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Abstract

We study goal-conditioned Hierarchical Rein-
forcement Learning (HRL), where a high-level
agent instructs sub-goals to a low-level agent.
Under the assumption of a sparse reward func-
tion and known hierarchical decomposition,
we propose a new algorithm to learn optimal
hierarchical policies. Our algorithm takes a
low-level policy as input and is flexible enough
to work with a wide range of low-level poli-
cies. We show that when the low-level policy
is optimistic and provably efficient, our HRL
algorithm enjoys a regret bound which rep-
resents a significant improvement compared
to previous results for HRL. Importantly, our
regret upper bound highlights key character-
istics of the hierarchical decomposition that
guarantee that our hierarchical algorithm is
more efficient than the best monolithic ap-
proach. We support our theoretical findings
with experiments that underscore that our
method consistently outperforms algorithms
that ignore the hierarchical structure.

1 INTRODUCTION

This work focuses on finding efficient solutions to a fam-
ily of finite-horizon Markov Decision Processes (MDPs)
with a sparse reward function, which only rewards the
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land. PMLR: Volume 258. Copyright 2025 by the author(s).

agent when it successfully reaches the pre-specified goal
state. While the sparse reward assumption may appear
limitating, it is present in various problems. Sparse
reward functions are commonly used in practice for
goal-based tasks such as learning robot skills and mo-
tion planning, where the learner is only rewarded when
the goal is reached (Mülling et al., 2013; Andrychowicz
et al., 2017; Qureshi et al., 2019). These reward func-
tions are common and easy to design, making them of
great practical interest. In this work, we study how this
model can be used to understand one of the most chal-
lenging aspects of Hierarchical Reinforcement Learning
(HRL): jointly learning the high-level and low-level
policies efficiently.

Many goal-based tasks can be hierarchically decom-
posed into a sequence of individually solvable sub-tasks.
To tackle such problems, we propose a goal-conditioned
Hierarchical Reinforcement Learning (HRL) approach
(Pateria et al., 2021) that leverages the structured de-
composition of the task into sub-tasks. Our method
learns two different policies: a high-level policy instruct-
ing sub-goals and a low-level policy which aims to solve
them. We will see that it suffices to use a standard
algorithm to compute the low-level policy. To learn the
high-level policy, our method uses the low-level value
function as a proxy for the transition function. With a
sparse reward function, the value function of a policy
instructed to solve a sub-task is exactly the probability
with which the policy will complete the sub-task and,
consequently, move on to solving the next sub-task.

Our main result is to derive an upper bound on the
regret incurred by the proposed algorithm (see Theo-
rem 4.1). The exact regret will depend on the choice
of the low-level algorithm. Many low-level methods
can be used within our algorithm, the only require-
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ment of our analysis is that the low-level algorithm
is optimistic (see Def. 2). When a provably efficient
method is used, such as UCBVI (Azar et al., 2017),
our regret bound (see Corollary 4.2) is an improvement
on the other results in the HRL literature. Moreover,
our algorithm outperforms any standard RL method
as long as the considered MDP exhibits a specific hi-
erarchical structure. We also empirically validate our
findings in several maze environments and show that
the proposed algorithm consistently outperforms its
monolithic counterpart when the environment exhibits
the expected hierarchical structure.

2 RELATED WORK

Despite a growing literature of provably efficient algo-
rithms for standard Reinforcement Learning (RL) (also
referred to as monolithic approaches due to the lack of
a hierarchical structure, e.g. Auer et al. (2008); Dann
and Brunskill (2015); Azar et al. (2017)), theoretical
guarantees for HRL are still lacking. Most theoretical
guarantees are formulated in the options framework
(Sutton et al., 1999) and rely on the assumption that
the option policies are known in advance (Fruit et al.,
2017; Fruit and Lazaric, 2017). The only exceptions are
the analyses of Wen et al. (2020); Drappo et al. (2023,
2024), which provide upper bounds for jointly learning
both levels of policies. However, Wen et al. (2020)
only provides guarantees on the Bayesian regret and
requires additional assumptions on the reward function
to allow the propagation of the relative value of each
sub-task. Drappo et al. (2023) provides sub-optimal
guarantees using an Explore-then-Commit (Lattimore
and Szepesvári, 2020) based approach. Lastly, Drappo
et al. (2024) provides an improved regret bound, but
this bound involves constants that depend on the learn-
ing behaviour which can grow arbitrarily large. Robert
et al. (2024) provides a lower bound on the sample com-
plexity of goal-conditioned HRL. Note that the lower
bound of Robert et al. (2024) does not necessarily apply
to the setting considered in this paper since we assume
the reward is sparse and that we have access to a de-
terministic function that maps each possible high-level
state and sub-goal pair to the next high-level state in
the case of successful completion of the sub-goal1.

3 PROBLEM SETTING

This section introduces the problem setting, necessary
notations2 and key assumptions. Ultimately, we are
interested in solving a goal-based finite-horizon MDP;
we first recall the definition of this specific framework

1Refer to Appendix B for a more detailed discussion.
2We refer to Appendix A for a table summarising all the

notation used

(Sec. 3.1). Then, we define the hierarchical decomposi-
tion considered in this work (Sec. 3.2), showing how we
can reconstruct the original MDP from the decomposi-
tion (Sec. 3.2.3). We conclude by stating the learning
objective and the assumptions made (Sec. 3.3).

3.1 Goal-based Finite-Horizon Markov
Decision Process with Sparse Reward

A goal-based finite-horizon MDP is a tuple Mo =
⟨So,Ao, Ro, Po, Ho, so,1, g⟩. In general for a finite set
X , X = |X | defines its cardinality, and for any integer
I ∈ R, [I] = {1, · · · , I}. We refer to this MDP as
the original MDP. Hence, we index each of its compo-
nents with the subscript o. The state space So and
action space Ao are finite. The state space also con-
tains the goal state g ∈ So, which is an absorbing state.
The goal state is used to characterise the sparse re-
ward function Ro : So × [H] → [0, 1], which depends
on the state and the time step, and is equal to 0 ex-
cept if in the last step H the current state is the goal
state, in which case the reward is equal to 1, that is
Ro(s, h) = I{s = g ∩ h = H}.

