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Abstract

We consider the task of Gaussian mean
testing, that is, of testing whether a high-
dimensional vector perturbed by white noise
has large magnitude, or is the zero vector.
This question, originating from the signal
processing community, has recently seen a
surge of interest from the machine learning
and theoretical computer science community,
and is by now fairly well understood. What
is much less understood, and the focus of
our work, is how to perform this task un-
der truncation: that is, when the observa-
tions (i.i.d. samples from the underlying high-
dimensional Gaussian) are only observed
when they fall in an given subset of the do-
main Rd. This truncation model, previously
studied in the context of learning (instead of
testing) the mean vector, has a range of appli-
cations, in particular in Economics and Social
Sciences. As our work shows, sample trunca-
tions affect the complexity of the testing task
in a rather subtle and surprising way.

1 INTRODUCTION

The Gaussian mean testing problem, which originated
in the context of signal processing under the name
of signal detection, asks the following: given inde-
pendent observations from a high-dimensional vector
subject to random white noise, how to detect whether
the underlying signal has large magnitude, or is non-
significant? This can be seen as a hypothesis testing
version of the so-called Gaussian location model (GLM)
question from information theory and signal process-
ing, where the objective is to detect a signal instead of
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learning it.

Mean testing has recently seen a surge of interest from
the machine learning and theoretical computer sci-
ence (and, specifically, distribution testing) commu-
nities, focusing on efficient algorithms with finite-
sample guarantees, i.e., requiring as few observations
(samples) as possible. This culminated in simple,
sample-optimal algorithms for this task under an ar-
ray of settings, including relaxing the assumption on
the random noise (Canonne, Chen, et al., 2021; Di-
akonikolas, Daniel M Kane, and Pensia, 2022), con-
sidering it in the distributed, communication-limited
setting (Acharya et al., 2020; Szabó et al., 2023), or re-
quiring robustness to adversarial corruptions of the ob-
servations (Canonne, Samuel B Hopkins, et al., 2023).

In this work, we consider a different variant, and fo-
cus on the truncated samples setting. Truncation hap-
pens when some observations fail to be observed or
recorded, e.g., due to limitations in the sensing equip-
ment or, in the case of social studies or surveys, when
a subset of respondents systematically withhold their
response. A typical example is when asking insur-
ance customers for some sensitive medical informa-
tion, as people with at-risk factors may decide to opt
out of the survey entirely for fear of having their in-
surance premiums go up. Truncated samples (and the
related notion of censored data) have a rich history
in Statistics, and a host of applications in medical sci-
ence, social studies, and Economics, to name a few
(see, e.g., Cohen (1991a)); and, following Daskalakis,
Gouleakis, Chistos Tzamos, et al. (2018), has recently
been the focus of a line of work on efficient truncated
statistics, whereby one seeks to develop efficient al-
gorithms to efficiently estimate the parameters of a
population given truncated samples: we elaborate on
this in Section 1.2.

Despite the existence of these two lines of work – one
on Gaussian mean testing, and the other on learning
parameters from truncated samples, to the best of our
knowledge there has not been any study of the very
natural related question of Gaussian mean testing from
truncated samples. In this work, we address this ques-



Gaussian Mean Testing under Truncation

tion, and show that the complexity of the testing task
changes drastically (and quite surprisingly) depend-
ing on the truncation set itself, and whether we have
some a priori information about it. In order to present
our results and discuss their implications, we start by
formally defining the problem:

Problem formulation. Let µ ∈ Rd, Σ ∈ Rd×d be an
unknown vector and covariance matrix, respectively,
and S ⊆ Rd, the truncation set, be a subset of mea-
sure at least 1 − ε under the spherical normal distri-
bution N (µ, Σ), where 0 ≤ ε < 1. We define the S-
truncated Gaussian distribution, denoted N (µ, Σ; S),
as the normal distribution N (µ, Σ) conditioned on tak-
ing values on the subset S. We suppose that samples,
X = {x(1), . . . , x(n)}, from an unknown d-variate nor-
mal N (µ, Σ) are only revealed if they fall into some
subset S ∈ Rd; otherwise the samples are hidden and
their count in proportion to the revealed samples is
also hidden. We will make no assumptions about S,
except that its measure ε with respect to the unknown
distribution is non-trivial, say ε = 1%: that is, one
should think of ε as a small (positive) constant. We
will focus on the case of spherical covariance matrices
(before truncation), that is, where Σ = Id: this cor-
responds to the signal detection problem alluded to
before, where a signal is observed through random
white noise.

Given n i.i.d. samples x(1), x(2), . . . from a truncated
Gaussian distribution P on Rd (with unknown vector
µ and truncation set S) and α ∈ (0, 1] an accuracy, the
task is to distinguish between the following cases:

• (Completeness) if P = N (0, Id; S), the algorithm
must output “ACCEPT” with probability at least
2/3;

• (Soundness) if P = N (µ, Id; S) for some µ with
∥µ∥2 ≥ α, the algorithm must output “REJECT”
with probability at least 2/3.

The objective is to minimize the sample complexity of
the algorithm, i.e., the number of samples n required
to achieve the task, over all possible vectors µ and
truncation sets S. Note that the complexity of the task
might vary, depending on the parameter regime and
the information available about S: namely, (1) the rela-
tion between truncated mass ε and desired accuracy
α, and (2) whether the set S is unknown to the algo-
rithm or known (either provided explicitly, or as a
membership oracle.1

1A membership oracle for a set S is a procedure which,
on any input x, indicates whether x ∈ S.

1.1 OUR CONTRIBUTIONS

We establish upper and lower bounds on the sample
complexity of the problem, and show it undergoes a
stark transition as α and ε vary, when the truncation
set is unknown to the algorithm. Specifically, we show
the following, where, for ease of exposition, we focus
on the dependence on the dimension d and treat ε, α
as constants:

• When ε
√

log 1/ε < α, i.e., the accuracy parame-
ter is significantly larger than the truncated prob-
ability mass, then the simple testing algorithm
designed for the non-truncated version of the prob-
lem works, achieving the optimal sample com-
plexity Θ(

√
d) (Theorem 3.1).

• When ε < α < ε
√

log 1/ε, there is a sudden phase
transition: we provide an information-theoretic
lower bound showing that any algorithm requires
Ω(d) samples (Lemma 3.5). Combined with an
O(d) upper bound obtained by learning the un-
known mean vector µ, our results show that in
this regime testing suddenly becomes as hard as learn-
ing.

• When α < ε, it follows from Daskalakis,
Gouleakis, Chistos Tzamos, et al. (2018, Lemma
12) that the testing task becomes information-
theoretically impossible, regardless of sample
complexity.

ε < α√
log 1

α

α√
log 1

α

≤ ε < α α ≤ ε

Unknown Θ(
√

d) Θ(d) ∞
Known Θ(

√
d) Θ(

√
d) Θ(

√
d)

Table 1: Mean testing sample complexity for small
enough constant ε and α.

