identity for all t, x ∈ R (see Nualart and Nualart
(2018))

e−
t2

2 +tx =
∑
n≥0

Hn(x)
tn

n!
.

So we have ∑
n≥0

Hn(γx)
tn

n!
= e−

t2

2 +γtx = e−
γ2t2

2 +γtxe
(γ2−1)t2

2 .



By using the series development of the previous exponential functions we get∑
n≥0

Hn(γx)
tn

n!
=
∑
j≥0

Hj(x)
(γt)j

j!

∑
k≥0

(γ2 − 1)kt2k

2kk!

=
∑
j

∑
k

tj+2k

(j + 2k)!
Hj(x)γ

j(γ2 − 1)k2−k (j + 2k)!

j!k!
.

Let n = j + 2k. By identifying the coefficient associated in the serie expansion, we obtain the stated
formula.

C CSQ lower-bound

The Correlational Statistic Query framework is a restricted computational model where we access knowledge
of the data distribution (x, y) ∼ P by addressing query ϕ : Rd → R to an oracle that returns E(x,y)∼P (yϕ(x))+
ϵ where ϵ is some noise term bounded by τ , the tolerance parameter. SGD is an algorithm belonging to this
framework (note, however, that in the CSQ framework, the noise can be adversarial).

The classical way to obtain a lower bound (Damian et al., 2022) is to construct a large class of function F
with small correlations. The following lemma provides a lower bound.

Lemma 7 (Szörényi (2009), Damian et al. (2022)). Let F be a class of function and D be a data distribution
such that

Ex∼Df
2(x), |Ex∼Df(x)g(x)| ≤ ϵ, ∀f ̸= g ∈ F .

Then any CSQ algorithm requires at least |F|(τ2−ϵ)
2 queries of tolerance τ to output a function in F with

L2(D) loss at most 2− 2ϵ.

We then usually use the heuristic τ = 1√
n
to derive a lower bound on the sample complexity.

Lemma 8. Assume that the covariance matrix Q satisfies ∥Q∥ = 1,
∥∥Q1/2

∥∥2
F
≳ ∥Q∥F

√
log d, and ∥Q∥F ≥

C
√
log d for some sufficiently large constant C > 0. Let

m = C
∥Q∥F∥∥Q1/2

∥∥2
F

.

Then, for ϵ = m
√

log(qmk/2), where q = O(dc) (for some constant c > 0) is the number of queries, there

exists an absolute constant C1 and a set E with cardinality at least 0.5eC1 log(qmk/2) such that ∀w ̸= v ∈ E we
have ∣∣∣∣∣∣

〈
w∥∥Q1/2w

∥∥ , v∥∥Q1/2v
∥∥
〉

Q

∣∣∣∣∣∣ ≤ ϵ.

Proof. This is an adaptation of Lemma 3 in Damian et al. (2022) to the anisotropic case. Let w1, . . . , wp be
i.i.d. Gaussian random variables wi ∼ N (0, Id). By the Hanson-Wright inequality, for all i ∈ [p], we have:

P
(∣∣∣∣w⊤

i Qwi −
∥∥∥Q1/2

∥∥∥2
F

∣∣∣∣ ≥ t

)
≤ e

−cmin

(
t2

∥Q∥2
F

, t
∥Q∥

)
.

Since w⊤
i Qwi =

∥∥Q1/2wi

∥∥2, choosing t = C ∥Q∥F
√
log(qmk/2), we get that this probability is bounded

by e−c′ log(qmk/2) ∪ e−C log d, where c′ = C/c. This holds because, by assumption, ∥Q∥F ≳
√
log(d) and

log(qmk/2) ≳ log d.

Similarly, for every i ̸= j ∈ [p], we have:

P
(∣∣w⊤

i Qwj

∣∣ ≥ t
)
≤ e

−cmin

(
t2

∥Q∥2
F

, t
∥Q∥

)
≤ e−c′ log(qmk/2).