The transition model Po : So×Ao×So → [0, 1] provides
the probability of reaching a specific state s′ after exe-
cuting an action a in state s, Po(s′|s, a). The horizon
Ho determines the number of interactions with the envi-
ronment the agent can perform within a single episode.
Each episode starts from an initial state so,1 ∈ So;
then, for the following Ho−1 steps, the agent interacts
with the MDP by choosing an action a depending on
the observed state s ∈ So. The result of this action is
immediately observed as a new state s′ ∼ Po(·|s, a) and
an immediate reward Ro(s

′, h), where h denotes the
current timestep. After K episodes, the algorithm has
interacted with the environment for T = KHo times.

The behaviour of an agent is modelled by a policy
π : So → Ao. We measure the quality of a policy with
its value function; for any s ∈ So and to ∈ [Ho]

V πo,to(s) = E
[ Ho∑
i=to

Ro(si, i)

∣∣∣∣ai = π(si), sto = s,

si+1 ∼ Po(·|si, ai)
]
.

The aim of RL algorithms is to find an optimal
policy π∗, within the set of Markov determinis-
tic policies Π, with maximal value function, π∗ =
argmaxπ∈Π V

π
o,1(so,1).

3.2 Hierarchical MDP

We now introduce the concepts of hierarchical de-
composition of an MDP, and the associated nota-
tion. We decompose an MDP into high- and low-level
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MDPs. In particular, the hierarchical decomposition
of an original finite horizon MDP Mo is expressed as
Ml×h = ({Ml,i}Li=1, Mh), where {Ml,i}Li=1 is the set
of L distinct low-level MDPs and Mh is the high-level
MDP. It is known that such a decomposition can always
be constructed (Robert et al., 2024). The algorithm
and the theoretical guarantees presented below assume
that the decomposition is known. We now define the
low- and high-level MDPs and then show the connec-
tion between the decomposition and the original MDP.
We finally highlight how executing a hierarchical policy
in the decomposed MDP corresponds to executing the
corresponding policy in the original MDP.

3.2.1 Low-level MDPs

The low-level MDPs are a set of L unique MDPs
{Ml,i}Li=1; they are similar to the concept of sub-
MDP introduced by Wen et al. (2020). One low-
level MDP is formally defined as Ml,i = ⟨Sl,i ∪
Ei,Ao, Rl,i, Pl,i, Hl, ρl,i⟩. Here, Sl,i is the low-level
state space of the ith low-level MDP. Ei is the set
of reachable sub-goals; these sub-goals are represented
as additional artificial absorbing states (note that the
goal state g is the only sub-goal that is not artificial).
We use the notation S+

l,i to represent the extended
state space, S+

l,i = Sl,i ∪ Ei. Note that one of the main
benefits of hierarchical decomposition is its ability to
capture repetitive patterns in the original MDP. In
particular, the decomposition is useful if the size of all
the low-level state spaces is smaller than the original
state space,

∑L
i=1 Sl,i < So. Another benefit of the

decomposition is that it breaks down the length of the
episodes. A single low-level episode lasts for Hl steps,
with the low-level horizon Hl ≤ Ho. Note that the
low-level action space consists of the original action
space Ao. The low-level reward function is an artificial
construction, Rl,i : S+

l,i × Ei × [Hl] → [0, 1], which is
defined as, Rl,i(s, e, tl) = I{s = e, tl = Hl} for state
s ∈ S+

l,i and the goal e ∈ Ei at time step tl ∈ [Hl].

The learning agent interacts in each low-level MDP for
Hl steps using a deterministic policy ν : ∪Li=1S

+
l,i → Ao.

Let e be the sub-goal state visited at the end of the
previous low-level episode. The initial state in the
next low-level MDP Ml,i is determined by the map
ρl,i(e) = s1, with s1 ∈ Sl,i. The low-level transition
function, Pl,i : S+

l,i × Ao × S+
l,i → [0, 1] encodes the

dynamics of Po on the subset of states whose low-level
description belong to Sl,i. Note that transitions from Ei
are trivial as every sub-goal state is absorbing. So, we
focus only on transitions from Sl,i. Each original state
so ∈ So has a corresponding low-level state sl ∈ Sl,i.
There are two distinct types of low-level transitions
that we need to consider: transitions from sl ∈ Sl,i to
s′l ∈ Sl,i and the ones from sl ∈ Sl,i to e ∈ Ei. First,

given so, s
′
o ∈ So and if their corresponding low level

description sl, s′l ∈ Sl,i, the low-level transition can be
written as Pl,i(s′l|sl, a) = Po(s

′
o|so, a) for all a ∈ Ao.

Second, given two low-level MDPs Ml,i and Ml,j , let’s
consider that Ml,i is connected to Ml,j via the sub-goal
e ∈ Ei, which means that when the agent successfully
completes e while in MDP Ml,i, it will start the next
low-level episode in MDP Ml,j . The probability of
transitioning to the artificial sub-goal state e from a
connected low-level state sl ∈ Sl,i corresponds to the
transition probability in the original MDP to go from
the original state associated to sl, s ∈ So, to s′, the
state corresponding to the initial state in the next MDP
s′l = ρl,j(e). So we have Pl,i(e|sl, a) = Po(s

′|s, a) for
all a ∈ Ao. Because the sub-goal states are absorbing,
we define the associated deterministic transition to be
Pl,i(e|e, a) = 1 for any e ∈ Ei, a ∈ Ao and 0 otherwise.
Note that when actions are selected by a low-level
policy ν , we compactly write the transition function
vector as P νl,i(·|sl), which contains the probabilities
Pl,i(s

′
l|sl, ν(sl)) for all s′l, sl ∈ S+

l,i.

We define the low-level value function of the policy ν,
in low-level state s ∈ Sl,i, when tasked to solve the
sub-goal e ∈ Ei in the low-level MDP Ml,i, V νl,i,tl(s, e),
at low-level time step tl ∈ {1, . . . Hl}, as:

V νl,i,tl(s, e) = Rl,i(s, e, tl) + P νl,i(·|s)TV νl,i,tl+1(·, e), (1)

with V νl,i,Hl(s, e) = Rl,i(s, e,Hl) for all s ∈ S+
l,i and

e ∈ Ei. Essentially, the low-level value function consists
of the expected total low-level reward. The optimal
low-level policy ν∗ is the policy that maximises the
value function:

ν∗(s, e) = argmax
ν∈N

V νl,i,1(s, e), (2)

for all i ∈ [L], e ∈ [|Ei|], and s ∈ Sl,i and with N being
the set of deterministic low-level policies.