In contrast, we show that when the truncation set is
known, a different (yet still relatively simple) algo-
rithm, based on the gradient of the maximum likeli-
hood estimator, achieves the optimal sample complex-
ity O(

√
d), across all parameter ranges (Theorem 4.3).

1.2 RELATED WORKS

We here discuss the literature and previous related
work.

Learning from Truncated or Censored Samples Dis-
tribution learning under censored, truncated mech-
anisms has had a long history. Censoring happens
when the events can be detected, but the measure-
ments (the values) are completely unknown, while
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truncation occurs when an object falling outside some
subset are not observed, and their count in propor-
tion to the observed samples is also not known, see
Deemer Jr et al. (1955), Cohen (1957), Dixon (1960),
Haas et al. (1990), Cohen (1991b), Barr et al. (1999),
Cha et al. (2013), and Charikar et al. (2017) for an
overview of the related works in estimating the cen-
sored or truncated normal or other type of distribu-
tions. Pearson (1902), Pearson and A. Lee (1908), and
A. Lee (1914) used the method of moments, while
Fisher (1931) used the maximum likelihood approach
for the distribution learning from truncated samples.
Since then, Daskalakis, Gouleakis, Chistos Tzamos,
et al. (2018), Daskalakis, Gouleakis, Christos Tzamos,
et al. (2019), and Daskalakis, Rohatgi, et al. (2020) de-
veloped computationally and statistically efficient al-
gorithms under the assumption that the truncation
set is known. Furthermore, Wu et al. (2019) consid-
ered the problem of estimating the parameters of a d-
dimensional rectified Gaussian distribution from i.i.d.
samples. This can be seen as a special case of the self-
censoring truncation, where the truncation happens
due to the ReLU generative model.

Testing if samples are truncated Orthogonally, De,
Nadimpalli, et al. (2023), studied a different prob-
lem: Whether or not a set of i.i.d. samples from high-
dimensional standard Gaussian has been previously
truncated. They provide a positive answer for the set-
ting in which the truncation is promised to be convex.
In the follow-up work, De, Li, et al. (2024) studied
the problem in a different setting: The distributions
to test are from the class of Hypercontractive high-
dimensional product distributions (includes standard
Gaussian) and the truncation set can be characterized
by a polynomial threshold function of degree d.

Robust mean estimation Robust statistics (Huber
et al., 2011) considers statistical inference problems
under the setting where samples observed could be
contaminated in various ways. For robust estimation,
the usual goal is to obtain accurate estimation of pa-
rameters for parametric families such as Gaussian dis-
tributions under ε-contamination, where ε is the max-
imum fraction of samples (ε · n out of n) allowed to
be contaminated. This problem has been extensively
studied in recent years (see the book of Diakonikolas
and Daniel M Kane (2023), and references therein).
There are algorithms and lower bounds with different
characteristics under different contamination models
(time complexity and accuracy trade-off) (Samuel B.
Hopkins et al., 2019; Blanc et al., 2022; Diakonikolas,
Kamath, et al., 2019). S. Hopkins et al. (2020) studied
(nonparametric) robust mean estimation: distributions
with finite covariance (see the survey by Lugosi et al.

(2019), and references therein for more nonparametric
works). Notably, using algorithms developed through
robust mean estimation (also called learning) for Gaus-
sian under some strong contamination model, we can
reduce our testing under truncation problem via the
standard learning-to-test argument, which will give
us a sample complexity upper bound of O(d/α2).

Robust mean testing Gaussian mean testing has
been studied and well known to have a sample com-
plexity of Θ(

√
d/α2) (Diakonikolas, Daniel M Kane,

and Stewart, 2017; Diakonikolas, Daniel M Kane, and
Pensia, 2022). Recently, Canonne, Samuel B Hopkins,
et al. (2023) studied the Gaussian mean testing prob-
lem under two contamination models: oblivious con-
tamination model and strong contamination model – both
yield improved sample complexity than their learning
counterparts. In the oblivious contamination model,
an adversary could remove ε fraction of original sam-
ples from P without observing them and replacing
them with samples from a different distribution. In
this model, Canonne, Samuel B Hopkins, et al. (2023)
prove a near-optimal sample complexity bound of
Θ̃
(

max
(√

d
α2 , dε3

α4 , min
(

d2/3ε2/3

α8/3 , dε
α2

)))
.

In the strong contamination model, where the adver-
sary could first observe the values of original samples
from P , then pick ε fraction of them and replace with
arbitrary values, Canonne, Samuel B Hopkins, et al.
(2023) give the near-optimal sample complexity bound
of Θ̃

(
max

(√
d

α2 , dε2

α2

))
.2

Indeed, truncation can be viewed as a special form of
contamination model, and a strictly weaker form of
contamination than the strong contamination model
considered in Canonne, Samuel B Hopkins, et al.
(2023). Yet, it is somewhat orthogonal (neither stronger
nor weaker) to the oblivious contamination model.
We remark that our paper covers the full parameter
regime in terms of the relation between ε and α, while
Canonne, Samuel B Hopkins, et al. (2023, Theorem
7.1) has a limitation in the α ≥ ε · polylog(d, 1

ε , 1
α ). Un-

der the regime, α ≪ ε ·
√

log 1
ε , there is separation in

sample complexity: Θ(
√

d
α2 ) v.s. Θ̃

(
max

(√
d

α2 , dε2

α2

))
be-

tween the truncation model and strong contamination
model.

2 NOTATION AND PRELIMINARIES

Notation. We denote the inner product of x, y ∈
Rd by ⟨x, y⟩. The identity matrix in d-dimensions is
represented by Id. Let ε represent the mass of the

2We use (̃·) to hide the polylogarithmic factors.
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truncation set, meaning that the mass of the observed
part is 1 − ε, and let α denote the accuracy parameter.
When there exists an absolute constant c ∈ R such that
A ≤ c · B, we denote as A ≲ B. Bold font is used to
represent multivariate variables: e.g., x, X .

The Mahalanobis distance between two vectors x, y
given Σ is defined as,

∥x − y∥Σ =
√

(x − y)T Σ−1(x − y).

For a matrix A ∈ Rm×n with entries aij , the Frobenius
norm is defined as:

∥A∥F =

√√√√ m∑
i=1

n∑
j=1

|aij |2.

Truncated Gaussian Distribution. Let N (µ, Σ) rep-
resent the normal distribution with mean µ and covari-
ance Σ, whose probability density function is given
by:

N (µ, Σ; x) = 1√
det(2πΣ)

exp
(

−1
2∥x − µ∥2

Σ

)
.

We denote the truncated normal distribution restricted
to a set S as N (µ, Σ, S), with the probability mass of
S under this distribution written as N (µ, Σ; S). The
corresponding probability density function is:

N (µ, Σ, S; x) =
{ 1

N (µ,Σ;S) · N (µ, Σ; x) x ∈ S

0 x ̸∈ S
.