Using a union bound over all pairs i, j ∈ [p], we obtain that, with probability at least 1− 2p2e−c′ log(qmk/2):

∀i ∈ [p], c1

∥∥∥Q1/2
∥∥∥2
F
≤
∥∥∥Q1/2wi

∥∥∥2 ,
and for all i ̸= j ∈ [p]:

|⟨wi, wj⟩Q| ≤ C ∥Q∥F
√

log(qmk/2).

This implies that for i ̸= j: ∣∣∣∣∣∣
〈

wi∥∥Q1/2wi

∥∥ , wj∥∥Q1/2wj

∥∥
〉

Q

∣∣∣∣∣∣ ≤ ϵ,

where ϵ = C
∥Q∥F

∥Q1/2∥2

F

√
log(qmk/2), completing the proof.

Theorem 3. Assume that the assumptions of Lemma 8 are satisfied. For any integer k ≥ 1, there exists
a class Fk of polynomial functions of degree k such that any CSQ algorithm using a polynomial number of
queries q requires a tolerance τ of order at most

τ2 ≤ ϵk/2.

Remark 9. By using the heuristic τ2 = 1√
n
we obtain n = Ω(log dk/2d

(
∥Q∥F

∥Q1/2∥2

F

)k/2

). The term
∥Q∥F

∥Q1/2∥2

F

corresponds to the average value of m0 when w∗ ∼ N (0, Id). Similar to previous work (Damian et al., 2022),
there is a gap in the dependence in k between the upper-bound provided by Theorem 1 and the lower bound.
Damian et al. (2024a) show this gap can be removed in the isotropic case by using a smoothing technique.

Remark 10. Lemma 8 doesn’t cover the cases where ∥Q∥F ≪
√
log d or

∥∥Q1/2
∥∥2
F
≳ ∥Q∥F

√
log d, i.e. the

cases where the eigenvalues of Q are quickly decreasing. In these settings, estimating the matrix Q and
incorporating it into the algorithm could lead to qualitatively better bounds.

Proof. Recall that E is the set constructed in Lemma 8 and consider the class of functions

Fk =

x →
Hk

(〈
x, w

∥Q1/2w∥

〉)
√
k!

∣∣∣∣∣∣∣∣w ∈ E

 .

For any w ̸= w′ ∈ E we have∣∣∣∣∣∣∣∣
〈Hk

(
⟨x, w

∥Q1/2w∥⟩
)

√
k!

,

Hk

(
⟨x, w′

∥Q1/2w′∥⟩
)

√
k!

〉
Q

∣∣∣∣∣∣∣∣ ≤ ϵk.

We obtain the result from Lemma 7 and elementary algebra.

D Additional proofs

D.1 Proof of the claims in Section 4.2

Recall the decomposition Qw∗ = λw∗ + λ′w∗
⊥ of Lemma 1. We have Q2w∗ = Q(λw∗ + λ′w∗

⊥) = λ2w∗ +
λλ′w∗

⊥ + λ′Qw∗
⊥. Since ⟨Qw∗

⊥, w
∗⟩ = ⟨w∗

⊥, Qw∗⟩ = λ′, we obtain

Q2w∗ = (λ2 + (λ′)2)w∗ + λλ′w∗
⊥ + λ′λ′′w̃∗

⊥



where λ′′w̃∗
⊥ = Qw∗

⊥ − λ′w∗. As a consequence, we can decompose

Ef(z∗)σ′(zt)⟨x,
Q2w∗∥∥Q3/2w∗

∥∥ ⟩ = G′
1 +G′

2 +G′
3

where

G′
1 = (λ2 + (λ′)2)

∥∥Q1/2w∗
∥∥∥∥Q3/2w∗
∥∥Ez∗f(z∗)σ′(zt)

G′
2 = λλ′

∥∥Q1/2w∗
⊥
∥∥∥∥Q3/2w∗
∥∥ Ef(z∗)σ′(zt)z

∗
⊥

G′
3 = λ′λ′′

∥∥Q1/2w̃∗
⊥
∥∥∥∥Q3/2w∗
∥∥ Ef(z∗)σ′(zt)z̃

∗
⊥

where z̃∗⊥ = ⟨x, Q1/2w̃∗
⊥

∥Q1/2w̃∗
⊥∥

⟩. Notice that G′
1 = (λ2 + (λ′)2)

∥Q1/2w∗∥
∥Q3/2w∗∥G1 ≈ −cλ(λ2 + (λ′)2)

∥Q1/2w∗
⊥∥

∥Q3/2w∗∥m
k∗−1
t by

the proof of Lemma 1. The terms G′
2 and G′

3 can also be analyzed as in Lemma 1.