Recall that the low-level reward function only rewards
the agent if it reaches the sub-goal within the Hl steps.
In this setting, low-level policies with the highest value
function have the highest probability of reaching the
sub-goal. The value function of a low-level policy can
be directly related to its probability of reaching the
specific sub-goal. For this, we define an event describing
a successful sub-goal completion by a policy ν.
Definition 1. We define endν(i, e, s1) as the event
that the policy ν successfully reached sub-goal e ∈ Ei
given that it starts its trajectory in state s1 ∈ Sl,i in
low-level MDP Ml,i, that is endν(i, e) = {sHl = e}
where τ = s1, . . . , sHl is a trajectory produced using the
policy ν.

The low-level value function can then be written as
V νl,i,1(s, e) = P(endν(i, e, s)), for any low-level MDP
Ml,i, sub-goal e ∈ Ei and starting state s1 ∈ Sl,i.
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3.2.2 The High-Level MDP

The high-level MDP is defined by the following tuple
Mh = ⟨Sh,Ah, Rh, P

ν
h , Hh, sh,1, ϕ, ψ⟩. The high-level

MDP operates at a higher temporal resolution and
essentially navigates between low-level MDPs. The
hierarchical structure suggests that there is an asso-
ciated low-level MDP for each high-level state. The
relationship between the high-level state sh ∈ Sh and
its corresponding low-level MDP Ml,i is encoded by
the map ϕ : Sh → [L]. If ϕ(s) = i, the low-level
MDP corresponding to the high-level state s ∈ Sh
is Ml,i. The high-level MDP actions are sub-goals
that are instructed to the low-level policy. Specifically,
the high-level action space in the high-level state sh
comprises the sub-goals of the current low-level MDP
Mϕ(sh),l, denoted by Eϕ(sh). The complete high-level
action space Ah = ∪Li=1Ei consists of the union of the
sub-goals Ei in the unique sub-MDPs Ml,i. The hier-
archical decomposition also includes a structure map,
ψ, that associates to each high-level state and sub-goal
pair the next high-level state that would be reached if
the sub-goal was completed successfully, ψ(sh, e) = s′h,
for all sh ∈ Sh, e ∈ Eϕ(sh). We assume this structure
map is known; in the case this map is unknown, it
would have a very limited impact on the algorithmic
complexity as a single successful completion of every
sub-goal would be sufficient to learn the map.

Each high-level episode starts in a unique starting state
sh,1, which corresponds to the high-level description of
the original MDP initial state, so,1, and lasts Hh − 1
decisions — Hh states are visited. The end goal g
is the only original state to have both a high-level
representation sgh and a low-level representation sgl . As
g is absorbing, the corresponding high- and low-level
representations are absorbing as well. With this in
mind, we define the high-level reward function:

Rh(sh, th) =

{
1, if sh = sgh and th = Hh

0, otherwise,
(3)

for all high-level states sh ∈ Sh and high-level steps
th ∈ {1, · · · , Hh}. There is only one high-level goal
state; thus, even the high-level reward function Rh is
sparse and assigns 0 to all high-level states except for
the high-level state associated with the unique low-
level MDP that contains the goal state. The high-
level transition function P νh encodes the probability of
reaching a high-level state s′h ∈ Sh given that in high-
level state sh ∈ Sh the low-level policy ν was instructed
to reach the sub-goal e ∈ Eϕ(sh), P νh (s′h|sh, e). Learning
P νh is generally challenging as its dependence on the
low-level policy, ν, makes it non-stationary.

The high-level policy is defined as µ : Sh → Ah. When
sub-goals are selected by a policy µ and a low-level

policy ν is used to solve each sub-goal, we define the
high-level value function, V (ν,µ)

h,th
, of the policy µ, at

high-level time step th ∈ {1, . . . Hh} as:

V
(ν,µ)
h,th

(s) = Rh(s, th) +
∑
s′∈Sh

P νh (s
′|s, µ(s))V (ν,µ)

h,th+1(s
′),

for all s ∈ Sh and with V
(ν,µ)
h,H (s) = Rh(s,Hh) for all

s ∈ Sh. The high-level value depends on the low-
level policy ν since ν selects primitive actions in Ao.
In particular, we define the optimal pair of policies
(ν∗, µ∗) as the pair that maximises the value function:

(ν∗, µ∗) = argmax
(ν,µ)

V
(ν,µ)
h,1 .

3.2.3 Equivalence between the original and
the hierarchical MDPs

The hierarchical algorithm we consider will learn an
optimal policy in the decomposed MDP Ml×h. This
section highlights the connection between the hierar-
chical task and the original task; in particular, we show
that every trajectory in the decomposed MDP Ml×h
has a corresponding trajectory in the original MDP
Mo. We illustrate this for a small grid world exam-
ple in Fig. 1 in the next subsection. In what follows,
we show the equivalence between each element of the
decomposed MDP and the original MDP.

State Space: A state in the original MDP so ∈ So
can be factorized into a pair of states (sl,i, sh) where
sl,i ∈ Sl,i is a state in the ith low-level MDP and
sh ∈ Sh is a state in the high-level MDP. Specifically,
the low-level state, sl,i, and the high-level state, sh,
contain all the necessary information to reconstruct
the corresponding state, so, in the original MDP. As
each high-level state corresponds to a low-level MDP,
there are |Sh| low-level MDPs, with L ≤ |Sh| unique
low-level MDPs. The size of the original state space
is the sum of the size of all the low-level state spaces
So =

∑
s∈Sh Sl,ϕ(s).

Action Space: Interactions with the environment are
only possible through the original action space Ao;
hence the action space of the low-level MDPs is ex-
actly Ao. The high-level action space encodes all the
sub-goals the high-level agent wants to instruct; this
corresponds to a set of artificial low-level states and
the goal state; we assume this set to be given by the
decomposition. In each high-level state s ∈ Sh, the
agent instructs the low-level agent to reach a sub-goal
e ∈ Eϕ(s). Then the low-level agent selects actions
a ∈ Ao to reach e.