We can then write the population negative log-
likelihood ℓ̄(·) for data coming from a truncated nor-
mal with mean µ and covariance matrix Id as:

ℓ̄(v) = Ex∼N (µ,Id,S)

[
1
2xT x − vT x

]
+ log

(∫
S

exp
(

−1
2zT z + vT z

)
dz

)
. (1)

In this work, we focus on spherical Gaussian (covari-
ance matrix is Id), so our log-likelihood function only
has one parameter. We can write the gradient of the
negative log-likelihood function ℓ̄ as with respect to v
(∇l̄(v)) as follows:

∂l̄(v)
∂v

= −Ex∼N (µ,Id,S)[x] + Ez∼N (v,Id,S)[z] (2)

Throughout this paper, we will use S to indi-
cate the support of P after truncation and µS =
Ex∼N (µ,Id,S)[x] the truncated mean of some multivari-
ate normal P (or the mean under truncation).

We will require the following two results from previ-
ous work:

Lemma 2.1 (Strong convexity with truncation adapted
(Daskalakis, Gouleakis, Chistos Tzamos, et al., 2018,
Lemma 4)). Let Hℓ be the Hessian of the negative log
likelihood function ℓ̄(v), with the presence of arbitrary trun-
cation S such that N (µ, Id; S) ⩾ β for some β ∈ (0, 1].
Then it holds that

Hℓ(v) ⪰ 1
213

(
β

C

)4
· min

{
1
4 ,

1
16∥µ∥2

2 + 1

}
· Id,

where C is a universal constant.

Let D = {Pv|v ∈ Sd} denote a family of distributions
constructed in the following manner: Fix a one dimen-
sional distribution A and pick a unit d-dimensional
vector v ∈ Sd uniformly at random. Pv is a copy of A
in the direction of v and standard normal in directions
orthogonal to v.

Proposition 2.2 (Sample complexity lower bound for
high-dimensional testing (Diakonikolas, Daniel M.
Kane, et al., 2016, Proposition 7.1)). Let A be a distri-
bution on R such that A has mean 0 and χ2(A, N (0, 1))
is finite. Then, there is no algorithm that, for any d, given
N < d/(8χ2(A, N (0, 1))) samples from a distribution D
over Rn which is either N (0, 1) or Pv ∈ D, correctly dis-
tinguihes between the two cases with probability 2/3.

3 TESTING UNDER UNKNOWN
TRUNCATION

When the truncation set is unknown, we will focus
on three possible regimes depending on the relation
between the accuracy and truncation parameter:

• ε ·
√

log(1/ε) ≪ α: in this case, the truncation size
is much smaller than the required accuracy, mean-
ing the change in the empirical mean after trunca-
tion is negligible (at most ε ·

√
log(1/ε). Therefore,

applying the standard mean tester (Diakonikolas,
Daniel M Kane, and Pensia, 2022) Algorithm 1
with a sample complexity of O(

√
d/α2) is suffi-

cient.

• ε ≪ α ≪ ε ·
√

log(1/ε): Here, the truncation size
is close to the accuracy threshold. An adversarial
truncation (knowing the true mean) can select a
truncation set that shifts the truncated mean by at
least Ω(ε ·

√
log(1/ε)). In this regime, we establish

a lower bound of Ω(d/ε), indicating a transition
in sample complexity from Θ(

√
d) to Θ(d).

• α ≪ ε: When the truncation size exceeds the
accuracy threshold, it has been shown that test-
ing becomes information theoretically unfeasible
(Daskalakis, Gouleakis, Chistos Tzamos, et al.,
2018, Lemma 12).
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Our contribution are in the first two regimes and we
will elaborate on in the following subsections.

3.1 WHEN TRUNCATION SIZE IS MUCH
SMALLER THAN ACCURACY ε

√
log 1/ε ≲ α

In this subsection, we present Theorem 3.1. Given that
the change in the expectation after truncation is min-
imal, it is sufficient to bound the change in both the
mean and variance of the truncated normal distribu-
tion (as outlined in Lemma 3.3). We then apply the
tester and analysis from Diakonikolas, Daniel M Kane,
and Pensia (2022, Theorem 1.1). As a result, it is suffi-
cient to apply the standard mean tester in Algorithm 1
with a sample complexity of O(

√
d/α2).

Theorem 3.1. There exists an algorithm (Algorithm 1) that,
given i.i.d. samples from truncated Gaussian distribution P
with an unknown support set S ⊂ Rd, can distinguish the
following two cases based on the truncation mass parameter
ε ∈ (0, 1) and the accuracy parameter α > 0:

• (Completeness) If P is a truncated Gaussian distri-
bution N (0, Id; S) and the truncation mass satisfies
1 − N (0, Id; S) ⩽ ε, the algorithm will output ”AC-
CEPT” with probability at least 2/3.

• (Soundness) If P is a truncated Gaussian distribution

N (µ, Id; S) where ∥µ∥2 ⩾ α ⩾ c1·ε
√

log 1
ε , for some

constant c1 > 0 and the truncation mass satisfies 1 −
N (0, Id; S) ⩽ ε, the algorithm will output ”REJECT”
with probability at least 2/3.

The algorithm requires O
(√

d
α2

)
samples from P .

Algorithm 1 GaussianMeanTester (Diakonikolas,
Daniel M Kane, and Pensia, 2022)

Input: Sample access to distribution P on Rd and
α > 0.
Output: ”ACCEPT” if P = N (0, Id, S), “REJECT”
if P = N (µ, Id, S) and ∥µ∥2 ≥ α; both with prob-
ability at least 2/3.

1: Set n = O(
√

d/α2).
2: Sample 2n i.i.d. points from p and denote them by

X1, . . . , Xn and Y1, . . . , Yn.
3: Define Z = (1/n2)(

∑n
i=1 Xi)⊤(

∑n
i=1 Yi).

4: if |Z| ≤ O(
√

d/n) then
5: return ”ACCEPT”
6: else
7: return ”REJECT”

We now provide the proof sketch of Theorem 3.1.
Given 2n i.i.d. samples from a d-variate truncated nor-
mal P ∼ N (µ, Id, S), let the sample set be {x(1), . . . ,

x(n), y(1), . . . , y(n)}, where X = {x(1), . . . , x(n)},
Y = {y(1), . . . , y(n)}. The measure of S under the
non-truncated distribution N (µ, Id) is at least 1 − ε,
where 0 ≤ ε < 1. Define the empirical means of the
sample sets in Rd as

X̄ := 1
n

n∑
i=1

Xi, Ȳ := 1
n

n∑
i=1

Yi.

Our core test statistic is the inner product of these two
empirical means:

Z = ⟨X̄, Ȳ⟩ (3)

Let µS = Ex∼N (µ,Id,S)[x] denote the mean of the trun-
cated distribution, and let ΣS = Ex∼N (µ,Id,S)[(x −
µS) · (x − µS)T ] be the covariance matrix under trun-
cation. In Lemma 3.2 and Lemma 3.3, we will compute
the expectation and variance of Z and subsequently
apply Chebyshev’s inequality.