E Proof of Theorem 1

In this section, we complete the proof of Theorem 1 sketched in the main text.

E.1 Initialization

Here, we justify the claim that m0 is of order ∥Qw∗∥ ∥Q1/2w∗∥−1∥Q1/2∥−1
F with positive probability.

Recall that w′ ∼ N (0, Id). Hence, ⟨w′, Qw∗⟩ ∼ N (0, ∥Qw∗∥2). This implies that m0 > 0 with probability
1/2 and

P(c1σ ≤ |⟨w′, Qw∗⟩| ≤ c2σ) = 1− P(|⟨w′, Qw∗⟩| ≥ c2σ)− P(|⟨w′, Qw∗⟩| ≤ c1σ).

But

P(|⟨w′, Qw∗⟩| ≥ c2σ) ≤ e−c22/2

and

P(|⟨w′, Qw∗⟩| ≤ c1σ) ≤ 1− e−c21/2.

So, if c1 is chosen small enough, and c2 large enough

P(c1σ ≤ |⟨w′, Qw∗⟩| ≤ c2σ) ≥ 1− ϵ.

Now, let us control
∥∥Q1/2w′

∥∥2 = w′⊤Qw′. This is a quadratic form in w′ that has expectation E
∥∥Q1/2w′

∥∥2 =∥∥Q1/2
∥∥2
H
. By Hanson-Wright inequality, we have

P(
∣∣∣∣∥∥∥Q1/2w′

∥∥∥2 − ∥∥∥Q1/2
∥∥∥2
H

∣∣∣∣ ≥ t) ≤ e
−cmin( t2

∥Q∥2
H

, t
∥Q∥ ).

By choosing t = C ∥Q∥H ≲
∥∥Q1/2

∥∥2
H

since ∥Q∥ = 1, we obtain that with positive probability

0.5
∥∥∥Q1/2

∥∥∥2
H

≤
∥∥∥Q1/2w′

∥∥∥2 ≤ 1.5
∥∥∥Q1/2

∥∥∥2
H
.

We obtaine the claimed result by taking the quotient.



E.2 Control of the noise

First, let us recall Doob’s maximal inequality that will be used frequently to control the noise.

Theorem 4 (Doob’s Maximal Inequality). Let (Xt)t≤T be a martingale or positive submartingale belonging
to Lp for some p ≥ 1. Then for every λ > 0 we have

P
(
sup
t≤T

|Xt| ≥ λ

)
≤ E |XT |p

λp
.

Lemma 9. For all ϵ > 0 we have

P

sup
t≤T

∣∣∣∣∣∣
∑
l≤t

⟨Vl, w
∗⟩

∣∣∣∣∣∣ ≥
√
T

ϵ

 ≤ ϵ2
∥∥∥Q1/2w∗

∥∥∥2 .
Proof. Let us define Mt =

∑
l≤t⟨Vl, w

∗⟩. Notice that since yσ′(.) is always bounded by one, we have

E(M2
T ) ≤ TE⟨x,w∗⟩2 ≤

∥∥∥Q1/2w∗
∥∥∥2 T.

By consequence, Theorem 4 applied with p = 2 leads to the result. Notice that the bound is uniform is the
initial value w(0), as in Arous et al. (2020).

Lemma 10. Let us denote M ′
t =

∥∥∥∑l≤t Vl

∥∥∥2. This is a submartingale and for all ϵ > 0 we have

P

(
sup
t≤T

M ′
t ≥

∥∥Q1/2
∥∥2
F

ϵ
T

)
≤ ϵ.