Transition: Most of the complexity of the transition
dynamics is encoded in the low-level MDP dynamics
Pl,i. Essentially, the low-level and the original tran-
sition functions are almost identical for all the states
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within a sub-MDP Sl,i. The only difference is that
the original transition function operates over the full
state description So. The low-level transition function
operates over {S+

l,i}Li=1, which considers only the low-
level description of the states, and the transition to and
from the artificial sub-goal states Ei. To reconstruct
the original transition function from the decomposed
transition function, we consider two different scenarios.
(i) First, transitions from so to s′o where the low-
level description of both states lies in the same low-
level MDP sl, s

′
l ∈ Sl,i. Then, the low-level tran-

sition function is equal to a restriction of the origi-
nal transition in the appropriate low-level state space
Po(s

′
o|so, a) = Pl,i(s

′
l|sl, a) ∀a ∈ Ao.

(ii) Second, we consider the transition between the low-
level states sl ∈ Sl,ϕ(sh) and s′l ∈ Sl,ϕ(s′h) where the as-
sociated high-level states sh, s′h ∈ Sh are different. We
consider all sub-goal states, e ∈ Eϕ(sh), supporting such
a transition. Formally, we consider the set Z = {e :
∃ ν ∈ N s.t. P νh (s

′
h|sh, e) > 0 and ρl,ϕ(s′h)(e) = s′l},

where e ∈ Eϕ(sh) are sub-goals, sh, s′h ∈ Sh are the
high-level state description of the current and the next
state, and ρl,ϕ(s′h)(e) denotes the initial state in low-
level MDPMl,ϕ(s′h)

when the low-level agent reaches the
sub-goal e ∈ Eϕ(sh) in the previous low-level episode.
The original transition is the probability of going via
any of the sub-goal states in Z,

Po(s
′
o|so, a) =

∑
e∈Z

Pl,i(e|sl, a) ∀a ∈ Ao,

where sl ∈ Sl,i is the low-level state description associ-
ated with the state in the original MDP so ∈ So.

Reward There is a direct equivalence between the orig-
inal reward function and the reward functions in the
decomposed MDPs. Since the high-level reward func-
tion only rewards the agent when it ends the episode
in the absorbing high-level goal state, it ignores all
the bonuses received when the low-level policy reaches
a sub-goal e ∈ Ah \ g. Hence, the only high-level re-
ward signal preserved is when that agent reaches the
goal state g; hence, the high-level reward function is a
restriction of the original reward function on Sh.

Horizon The two levels of the hierarchy operate at
two different time scales, with the low-level episode
tl ∈ {1, . . . Hl} happening completely within one high-
level time step. The high-level agent observes Hh high-
level states and instructs Hh−1 sub-goals in an episode.
Hence, the total number of decisions in both MDPs is
equivalent: Ho − 1 = (Hl − 1)(Hh − 1). Note that the
control returns to the high-level policy exactly after Hl

steps; even if the low-level policy reaches the sub-goal
in fewer steps, it waits in the absorbing low-level MDP
sub-goal state. Each time the high-level recovers the
control, it observes the current high-level state sh and
selects the next sub-goal.

Figure 1: An illustration of a grid world and its associ-
ated hierarchical decomposition.

3.2.4 A simple example

To illustrate the notions introduced so far, we con-
sider the simple grid world environment depicted in
Fig. 1. This grid world is composed of rooms that are
delimited by solid black lines the goal of the agent is
to navigate from the initial state (the striped green
square on the top left corner) to the goal state g, de-
picted as a green square. This problem can naturally
be modeled as an MDP. Each grey cell represents a
state, and an action consists of moving from one cell
to a neighboring cell (in one of the four cardinal direc-
tions). The goal of the agent is to find, within some
horizon H, a path that connects the initial state to the
goal state g. Alternatively, one can notice that there
is more structure to this problem. In particular there
are bottleneck states,i.e. hallways, which are manda-
tory steps in order to go from one room to the next
and there are rooms which share the same structure as
well. The hierarchical decomposition takes advantage
of such structures. The high level states consist of the
different rooms (depicted with solid black lines); inside
each room, the low-level states are illustrated with grey
squares. One can observe that the low-level MDP M1,l

is used twice (in the top and bottom left rooms). The
blue rectangle represents the artificial exit states that
connect two low-level MDPs, they correspond to the
high-level actions. Lastly, the original goal g ∈ Sl and
g ∈ So, is illustrated with a green cell in the bottom
right room, and it is the only sub-goal state that is
not an artificial construction and that belongs to the
low-level state space Sl,i. Additionally, the green cell
also defines the artificial high-level state sgh and its
corresponding unique low-level MDP Ml,5, in which
the agent can wait the end of the episode once reached.

3.3 Learning in a Hierarchical MDP

The hierarchical decomposition described in section
3.2.3 contains additional information about the struc-
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ture of the problem, like the structure map ψ and the
sub-goal spaces {Ei}Li=1. We assume that this addi-
tional information is known to the learner. We now
focus on developing an algorithm to solve such hierar-
chical problems efficiently, assuming that the hierar-
chical structure and additional information is known.
We evaluate the efficiency of our algorithm using the
notion of regret (Auer et al., 2008; Azar et al., 2017)

Regret The algorithms proceed in episodes k =
1, . . . ,K; at the beginning of each high-level episode,
the algorithm computes a hierarchical pair of policies
(ν, µ)k. The regret is defined as the cumulative sum
of differences between the value of the optimal pair of
hierarchical policies (ν∗, µ∗) and the policies played in
each episode. Formally the regret suffered by a hierar-
chical algorithm A, which computes in each episode, k,
the pair of policies (ν, µ)k, over K episodes is:

RhA(Ml×h,K) :=

K∑
k=1

V
(ν∗,µ∗)
h,1 (s1)− V

(ν,µ)k
h,1 (s1), (4)

with s1 ∈ Sh the initial state in the high-level MDP.

Note that in this regret formulation, we ignore a lin-
ear term K∆struct(Ml×h), that accounts for the sub-
optimality gap, ∆struct(Ml×h) = V π

∗

o,1−V
ν∗,µ∗

h,1 , induced
by the hierarchical decomposition. This occurs since
the value of the optimal hierarchical policy, V ν

∗,µ∗

h,1 ,
which is the target of our algorithm (see the definition
of regret in Eq. 4), might be smaller than the value of
the optimal policy in the original MDP V π

∗

o,1 . The goal
is to minimize the regret in Eq. (4). Before formally
presenting our algorithm in Section 4, we conclude this
section by highlighting some important assumptions
that we make.