Lemma 3.2. For the random variable Z defined in Eq. (3),
obtained from two independent sets of n samples (i.e. 2n
total samples) from P ; let µ be the mean of P , and Σ the
covariance matrix, the following holds:

E[Z] = ⟨E[X̄],E[Ȳ]⟩ = ∥µ∥2
2 (4)

Var[Z] ⩽ ∥Σ∥2
F

n2 + 2
n

∥Σ∥F ∥µ∥2
2 (5)

Lemma 3.3 (Truncated vs non-truncated parameters).
Let µS , ΣS be the mean and covariance of the truncated
Gaussian N (µ, Id; S) with a measure of at least 1−ε. Then
the following holds:

∥µS−µ∥2 ≤ O(ε·
√

log(1/ε)) and ∥ΣS−Id∥F ⩽ O(
√

d).

Using Lemma 3.2 and Lemma 3.3, we compute the ex-
pectation and variance of Z. In the completeness case,
the quantity |Z − ∥µ∥|22 is small, with E[Z] < O(α2)
and Var [Z] ≲ α4. In the soundness case, We can
lower bound the expectation of µS for N (µ, Id, S),
where ∥µ∥2 ⩾ α, and show that E[Z] ⩾ Ω(α2), and
Var[Z] ≲ E2[Z]. This provides a clear separation be-
tween the two cases.

3.2 WHEN TRUNCATION SIZE IS NEAR
ACCURACY ε ≲ α ≲ ε

√
log 1/ε

As the truncation mass ε approaches to α, the null
and alternative hypothesis may overlap due to the
non-negligible truncation size. This overlap occurs be-
cause it becomes possible to choose truncation regions
that can substantially alter µS by an amount compara-
ble to α, rendering the standard algorithm ineffective.
Surprisingly, it presents a much greater challenge for
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our testing problem, where the sample complexity es-
calates to Ω(d), matching that of the existing robust
learning algorithms (Diakonikolas and Daniel M Kane,
2023, Proposition 1.20).
Theorem 3.4. The sample complexity for truncated mean

testing when ε ≲ α ≲ ε ·
√

log 1
ε is Θ(d).

Mean Testing Lower Bound We now show the main
idea of our lower bound proof. Intuitively, the hard
instance constructed in Lemma 3.5 does exactly this:
it modifies the mean by α and selects a random unit
vector v to define its direction in Rd, thereby forming
a d-variate truncated normal distribution in the sound-
ness case. This family of hard instances will be difficult
to distinguish from N (0, Id), the standard multivari-
ate normal distribution without truncation. We can
establish a Ω(d) sample complexity bound using lower
bound machinery developed in Diakonikolas, Daniel
M. Kane, et al. (2016, Proposition 7.1). This indicates
that any tester will require a sufficient number of sam-
ples to estimate the hidden direction v before being
able to differentiate between the null and alternative
hypothesis.
Lemma 3.5 (Sample Complexity Lower Bound for
Mean Testing with Unknown Truncation When
ε ≲ α ≲ ε

√
log(1/ε)). No algorithm can distinguish

between N (0, Id) and a family of truncated normal dis-
tribution of the form: N (v, Id, S) with measure ε on the
truncation set S̄ = Rd\S, for any ε < 1 and some
∥v∥2 = α = Θ(ε

√
log(1/ε)), using fewer than Ω (d/ε)

samples with a probability greater than 2/3.

The complete proof is provided in Appendix C. Below,
we present a sketch of the proof for Lemma 3.5. We
begin by constructing a one-dimensional truncated
normal distribution A = N (α, 1, S), where the trun-
cated mass is ε. This means Prx∼N (α,1)[x ∈ S] = 1 − ε.
We can determine the 1 − ε quantile as:

b = α +
√

2 erf−1(1 − 2ε).

which defines the truncation set as S = (−∞, b].

Let α(ε) = α = Θ
(

ε
√

log 1
ε

)
. For any ε, we can find a

constant c2 = Θ(1) such that E[A] = 0:

EX∼A[X] = α −
exp

(
− 1

2 (b − α)2
)

√
2π(1 − ε)

= 0,

which is equivalent to:

exp(−(erf−1(1 − 2ε))2)√
2π(1 − ε)

= c2 · ε

√
log 1

ε
= α.

Next, we compute an upper bound on the chi-squared
divergence between the truncated distribution A and

the standard normal distribution N (0, 1). We find that

χ2(A, N (0, 1)) ≤ O(ε + α2),

We now apply Proposition 2.2 Diakonikolas, Daniel M.
Kane, et al. (2016, Proposition 7.1), and obtain a lower
bound of

Ω
(

d

ε + α2

)
= Ω

(
d

ε

)
.

Mean Testing Upper Bound We apply the stan-
dard learning-to-test approach: first we estimate the
pre-truncation mean of the truncated normal using
O(d/α2) samples, following Diakonikolas and Daniel
M Kane, 2023, Proposition 1.20. This gives an estimate
µ̂ that is within α of the true mean before truncation.
If µ̂ is sufficiently close to zero, we return ”ACCEPT”.
Otherwise, return ”REJECT”.

4 TESTING UNDER KNOWN
TRUNCATION

In this section, we demonstrate in Theorem 4.3 that
when the truncation set is known, an alternative yet
straightforward algorithm, which leverages the gra-
dient of the maximum likelihood estimator, achieves
the optimal sample complexity of O(

√
d) across all pa-

rameter regimes. As a result, it is sufficient to apply
Algorithm 2 with a sample complexity of O(

√
d/α2).

Algorithm 2 GaussianMeanTester with known trunca-
tion

Input: Sample access to the truncated normal P
on Rd and α > 0 and oracle access to its support
set S.
Output: “ACCEPT” if P = N (0, Id, S), “REJECT”
if P = N (µ, Id, S) and ∥µ∥2 ≥ α; both with prob-
ability at least 2/3.

1: Compute µ′
S = Ex∼N (0,Id,S)[x] .

2: Set n = O(
√

d/α2).
3: Sample 2n i.i.d. points from P and denote them by

X1, . . . , Xn and Y1, . . . , Yn.
4: Z1 =

( 1
n

∑n
i=1 Xi − µ′

S

)⊤ ( 1
n

∑n
i=1 Yi − µ′

S

)
.

5: if |Z1| ≤ O(α2) then
6: return ”ACCEPT”
7: else
8: return ”REJECT”

The algorithm works as follows: Given the support S,
it first calculates the truncated mean for the standard
multivariate normal, denoted as µ′

S . Next, it draws 2n
i.i.d. samples from the truncated normal distribution
P with unknown mean. The algorithm then computes



Clément L. Canonne, Themis Gouleakis, Yuhao Wang, Joy Qiping Yang

the statistic:

Z1 =
(

1
n

n∑
i=1

Xi − µ′
S

)⊤(
1
n

n∑
i=1

Yi − µ′
S

)
.

The algorithm will return ”ACCEPT” if |Z1| ≤ O(α2)
and ”REJECT” otherwise.