In particular, it implies that with probability at least 1− ϵ, for all t ≤ T , we have∥∥∥∥∥∥
∑
l≤t

Vl

∥∥∥∥∥∥ ≤ ϵ−1/2
√
T
∥∥∥Q1/2

∥∥∥
F
.

Proof. By definition M ′
t =

∑
i⟨
∑

l Vl, ei⟩2. Since any convex function of a martingale is a submartingale,
⟨
∑

l Vl, ei⟩2 is a submartingale and M ′
t is a submartingale as a sum of submartingale.

Now observe that

EM ′
T = E

∑
t≤T

∥Vt∥2 + E
∑
t̸=t′

⟨Vt, Vt′⟩

= E
∑
t≤T

∥Vt∥2 (since E(Vt+1|Ht) = 0.)

≤ T
∥∥∥Q1/2

∥∥∥2
H
.

E.3 The Descent Phase

Assume that Assumption A4 is valid for γ′ = 1.

It is clear from the previous analysis in Section 4.3 that the directional martingale error term E2 is negligible
compared to mt. However,

∥∥Q1/2w(t+1)
∥∥ is no longer necessarily bounded and the approximate dynamic

(4.2) is no longer valid. The analysis done in section 4.1 suggests that
∥∥Q1/2w(t)

∥∥ grows at a similar rate



than mt and if the initial scaling of the weights r is small enough, one should have
∥∥Q1/2w(t)

∥∥ ≈ mt. Hence,
from Lemma 1 we obtain the following approximated dynamic

mt+1 ≈ mt

mt+1
mt +

η

mt+1
mk∗−1

t

that is equivalent to

m2
t+1 ≈ m2

t + ηm
2

(k∗−1)
2

t

that can be solved similarly as (4.2) with the change of variable ut = m2
t . All these approximations remain

to be made rigorous.

F Additional numerical experiments

The experiments were conducted using Python on a CPU Intel Core i7-1255U. The code is available at
https://glmbraun.github.io/AniSIM.

F.1 Description of SpheSGD

The spherical gradient ∇s with respect to the geometry induced by Q is defined by

∇s
wL = ∇wL− ⟨∇wL,w⟩Qw.

We update the weights as follows

w̃(t+1) = w(t) − η∇s
w(t)L

w(t+1) =
w̃(t+1)∥∥Q1/2w̃(t+1)

∥∥ .
F.2 Adaptative learning rate.

The theoretical analysis shows that η should be chosen small enough to control the impact of noise. However,
as the signal increases, more noise can be tolerated. Here, we consider a SIM of the form of the form
y = Sign(⟨x,w∗⟩) where x ∼ N (0, Id) with d = 4000, n = 8000 and w∗ ∈ Sd−1. We run vanilla SGD with
a learning rate η = 0.000001 and AdaptLR-SGD where at each gradient step the learning rate is increased:
ηt+1 = ηt(1 + 0.000001). As shown in Figure 3, increasing the learning rate accelerates the algorithm’s
convergence. Determining a data-driven method to select an appropriate learning rate is left for future
work.

F.3 Data reuse

We consider the following algorithm referred to as RepSGD, that use the same data batch two times:

w̃(t) = wt − η1∇s
w(t)L

w(t+1) = wt − η2∇s
w̃(t)L.

This is similar to the algorithm analyzed in Arnaboldi et al. (2024), except that we do not use spherical
gradient update nor use a retractation to ensure that the norm of w(t) remains equal to one.

We consider the learning the following single index model y = H3(⟨w∗, x⟩) with x ∼ N (0, Id), d = 4000 and
n = 80000. We fix the learning rates η1 = η = η2 = −0.0001.

Figure 4 shows that while vanilla SGD is unable to learn the single index w∗, RepSGD achieves weak recovery
with the same sample complexity.

https://glmbraun.github.io/AniSIM


Figure 3: Comparison of learning dynamics between Vanilla SGD and RepSGD.



Figure 4: Comparison of learning dynamics between Vanilla SGD and RepSGD.
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