Assumption 1: Every low-level MDP is communicat-
ing. This ensures that for every low-level MDP Ml,i,
with i ∈ [L] and any subgoal e ∈ Ei, there exists a
low-level policy ν able to reach the sub-goal state e
within Hl steps.
Assumption 2: The structure map ψ is such that
there always exists a sequence of Hh − 1 (or less) sub-
goals e1, · · · , eHh−1 that starts in the high-level initial
state s1 and ends in the high-level goal state sgh, with
sh+1 = ψ(sh, eh) for h = 1 · · · , Hh.
Assumption 3: The original MDP Mo is time-
homogeneous. This is a common assumption in RL as
it simplifies the setting and the notation.

It is also helpful to consider the regret suffered by a
low-level algorithm B which, in each low-level episode
n = 1, . . . , N , selects the policy νn to solve sub-goal
e ∈ Ei in MDP Ml,i.

RlB((Ml,i, e), N) :=

N∑
n=1

V ν
∗

l,i,1(sn, e)− V νnl,i,1(sn, e). (5)

Here, V ν
∗

l,i,1(sn, e) and V νnl,i,1(sn, e) are respectively the
value functions of the optimal policy, ν∗, and the cur-
rent policy, νn, when tasked solve sub-goal e in MDP
Ml,i from sn— the low-level state in which the low-level
episode n started.

4 MAIN RESULT

We propose an algorithm that directly leverages the
known hierarchical decomposition to efficiently solve
the original MDP. In this section, we first describe
the general framework and define the set of low-level
algorithms that can be used. We then state the main
theorem, which provides a general upper bound on the
worst-case regret in terms of the regret of the low-level
algorithm. We conclude the section with a corollary
bounding the total regret when the low-level algorithm
is UCBVI (Azar et al., 2017).

We present the Goal-conditioned Hierarchical Rein-
forcement Learning algorithm (GHRL) in Alg.1. Intu-
itively, GHRL exploits the fact that the low-level value
functions V νl,i(s, e) of a policy ν is equivalent to the
probability that ν successfully complete sub-goal e in
Ml,i. Specifically, the computed optimistic low-level
value functions are used to construct an optimistic
approximation of the high-level MDP M̃h. Using back-
ward induction in M̃h, GHRL computes an optimistic
high-level plan. GHRL takes as input the number of
high-level episodes, K, the high-level structure map
ψ, the high-level reward function Rh, and the choice
of the low-level regret minimiser B. To highlight that
a specific low-level algorithm B was used, we call the
resulting hierarchical algorithm GHRLB. Our theoret-
ical guarantee requires that GHRLB receives as input
a low-level algorithm that belongs to the set optimistic
algorithms, B ∈ Ξ, where we define an optimistic algo-
rithm as follows.

Definition 2. Given a confidence value β ≥ 0, an
algorithm is said to be (1 − β)-optimistic if, in each
round k, it computes an optimistic value function Ṽ νkl,i,1,
such that Ṽ νkl,i,1(sl) ≥ V ∗

l,i,1(sl), with probability 1 − β,
for every state sl ∈ Sl,i.

For example algorithms like UCBVI Azar et al. (2017),
UCRL2 Auer et al. (2008) or Q-UCB Jin et al. (2018)
belong to Ξ. The optimism of the low-level algorithm
is required to ensure sufficient exploration for the high-
level policy, which guarantees all low-level MDP sub-
goal pairs are visited sufficiently often.

The algorithm maintains a dataset Dl
k containing all

the low-level information collected up to the kth episode.
In each episode k, the optimistic low-level algorithm
B ∈ Ξ uses Dl

k to compute an optimistic low-level
policy νk, and an optimistic value function Ṽ νkl,i for



Drappo, Robert, Restelli, Faisal, Metelli, Pike-Burke

each low-level MDP, Ml,i and sub-goal e ∈ Ei pair.

The algorithm’s key innovation is to compute an opti-
mistic approximation of the high-level transition func-
tion P νkh under the low-level policy νk. For this, we
first recall that the structure map ψ indicates the in-
tended high-level next state s′h, given that in high-level
state sh, the instructed sub-goal is e, ψ(sh, e) = s′h.
Additionally, in the sparse reward setting, the value
function of the low-level policy, V νkl,i,1(s, e) is equivalent
to the probability that policy νk reaches the sub-goal
e while starting in state s ∈ Sl,i. Consequently, the
optimistic value function Ṽ νkl,i,1(s, e) upper bounds the
probability that the current low-level policy reaches the
instructed goal. Then, an optimistic approximation of
the high-level transition function can be computed as
follows:

P̃ νkh (s′h|sh, e) =

{
min(Ṽ νkl,i,1(sl, e), 1), if s′h = ψ(sh, e)

0, otherwise,
(6)

where i = ϕ(sh) is the low-level MDP associated with
the current high-level state. Note that P̃ νkh is an ap-
proximation of a transition function as it does not
necessarily sum to 1, that is,

∑
s′∈Sh P̃

νk
h (s′|s, e) ≤ 1.

For each episode k, the algorithm computes the high-
level policy µk as the optimal policy of the optimistic
high-level MDP M̃h = ⟨Sh,Ah, Rh, P̃

νk
h , Hh, sh,1, ϕ, ψ⟩,

where the high-level transition function P̃ νkh is the op-
timistic approximation of the true transition function
P νkh under the current low-level policy νk. The opti-
mistic high-level Q-function, Q̃(ν,µ)k

h , is computed via
backward induction (see Alg. 2 in the Appendix) using
the optimistic approximate transition function P̃ νh and
the high-level reward Rh.

The current hierarchical policy pair (ν, µ)k is used to
collect the low-level samples that are stored in the
dataset Dk

l . The high-level policy selects a sub-goal e
in the initial state. The low-level policy νk is executed
in the MDP Ml,i with i = ϕ(sh). The low-level agent
aims to solve the sub-goals instructed by µk in the
Hl steps. Whenever a low-level episode ends, either
the sub-goal is reached, and the next sub-goal in the
high-level plan is instructed, or the sub-goal is not
reached. In cases where the sub-goal is not reached,
the algorithm stops collecting samples for that episode.