The proof of Theorem 4.3 relies on the following two
lemmas and a subsequent application of Chebyshev’s
inequality.
Lemma 4.1. Let Z1 be the statistics in Algorithm 2 Line
4, and µ′

S = Ex∼N (0,Id,S)[x] (truncated mean under zero
mean). Let µS be the truncated mean of the unknown
Gaussian P , we can show that

E[Z1] = ∥µS − µ′
S∥2

2.

Var[Z1] ⩽ O(α4 + α2 · ∥µS − µ′
S∥2

2).

Lemma 4.2 (Gap of Mean under Truncation). Let
Ey∼N (0,Id;S)[y] = µ′

S and Ey∼N (µ′′,Id;S)[x] = µ′′
S ,

where ∥µ′′∥2
2 ≥ α2. Additionally, assume that

N (µ′′, Id; S) ≥ 1 − β for some constant β. Then, it holds
that

∥µ′
S − µ′′

S∥2
2 ≥ Ω(α2).

Proof sketch. Consider the negative log-likelihood
function, ℓ̄(0), with the mean set to 0 as the input
parameter. This function is defined for a population
drawn from a truncated normal distribution with an
unknown mean µ. From (2), we can express the gradi-
ent of the negative log-likelihood with respect to the
mean evaluated at 0, as follows:

∇ℓ̄(0) = −Ex∼N (µ,Id,S)[x]+Ez∼N (0,Id,S)[z] = µS−µ′
S .

Likewise, when evaluating the gradient at µ, we have

∇ℓ̄(µ) = −Ex∼N (µ,Id,S)[x] + Ez∼N (µ,Id,S)[z] = 0.

So, ∇ℓ̄(0) represents the difference between the trun-
cated mean of the underlying distribution and that
of the distribution with mean 0. From Lemma 2.1,
we know that ℓ̄(·) is λ0-strongly convex, and λ0 is a
constant if β is a constant. Therefore, by leveraging
the properties of strong convexity and applying the
Cauchy–Schwarz inequality, we obtain the following
result:√

∥µ − 0∥2
2 · ∥∇l̄(µ) − ∇l̄(0)∥2

2

⩾ ⟨∇l̄(µ) − ∇l̄(0), µ − 0⟩ ⩾ λ0

2 ∥µ∥2
2

By simplifying the expression and substituting µ with
any ∥µ′′∥2

2 ⩾ α2, we can show that:

∥µ′′
S − µ′

S∥2
2 ⩾ Ω(α2).

Theorem 4.3 (Known truncation tester). There exists
an algorithm (Algorithm 2) that takes i.i.d. samples from
truncated normal Gaussian P and given oracle access to
S ⊂ Rd, the effective support of P , distinguishing the cases
for parameters (mass of truncation) 0 < ε ⩽ 1 − β, where
β is a constant and (accuracy) 1

4 ⩾ α > 0:

• (Completeness) P is a truncated Gaussian distribu-
tion N (0, Id, S) and 1−N (0, Id; S) ⩽ ε. In this case,
the algorithm will output yes with probability at least
2/3.

• (Soundness) P is a truncated Gaussian distribution
N (µ, Id, S) where ∥µ∥2 ⩾ α and 1 − N (0, Id; S) ⩽
ε. In this case, the algorithm will output no with
probability at least 2/3.

The algorithm will take O
(√

d
α2

)
samples from P .

Proof sketch. Using Lemma 4.1 and Lemma 4.2, we ap-
ply Chebyshev inequality in the two cases:

1. Completeness: We know that E[Z1] = 0 and
Var[Z1] ≤ O(α4). Thus, by Chebyshev’s inequal-
ity, with probability at least 2/3 using,

Z1 ≤ O(α2).

2. Soundness: Let the non-truncated mean be µ′′

(and ∥µ′′∥2
2 ≥ α2) with ∥µ′′∥2

2 ≥ α2. Here,
E[Z1] = ∥µ′′

S − µ′
S∥2

2 and Var[Z1] ≤ O(α4 +
α2∥µ′′

S −µ′
S∥2

2). Applying Chebyshev’s inequality,
with probability at least 2/3, we have

Z1 ≥ ∥µ′′
S −µ′

S∥2
2 −O(α2 +α∥µ′′

S −µ′
S∥) ≥ Ω(α2).

5 CONCLUSION AND FUTURE WORK

In this work, we highlight the critical interplay be-
tween truncation mass ε and accuracy α in deter-
mining the sample complexity required for Gaussian-
Mean-Testing in both known and unknown truncation
regimes.

• Unknown Truncation: For ε < α/
√

log(1/α), we
establish the tight sample complexity of Θ(

√
d),

indicating the effectiveness of testing under mild
truncation. However, as ε approaches α, the sam-
ple complexity sharply jumps to Θ(d), indicating
a much more challenging testing regime (where
testing brings no sample complexity savings over
learning). Furthermore, when α ≤ ε, the sample
complexity becomes infinite, as testing becomes
information-theoretically unfeasible.
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• Known Truncation: In contrast, when the trun-
cation is known, the sample complexity remains
Θ(

√
d) across all parameter ranges, even when

ε > α. Thus, having prior knowledge of trunca-
tion can facilitate efficient testing regardless of the
relationship between α and ε.

Overall, this is the first work that provide valu-
able insights into the sample complexity for efficient
Gaussian-Mean-Testing, emphasizing the importance
of understanding truncation in designing algorithms
for robust statistics.

In future work, we aim to generalize the soundness
case by extending our analysis to any arbitrary (un-
known) covariance matrix Σ, beyond the identity-
covariance case. Another avenue of research, in-
spired by the recent line of work on convex trunca-
tion (De, Nadimpalli, et al., 2023), is to explore whether
structural assumptions on the truncation set (whether
known or unknown), for instance, convexity or ro-
tational symmetry, could enable significantly more
sample-efficient algorithms for the task. Some struc-
tural assumptions, in particular, truncation set of “low
complexity” (measured in VC-dimension, Gaussian
Surface Area or halfspaces) have been studied in the
learning setting, (Kontonis et al., 2019; J. H. Lee et al.,
2024). Indeed, truncation set with low complexity en-
ables mean estimation even when the truncation set
is unknown and truncation size is much larger than
accuracy (impossible otherwise in view of (Daskalakis,
Gouleakis, Chistos Tzamos, et al., 2018, Lemma 12)).
Notably, their lower bound (Kontonis et al., 2019, The-
orem 7) also applies to the testing setting.
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A OMITTEED PROOFS FROM Section 3

We will require the below well-known results for the statistic Z, show in Canonne, Chen, et al. (2021, Lemma 4.1).
For completeness, we provide the proof below:

Lemma 3.2. For the random variable Z defined in Eq. (3), obtained from two independent sets of n samples (i.e. 2n total
samples) from P ; let µ be the mean of P , and Σ the covariance matrix, the following holds:

E[Z] = ⟨E[X̄],E[Ȳ]⟩ = ∥µ∥2
2 (4)

Var[Z] ⩽ ∥Σ∥2
F

n2 + 2
n

∥Σ∥F ∥µ∥2
2 (5)

Proof. We will prove this for any d-dimensional distribution X ∼ P . Suppose the µ = E[X] and denote Σ its
covariance matrix. Draw X = {x(1), . . . , x(n)}, Y = {y(1), . . . , y(n)} i.i.d. 2n samples from P ; let X̄ := 1

n

∑n
i=1 Xi,

Ȳ := 1
n

∑n
i=1 Y i.

Z = ⟨X̄, Ȳ ⟩ = 1
n2

d∑
i=1

n∑
k=1

n∑
l=1

Xl,iYk,i.

E[Z] = ∥µ∥2
2.

The proof follows from the fact that X̄ and Ȳ are independent, thus Xi ⊥⊥ Xj regardless of i and j. Note that
Var[Z] = E[Z2] − E2[Z], we start by computing the second moment of the statistic:

E[Z2] = E

( 1
n2

d∑
i=1

n∑
k=1

n∑
l=1

Xl,iYk,i

) 1
n2

d∑
j=1

n∑
k′=1

n∑
l′=1

Xl′,jYk′,j


= 1

n4

d∑
i=1

d∑
j=1

n∑
k=1

n∑
l=1

n∑
k′=1

n∑
l′=1

E[Xl,iYk,iXl′,jYk′,j ]

= 1
n4

d∑
i=1

d∑
j=1

(
n∑

l=1

n∑
l′=1

E[Xl,iXl′,j ]
n∑

k=1

n∑
k′=1

E[Yk,iYk′,j ]
)

= 1
n4

d∑
i=1

d∑
j=1

(
n∑

l=1

n∑
l′=1

E[Xl,iXl′,j ]
)(

n∑
k=1

n∑
k′=1

E[Yk,iYk′,j ]
)

= 1
n4

d∑
i=1

d∑
j=1

(
n∑

l=1

n∑
l′=1

E[Xl,iXl′,j ]
)2

= 1
n4

d∑
i=1

d∑
j=1

 n∑
l=1

E[Xl,iXl,j ] +
∑
l ̸=l′

E[Xl,i]E[Xl′,j ]

2

= 1
n4

d∑
i=1

d∑
j=1

(
n∑

l=1
Cov(Xl,i, Xl,j) + E[Xl,i]E[Xl,j ] + n(n − 1)µiµj

)2

=
d∑

i=1

d∑
j=1

(
1
n

Cov(Xi, Xj) + µiµj

)2

=
d∑

i=1

d∑
j=1

(
1
n2 Σ2

i,j + 2
n

Σi,jµiµj + µ2
i µ2

j

)

=
d∑

i=1

d∑
j=1

(
1
n2 Σ2

i,j + 2
n

Σi,jµiµj

)
+ ∥µ∥4

2
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Then substitute Eq. (4) to complete the computation of Eq. (5)

Var[Z] = E[Z2] − E2[Z] =
d∑

i=1

d∑
j=1

(
1
n2 Σ2

i,j + 2
n

Σi,jµiµj

)
= 1

n2

∑
1⩽i,j⩽d

Σ2
i,j + 2

n

∑
i,j

Σi,jµiµj

= ∥Σ∥2
F

n2 + 2
n

∑
i,j

Σi,jµiµj

⩽
∥Σ∥2

F

n2 + 2
n

√∑
i,j

Σ2
i,j

√∑
i,j

µ2
i µ2

j (By Cauchy-Schwarz)

= ∥Σ∥2
F

n2 + 2
n

∥Σ∥F · ∥µ∥2
2

Lemma 3.3 (Truncated vs non-truncated parameters). Let µS , ΣS be the mean and covariance of the truncated
Gaussian N (µ, Id; S) with a measure of at least 1 − ε. Then the following holds:

∥µS − µ∥2 ≤ O(ε ·
√

log(1/ε)) and ∥ΣS − Id∥F ⩽ O(
√

d).

Proof. We establish each statement separately.

Bound on the mean ∥µS − µ∥2: Consider the region S̄, which contributes the most to the change in the mean or
covariance matrix in terms of the Frobenius norm. Let vS be the unit vector in the direction of the truncated mean
µS . For any unit vector v, the region that impacts the expectation E[vT x] or Var[vT x] the most corresponds to
truncating the ε-tail of vT x. The change in the mean in this direction can be bounded by O(ε

√
log(1/ε)), and

similarly, the variance of vT x changes by at most O(ε log(1/ε)), as can be shown by relatively standard and
elementary computations on a single-dimensional standard Gaussian (Diakonikolas and Daniel M Kane, 2023,
Proposition 2.3). Thus, for the mean shift, we have

∥µS − µ∥2 = ∥µS∥ = O(ε
√

log(1/ε))

Even if the region S̄ fully truncates its ε mass in the direction of vS , the mean shift in that direction is at most
O(ε

√
log(1/ε)).

Bound on the covariance ∥ΣS −Id∥F : Next, we turn to the covariance matrix. For any unit vector v, the variance
of vT x in the truncated distribution can be expressed as:

Var[vT x] = E[(vT x)2] − (E[vT x])2.

For the truncated Gaussian, the variance of vT x differs from 1 by at most O(ε log(1/ε)), i.e.,3,

Var[vT x] − 1 = E[(vT x)2] − E[vT x]2 − vT Idv

where

E[vT x]2 = (vT µS) · (µT
S v)

E[(vT x)(vT x)T ] − vT Idv = vT (E[xxT ] − Id)v = vT (ΣS + µSµT
S − Id)v

Thus
| Var[vT x] − 1| = |vT (ΣS − Id)v| ⩽ O(ε log 1/ε).

Now, recall the relationship between the spectral norm and the Frobenius norm: if the spectral norm of ΣS − Id

is bounded by O(ε log(1/ε)) = O(1), then the Frobenius norm satisfies O(
√

d).

3We believe one can prove a bound of O(ε log 1/ε) with a more sophisticated analysis; however, this weaker bound
suffices for our purposes.
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Theorem 3.1. There exists an algorithm (Algorithm 1) that, given i.i.d. samples from truncated Gaussian distribution P
with an unknown support set S ⊂ Rd, can distinguish the following two cases based on the truncation mass parameter
ε ∈ (0, 1) and the accuracy parameter α > 0:

• (Completeness) If P is a truncated Gaussian distribution N (0, Id; S) and the truncation mass satisfies 1 −
N (0, Id; S) ⩽ ε, the algorithm will output ”ACCEPT” with probability at least 2/3.

• (Soundness) If P is a truncated Gaussian distribution N (µ, Id; S) where ∥µ∥2 ⩾ α ⩾ c1 · ε
√

log 1
ε , for some

constant c1 > 0 and the truncation mass satisfies 1 − N (0, Id; S) ⩽ ε, the algorithm will output ”REJECT” with
probability at least 2/3.

The algorithm requires O
(√

d
α2

)
samples from P .