Our main result is an upper bound on the regret suf-
fered by GHRL (Alg. 1), which depends on the choice
of the low-level algorithm, B.

Theorem 4.1. Given δ ∈ [0, 1] and β = δ
KAh

, for
any hierarchical decomposition Ml×h, and any (1− β)-
optimistic low-level regret minimiser B ∈ Ξ, the regret

of GHRLB is bounded, with probability 1− δ, by:

RhGHRL(Ml×h,K) ≤
L∑
i=1

∑
e∈Ei

(
RlB

(
(Ml,i, e), N(i, e)

)
+ 2N(i, e) max

sl∈Sl,i,1
P(¬endν∗(i, e, s))

)
(7)

where N(i, e), ∀i ∈ [L] and e ∈ Ei, is the number of
times in which sub-goal e has been chosen in the state sh,
with ϕ(sh) = i and e = µk(sh). RlB

(
(Ml,i, e), N(i, e)

)
is the regret suffered by B while learning to solve goal
e in low-level MDP Ml,i for N(i, e) low-level episodes.
Sl,i,1 is the set of potential initial states in the MDP
Ml,i, Sl,i,1 =

⋃
e∈Ah{s1 = ρl,i(e) : s1 ∈ Sl,i}.

The proof of Theorem 4.1 follows from combining prop-
erties of the sparse reward function and the optimism
of the low-level algorithm. Interestingly, the optimistic
high-level plan, computed with Q̃

(ν,µ)k
h , explores sub-

goals considering the uncertainty of the low-level MDPs’
transition dynamics, which is encoded into P̃ νk . Thus,
the regret of GHRL can be upper bounded by the
probability of failing each instructed sub-goal, which
directly relates to the low-level regret. A detailed proof
of Theorem 4.1 is in Section E.

GHRL’s theoretical and computational guarantees are
then tightly linked to B’s guarantees and to the fail-
ure probability of the optimal policy, P(¬endν∗(i, e)).
The regret consists of the sum of the regret suffered
by the low-level policy at each possible low-level MDP
sub-goal pair. The approximate high-level MDP con-
structed does not model transitions after a failed sub-
goal. Hence, our algorithm discards all samples that
follow a failed sub-goal. The optimal hierarchical pol-
icy (ν∗, µ∗) does not suffer from this limitation; hence,
the second term of Eq. (7) reflects the sub-optimality
induced by this limitation. Additionally, this regret
bound highlights the impact of the hierarchical struc-
ture Ml×h on the algorithm’s performance, suggesting
an improvement in problems with highly frequent pat-
terns (i.e., L≪ Sh).

We obtain the following upper bound if we choose
UCBVI Azar et al. (2017) as the low-level algorithm.

Corollary 4.2. Let δ ∈ [0, 1] and β = δ
KAh

be the
failure probability of the low-level algorithm, UCBVI.
For any hierarchical decomposition Ml×h the regret
suffered by GHRLUCBVI for K high-level episodes is
bounded, with probability 1− δ, by:

RhGHRL(Ml×h,K) ≤
√
AoAhmax

i
{S+

l,i}HlKHh +∆

(8)
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with

∆ =

L∑
i=1

∑
e∈Ei

2N(i, e) max
sl∈Sl,i,1

P(¬endν∗(i, e, s)).

A proof of Corollary 4.2 is in Appendix E.

Algorithm 1 Goal-conditioned HRL (GHRL)
1: Input: K episodes, high-level structure map ψ, high-

level reward function Rh, low-level regret minimizer B
and failure tolerance δ ∈ (0, 1].

2: Output: with probability 1− δ an optimal hierarchical
policy.

3: Arbitrarily initialize µ1 and ν1, and Dl
1 ← {}

4: for k = 1, . . . ,K do
5: νi,k, Ṽ

νk
l,i = B(Dl

k,Mi,l, e) ∀i ∈ [L], e ∈ Ei
6: Ṽ

νk
l = [Ṽ

νk
l,i , · · · Ṽ

νk
l,L ]

7: P̃
νk
h (s′h|sh, e) with Eq. (6) ∀sh, s′h ∈ Sh, e ∈ Eϕ(sh)

8: Q̃
(ν,µ)k
h = BackwardInduction(Sh,Ah, Rh, P̃

νk
h ).

9: µk(sh) = argmaxah
Q̃

(ν,µ)k
h,th

(sh, ah) ∀sh ∈ Sh;
10: s = so,1 = (sl,i,1, sh,1) with i = ϕ(sh,1)
11: sh = sh,1, sl,i = sl,i,1
12: for th = 1, . . . , Hh do
13: e = µk(sh)
14: for tl = 1, . . . , Hl do
15: play action a = νk(sl,i, e), in Ml,i with i =

ϕ(sh).16: observe s′l,i, update Dl
k+1 = Dl

k ∪ {(sl,i, a, s′l,i)}
17: sl,i = s′l,i
18: end for
19: if sl,i ̸= e then
20: discard the rest of the sample and set th =

Hh, sh = sh,1, sl,i = sl,i,1
21: else
22: sh = ψ(sh, e)
23: end if
24: end for
25: end for

5 DISCUSSION

If we consider hierarchical structures Ml×h where a
hierarchical policy is optimal in the original MDP, i.e.
where ∆struct(Ml×h) = 0, we can compare the result in
Corollary 4.2 with the performance of the best mono-
lithic approach. Osband and Van Roy (2016) provide
a lower bound on the regret paid by any algorithm in
the original MDP Mo:

Ro(Mo,K) = Ω(
√
HoAoSoK) (9)

where Ro is the standard regret as defined in Osband
and Van Roy (2016), Note that the sparse reward
assumption allows us to replace the dependency on H2

o

with Ho since the maximum achievable value is 1.