Proof. When X, Y come from the truncated Gaussian distribution N (µ, Id, S), by Lemma 3.2, we know that for
random variable Z

Z = ⟨X̄, Ȳ ⟩,
the following condition holds:

E[Z] = ⟨E[X],E[Y ]⟩ = ∥µ∥2
2

Var[Z] ⩽ ∥ΣS∥2
F

n2 + 2
n

∥ΣS∥F ∥µS∥2
2.

By Lemma 3.3,
∥µS − µ∥Id

⩽ O
(

ε ·
√

log(1/ε)
)

and ∥ΣS − Id∥F ⩽ O(
√

d). (6)

Completeness: In the completeness case, we want to show the expectation of Z is small when ∥µ∥2 = 0.

E[Z] = ∥µS∥2
2 ⩽ O(ε2 · log(1/ε)) ⩽ O(c2

1 · α2) = O(α2).

Var[Z] ⩽ ∥ΣS∥2
F

n2 + 2
n

∥ΣS∥F ∥µS∥2
2

⩽
(∥ΣS − Id∥F + ∥Id∥F )2

n2 + 2
n

(∥ΣS − Id∥F + ∥Id∥F )(∥µS − µ∥2 + ∥µ∥2)2

≲
(
√

d + ∥Id∥F )2

n2 + 2
n

(
√

d + ∥Id∥F )
(

ε ·
√

log(1/ε) + 0
)2

= O

(
d

n2

)
+ O

(√
d

n
ε2 log 1/ε

)

≲
d

n2︸︷︷︸
≪α4

+
√

d

n
· α2︸ ︷︷ ︸

≪α4

≲ α4

Since n ≳
√

d
α2 and α ≳ ε

√
log(1/ε), both terms are much smaller than α4. By Chebyshev’s inequality, we have:

Pr
[
Z − ∥µS∥2

2 ⩾
1
2∥µS∥2

2

]
⩽

4 Var[Z]
E2[Z]

Using the bounds on E[Z] and Var [Z] and and choosing large enough constants for n = O(
√

d/α2), this gives:

Pr[Z ⩾ Ω(α2)] ⩽ 1
9 .

Thus, the algorithm outputs “ACCEPT” with high probability in the completeness case.
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Soundness: In the soundness case, we have that ∥µ∥2 ⩾ c1α ⩾ ε ·
√

log(1/ε). We now show that Z is large in
this case:

E[Z] = ∥µS∥2
2 ⩾ (∥µ∥2 − ∥µ − µS∥2)2 =

(
∥µ∥2 − O

(
ε ·
√

log 1
ε

))2

⩾ (∥µ∥2 − O(α))2 ⩾ Ω(∥µ∥2
2). (7)

Similarly, the variance of Z is bounded as:

Var[Z] ⩽
∥ΣS∥2

F

n2 + 2
n

∥ΣS∥F ∥µS∥2
2

⩽
(∥ΣS − Id∥F + ∥Id∥F )2

n2 + 2
n

(∥ΣS − Id∥F + ∥Id∥F )∥µS∥2
2

≲
(
√

d +
√

d)2

n2 + 2
n

(
√

d +
√

d)∥µS∥2
2

= O

(
d

n2

)
+ O

(√
d

n
∥µS∥2

2

)

≲
d

n2 +
√

d

n
E[Z] ≲ E[Z]2

using that n ⩾ Ω
(√

d
α2

)
and recalling that E[Z] = ∥µS∥2

2 ⩾ Ω(α2) via (7) in the last step. By Chebyshev’s
inequality, we get:

Pr
[
∥µS∥2 − Z ⩾

1
2E[Z]

]
⩽

4 Var[Z]
E[Z]2 ⇒ Pr[Z ⩽ O(∥µS∥2)] ⩽ 1

9
Thus, with high probability:

Pr[Z ⩽ O(α2)] ⩽ 1
9 .

Hence, the algorithm outputs ”REJECT” with high probability in the soundness case.

Theorem 3.4. The sample complexity for truncated mean testing when ε ≲ α ≲ ε ·
√

log 1
ε is Θ(d).

Proof. This is a consequence of sample complexity lower bound of Ω(d) from Lemma 3.5 and the robust mean
estimation (Diakonikolas and Daniel M Kane, 2023, Proposition 1.20) upper bound of O(d).

B PROOF OF Theorem 4.3

Lemma 4.1. Let Z1 be the statistics in Algorithm 2 Line 4, and µ′
S = Ex∼N (0,Id,S)[x] (truncated mean under zero mean).

Let µS be the truncated mean of the unknown Gaussian P , we can show that

E[Z1] = ∥µS − µ′
S∥2

2.

Var[Z1] ⩽ O(α4 + α2 · ∥µS − µ′
S∥2

2).

Proof. By linearity of expectation and independence between Xis and Yis,

E[Z1] = E

( 1
n

n∑
i=1

Xi − µ′
S

)T
E

[(
1
n

n∑
i=1

Yi − µ′
S

)]
= (µ − µ′

S)T (µ − µ′
S).

Think of X̃i = Xi −µ′
S as a random variable (Ỹi = Yi −µ′

S as the other random variable), denote Σ̃ the covariance
of a single X̃i, and µ̃ the mean. We have that as in the proof of Lemma 3.2,

Var

( 1
n

n∑
i=1

X̃i

)T (
1
n

n∑
i=1

Ỹi

) ⩽
∥Σ̃∥2

F

n2 + 2
n

∥Σ̃∥F ∥µ̃∥2
2.
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We know that shifting the location of a random variable does not affect the covariance matrix, and thus Σ̃ = ΣS ,
and µ̃ = µS − µ′

S , which means

Var[Z1] ⩽
∥ΣS∥2

F

n2 + 2
n

∥ΣS∥F ∥µS − µ′
S∥2

2

⩽
(∥ΣS − Id∥F + ∥Id∥F )2

n2 + 2
n

(∥ΣS − Id∥F + ∥Id∥F )∥µS − µ′
S∥2

2

≲
d

n2 +
√

d

n
∥µS − µ′

S∥2
2,

where the last step follows from Lemma 3.3. Letting n = O
(√

d
α2

)
, we conclude our proof.

Lemma 4.2 (Gap of Mean under Truncation). Let Ey∼N (0,Id;S)[y] = µ′
S and Ey∼N (µ′′,Id;S)[x] = µ′′

S , where
∥µ′′∥2

2 ≥ α2. Additionally, assume that N (µ′′, Id; S) ≥ 1 − β for some constant β. Then, it holds that

∥µ′
S − µ′′

S∥2
2 ≥ Ω(α2).

Proof. Consider the negative log-likelihood function, ℓ̄(0), with the mean set to 0 as the input parameter. This
function is defined for a population drawn from a truncated normal distribution with an unknown mean µ.
From (2), we can express the gradient of the negative log-likelihood with respect to the mean evaluated at 0, as
follows:

∇ℓ̄(0) = −Ex∼N (µ,Id,S)[x] + Ez∼N (0,Id,S)[z] = µS − µ′
S .