The ratio between the regret of GHRLUCBV I and the
lower bound in Eq. (9), provides insights into when to
prefer GHRL over any monolithic approach. The ratio

up to constants can be written as:

RhGHRL(Ml×h,K)

Ro(Mo,K)
≤
AoAhmaxi(S

+
l,i)HlKHh +∆

AoSoHoK

≤
Ahmaxi(S

+
l,i)

So
+

2Pmax

AoSoHo
(10)

where Eq. (10) comes from upper bounding ∆ with
2PmaxK, where

∑L
i=1

∑
e∈Ei N(i, e) = K and Pmax =

maxi,e,s P(¬endν∗(i, e, s)) is the largest probability that
the optimal policy fails. In general, GHRLUCBVI is
more efficient than any regret minimiser operating in
the original MDP when the ratio in Eq. (10) is smaller
than 1. First, we realise that Pmax is a probability
as such is at most 1. Hence, for most MDPs, the
second term of Eq. (10) will be negligible. We can
then focus on the first term of Eq. 10. We first recall
that Ah =

∑L
i=1 |Ei| and can be upper bounded by the

number of low-level MDPs multiplied by the largest set
of sub-goals Ah ≤ Lmaxi(|Ei|). This perspective allows
us to clarify that we expect GHRLUCBVI to outperform
any RL algorithm when Lmaxi(S

+
l,i)maxi(|Ei|) < So.

This condition highlights an essential property of the
hierarchical structure that is required. There is a need
for repetitive patterns inside the MDP, suggesting that
Lmaxi(S

+
l,i) ≪ So. This source of efficiency gains

should compensate for the low-level policy’s added
difficulty in solving multiple sub-goals. In particular,
improvements are realisable if the number of sub-goals
is constrained to:

max
i

(|Ei|) ≤
S

Lmaxi(S
+
l,i)

. (11)

6 EXPERIMENTS

We now empirically validate the GHRL algorithm (see
Alg. 1) and show that the proposed method outper-
forms standard RL algorithms when the MDP exhibits
a hierarchical structure3. The GHRL framework pre-
sented in Alg. 1 is flexible enough to accommodate
a wide range of regret minimiser choices for the low-
level algorithm. To empirically validate our framework,
we consider Q-UCB Jin et al. (2018) to compute the
low-level policy. We propose to evaluate this specific
instance of GHRL on a path-like grid world composed
of several rooms. An illustration of the environment
considered is available in Appendix F (see Fig. 3). The
goal is to go through the entire path from the leftmost
room to the rightmost room, and the agent can only
move from one cell of the maze to a neighbouring cell.
Using rooms as the building block of our path leads
to an immediate hierarchical structure. The high-level

3All experiments were run on a 12th Gen Intel Core i7
with 16GB of RAM



Drappo, Robert, Restelli, Faisal, Metelli, Pike-Burke

Figure 2: The four leftmost plots show the learning curves of GHRL with Q-UCB (in blue) and standard Q-UCB
(in red). We compare the performance of the two algorithms on a navigation environment that describes a path
composed of several rooms. We see that as we increase the number of identical rooms, the efficiency gain of
GHRL becomes more evident. Additionally, the rightmost plot shows the impact of an increasing number of
low-level MDPs on the learning curve. We ran the experiment for each plot with ten different random seeds; the
solid line is the mean performance, and the shaded area covers two standard deviations.

agent navigates from room to room, and the low-level
agent navigates within a room. We defined the low-
level horizon as Hl = 20, the high-level horizon as equal
to the number of rooms N , Hh = N , and the horizon in
the monolithic problem is Ho = 20 ∗N . As illustrated
on the four leftmost plots of Fig. 2, the performance
of GHRLQ-UCB

4 and Q-UCB are similar if there is
only one room to navigate and the goal room (i.e. two
rooms), as the hierarchy cannot be leveraged. However,
as we increase the number of rooms, the benefit of the
hierarchical framework becomes more visible. Note
that for more than four rooms, Q-UCB cannot find the
goal within the allowed number of interactions.

In the previous experiment, all the room profiles were
identical, so there was only a single low-level MDP
in the hierarchical decomposition. This benefits the
hierarchical algorithm considerably. We repeat this ex-
periment, but this time, we add different room profiles
to challenge the low-level to learn to navigate more
than a single low-level MDP. In the rightmost plot of
Fig. 2, we show the learning curve of our algorithm as
we increase the number of room profiles. As expected,
as we increase the number of room profiles, the problem
becomes more challenging, empirically showing what
Corollary 4.2 highlighted.

7 CONCLUSION

This work addresses an important open problem in
HRL, which is understanding to what extent jointly
learning the high- and low-level policies impacts the
efficiency gain of hierarchical approaches. To do so, we
focus on the goal-based sparse reward setting. We pro-
pose an algorithm that leverages the optimism of the
low-level agent to design an optimistic high-level plan
and show that the regret of learning this joint policy is
dominated by the regret of the low-level policy. Our

4Q-UCB’s parameters are the failure probability, β and
a constant c > 0. We set β = 0.1 and c = 1× 10−6.

method works for any choice of optimistic low-level
regret minimiser, and we show how choosing a good
low-level algorithm can lead to improved performance
compared to monolithic RL approaches for particular
structures. This improvement is largest when the MDP
contains repeated patterns that an HRL algorithm can
leverage. Our result improves upon existing regret up-
per bounds in HRL (Drappo et al., 2024; Wen et al.,
2020). The sparse reward setting allowed us to high-
light that problems exist for which an improved regret
bound is achievable. Nevertheless, extending our re-
sults to more general reward functions is an interesting
perspective for future work.
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A NOTATION

Since the paper contains a lot of notations, we provide a table with a summary of them here.

Original MDP Low-level MDP Ml,i High-level MDP Mh

State space So Sl,i Sh
Sub-goal states ∅ {Ei}Li=1 ∅
Action space Ao Ao Ah = ∪L

i=1Ei
Transition Po Pl,i Ph

Reward Ro Rl Rh

Horizon Ho = Hl ∗Hh Hl Hh

Initial state so,1 sl,1 sh,1
Timestep to tl th

Value function V π
o,to(s) V ν

l,i,tl
(s) V

(ν,µ)
h,th

(s)

Optimistic value Ṽ
πk
o,to

(s) Ṽ
νk
l,i,tl

(s) Ṽ
(ν,µ)k
h,th

(s)

Optimistic Q-function Q̃
πk
o,to

(s, a) Q̃
νk
l,i,tl

(s, a) Q̃
(ν,µ)k
h,th

(s, e)

Policy (optimal) π (π∗) ν (ν∗) µ (µ∗)

B RELATED WORK

In recent years, the Hierarchical Reinforcement Learning literature has focused on empirically demonstrating that
HRL methods can be more efficient than standard ones in particular problems and applications Mülling et al.
(2013); Andrychowicz et al. (2017); Qureshi et al. (2019).