Likewise, when evaluating the gradient at µ, we have

∇ℓ̄(µ) = −Ex∼N (µ,Id,S)[x] + Ez∼N (µ,Id,S)[z] = 0.

So, ∇ℓ̄(0) represents the difference between the truncated mean of the underlying distribution and that of

the distribution with mean 0. From Lemma 2.1, let λ0 = 1
213

(
β
C

)4
min

{
1
4 , 1

16∥µ∥2
2+1

}
, we know that ℓ̄(·) is

λ0-strongly convex, and λ0 is a constant if β is a constant and ∥µ∥2
2 ⩽ 1

16 . Therefore, by leveraging the properties
of strong convexity and applying the Cauchy–Schwarz inequality, we obtain the following result:√

∥µ − 0∥2
2 · ∥∇l̄(µ) − ∇l̄(0)∥2

2 ⩾ ⟨∇l̄(µ) − ∇l̄(0), µ − 0⟩ ⩾ λ0

2 ∥µ∥2
2

By simplifying the expression and substituting µ with any ∥µ′′∥2
2 ⩾ α2, we can show that:

∥µ′′
S − µ′

S∥2
2 ⩾ Ω(α2).

Theorem 4.3 (Known truncation tester). There exists an algorithm (Algorithm 2) that takes i.i.d. samples from truncated
normal Gaussian P and given oracle access to S ⊂ Rd, the effective support of P , distinguishing the cases for parameters
(mass of truncation) 0 < ε ⩽ 1 − β, where β is a constant and (accuracy) 1

4 ⩾ α > 0:

• (Completeness) P is a truncated Gaussian distribution N (0, Id, S) and 1 − N (0, Id; S) ⩽ ε. In this case, the
algorithm will output yes with probability at least 2/3.

• (Soundness) P is a truncated Gaussian distribution N (µ, Id, S) where ∥µ∥2 ⩾ α and 1 − N (0, Id; S) ⩽ ε. In this
case, the algorithm will output no with probability at least 2/3.

The algorithm will take O
(√

d
α2

)
samples from P .

Proof. Suppose ∥µ∥2
2 = α2 ⩽ 1

16 , then we have

min
{

1
4 ,

1
16∥µ∥2

2 + 1

}
= 1

4 .

And so λ0 is a constant.
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Completeness: When P is a truncated Gaussian N (0, Id, S). By Lemma 4.1, we have that when n ⩾ Ω
( √

d
λ2

0α2

)
=

Ω
(√

d
α2

)
,

E[Z1] = 0 and Var[Z1] ⩽ O(α4).

By Chebyshev’s inequality, for n being a large enough multiple of
√

d
α2 , we have that,

Pr
[
Z1 ⩾

3
2c2 · α2

]
⩽ O

(
Var[Z1]
c2 · α4

)
⩽

1
10 .

Soundness: When P is a truncated Gaussian N (µ, Id, S) and ∥µ∥2
2 ⩾ α2. By Lemma 4.2, we have that the gap

under truncation is:
∥µS − µ′

S∥2
2 ⩾ Ω(α2) = c2 · α2.

By Lemma 4.1, we have that when n ⩾ Ω
( √

d
λ2

0α2

)
= Ω

(√
d

α2

)
,

E[Z1] = ∥µ − µS∥2
2 and Var[Z1] ⩽ O(α4 + α2∥µS − µ′

S∥2
2).

By Chebyshev’s inequality, we have that,

Pr
[
Z1 ⩽

3
2c1 · α2

]
⩽ Pr

[
Z1 ⩽ ∥µ − µS∥2

2 + 1
2c2 · α2

]
⩽

Var[Z1]( 1
2 c2 · α2

)2 ⩽ O

(
α4 + α2∥µS − µ′

S∥2
2

c2
2 · α4

)
.

Let n be a large enough multiple of
√

d
α2 , then

Pr
[
Z1 ⩽

3
2c1 · α2

]
⩽ O

(
α4 + α2∥µS − µ′

S∥2
2

c2
2 · α4

)
= O

(
α4 + c2 · α4

c2
2 · α4

)
⩽

1
10 .

C PROOF OF Lemma 3.5

Lemma 3.5 (Sample Complexity Lower Bound for Mean Testing with Unknown Truncation When
ε ≲ α ≲ ε

√
log(1/ε)). No algorithm can distinguish between N (0, Id) and a family of truncated normal distribution of the

form: N (v, Id, S) with measure ε on the truncation set S̄ = Rd\S, for any ε < 1 and some ∥v∥2 = α = Θ(ε
√

log(1/ε)),
using fewer than Ω (d/ε) samples with a probability greater than 2/3.

Proof. We begin by constructing a one-dimensional truncated normal distribution A = N (α, 1, S), where the
truncated mass is ε. This means Prx∼N (α,1)[x ∈ S] = 1 − ε. We can determine the (1 − ε)-quantile as:

b = α +
√

2 erf−1(1 − 2ε).

which defines the truncation set as S := (−∞, b].

Let α(ε) := α = Θ
(

ε
√

log 1
ε

)
. For any ε, we can find a constant c2 = Θ(1) such that E[A] = 0:

EX∼A[X] = α −
exp

(
− 1

2 (b − α)2
)

√
2π(1 − ε)

= 0,

which is equivalent to:

α = c2 · ε

√
log 1

ε
= Θ

(
ε

√
log 1

ε

)
= exp(−(erf−1(1 − 2ε))2)√

2π(1 − ε)
.
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Next, we compute an upper bound on the chi-squared divergence between the truncated distribution A and the
standard normal distribution N (0, 1). We find that

χ2(A, N (0, 1)) =

∫ b

−∞

(
exp

(
− (x−α)2

2

)
/
√

2π(1 − ε)
)2

exp
(
− x2

2
)

/
√

2π
dx

− 1

= 1√
2π(1 − ε)2

(∫ b

−∞
exp(−(x − α)2 + x2/2)dx

)
− 1

= 1√
2π(1 − ε)2

(∫ b

−∞
exp

(
−x2

2 + 2xα − α2
)

dx

)
− 1

= 1√
2π(1 − ε)2

(∫ b

−∞
exp

(
−
(

x√
2

)2
+ 2xα −

(√
2α
)2

+ α2

)
dx

)
− 1

= exp(α2)√
2π(1 − ε)2

(∫ b

−∞
exp

(
−
(

x√
2

−
√

2α

)2
)

dx

)
− 1

= exp(α2)√
2π(1 − ε)2

(∫ b

−∞
exp

(
− (x − 2α)2

2

)
dx

)
− 1

= N (2α, 1; S)
(1 − ε)2 · exp(α2) − 1

⩽
exp(α2)
(1 − ε)2 − 1

⩽ (1 + O(ε)) · (1 + O(α2)) − 1
⩽ O(ε) + O(α2).

We now apply Proposition 2.2 (Diakonikolas, Daniel M. Kane, et al., 2016, Proposition 7.1), and obtain a lower
bound of

Ω
(

d

ε + α2

)
= Ω

(
d

ε

)
.

concluding the proof.
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