Most existing theoretical work focuses on a related but different framework, the options framework. Options
correspond to the low-level policies and are generally pre-trained ; as such, most studies in the options framework
ignore the cost of learning the options. Fruit and Lazaric (2017) and Fruit et al. (2017) studied the impact of
pre-trained options (i.e. low-level policies) in Average Reward MDPs (Puterman, 2014), showing a benefit in
term of more efficient exploration. Fruit and Lazaric (2017) proposed an algorithm based on UCRL2 (Auer et al.,
2008) for Semi-Markov Decision Processes (Baykal-Gürsoy, 2010; Cinlar, 2013), and compared its upper bound
to the regret obtained with UCRL2 with a monolithic approach. Fruit et al. (2017) remove the assumption of
having particular knowledge of the distributions of cumulative reward and duration of each option. In our setting,
while we assume that the low-level episode has a fixed and known length and the low-level reward to be sparse,
we consider the much more challenging setting where the high-level policy and the low-level policy (or options)
are jointly learned.

There exist several interesting expectations in the literature that consider jointly learning the options and the
policy over options. In particular, Wen et al. (2020) highlights how patterns and substructures within MDPs can
be leveraged for both planning and learning. In particular, they propose a posterior sampling-based algorithm
that exploits these structural properties. Their analysis shows how similarities between substructures, as well as
the complexity of sub-problems, influence the regret of their algorithm. However, they study Bayesian regret,
which offers weaker guarantees than frequentist regret. Their algorithm relies on an additional reward structure,
placed at sub-goals and termed the exit profile. The exit profiles are then used to inform the current options
about the relative value of the goal that can be reached. This reward, contrary to the artificial reward that we
add to the low-level MDP, influenced the option’s policy learning. The low-level policy is conditioned on the
sub-goal. Which sub-goal to prefer is chosen by the high-level policy. On the other hand, they have an option
for sub-MDP, defined by a single policy not parametric to the sub-goal; hence, the decision over which exit or
sub-goal to prioritise is conditioned by the exit profile – the higher the reward on a sub-goal, the more likely
the option in that MDP would lead the agent to it. Consequently, for effective low-level learning, they required
strong guarantees on the performance induced by the exit profiles, resulting in a rather strong assumption. Apart
from this assumption, their regret bound shows similar dependencies on the hierarchy characteristics:

BayesRegrethPSHRL(Ml×h,K) ≤ ∆AhT + Õ(H3/2
o max

i
{S+

l,i}
√
LAoK}).

The first linear component corresponds to the sub-optimality gap induced by the structure, ∆struct. They also
show dependencies on

√
AoK, while their result is sub-optimal in terms of H3/2

o maxi{S+
l,i}. Note that a factor√

Ho is associated with the density of the reward, and in the case of sparse reward, it would be 1. However, it is
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worth mentioning that their algorithm is not affected by the optimal low-level policy performance and by
√
Ah,

the number of possible sub-goals, but by
√
L, the number of distinct MDPs, which can be smaller than

√
Ah.

Drappo et al. (2023) and later Drappo et al. (2024) tried to develop approaches that jointly learn the low-level
policy (options) and the high-level policy. The main challenge when jointly learning both levels of the hierarchy is
the non-stationarity of the high-level dynamics. The high-level dynamics depend on the behaviour of the low-level
policy, which changes over time as the agent learns it. Drappo et al. (2023) proposed a naive approach to mitigate
this problem. Their ‘explore-then-commit‘ algorithm first learns each sub-task policy and then exploits them
to learn a higher-level policy in the same fashion as Fruit and Lazaric (2017). However, it is well known that
Explore-then-Commit approaches suffer sub-optimal regret Lattimore and Szepesvári (2020). Therefore, the later
work (Drappo et al., 2024) provides an alternative and more refined solution, which, instead of separating the
learning process into two phases, divides it into multiple phases, and then the learning is alternated between the
high-level problem of learning the meta-policy selecting among options, and the low-level problem consisting of
learning the options’ policies. This leads to an improved upper bound on the regret Rh:

RhHLML(Mo,O,K) ≤ Õ

(
CL Ho

√
SoOKd︸ ︷︷ ︸

High-Level Regret

+CH Hl

√
OSoAoKHo︸ ︷︷ ︸

Low-Level Regret

)
,

where O is the set of options, with |O| = O, and d represents the average number of options played per episode
so that d ≈ Hh. Compared to our result, this upper bound clearly highlights the regret associated with high-level
learning, which does not appear in our case because we are able to exploit the map ψ without needing to learn
the high-level dynamics. Apart from this, the low-level regret is similar to ours: O is comparable to our Ah, the
additional

√
Ho is due to the time-inhomogeneous transition model, and

√
Hl serves as an upper bound on ∥V ∥

when we consider a more general reward function (i.e. each reward is in [0, 1]). However, the biggest drawback
we avoid is that this algorithm suffers from the influence of the constants CH and CL, which depend on how
well each learned policy covers the optimal one during the learning process. In this work, we focus on a more
specific family of problems, goal-based with sparse reward, to show that when there is this particular hierarchical
structure, the regret only depends on the decomposition characteristics and has improved performance up to the
failing probability of the optimal low-level policy.5

The lower bound on the sample efficiency of goal-based HRL provided by Robert et al. (2024) is not directly
comparable to this analysis. First, it is a lower bound on the sample complexity, not the regret. More importantly,
it considers a slightly different hierarchical decomposition. In particular, in Robert et al. (2024), the structure map
ψ is not known, and the reward function is more general than the sparse reward considered here. Consequently,
the lower bound presented in Robert et al. (2024) considers the case where both levels of the hierarchy must be
learned. Interestingly, the lower bound of Robert et al. (2024) highlights that jointly learning both levels of the
hierarchy is at least as difficult as the most difficult of the two problems. Since, in our setting, we consider we
can compute the high-level dynamics (i.e. we do not need to learn them), the most complex part of our problem
is necessarily learning the low-level dynamics.

C USEFUL DEFINITIONS

First of all, let’s define the high-level plan. At the beginning of each episode, k, the high-level agent computes the
exact trajectory it would like to complete. We call such a trajectory the high-level plan Plank.

Definition 3. A plan, Plank, is the sequence of high-level states the high-level policy µk would like to follow
in episode k, in accordance with the map ψ. It consists of the pairs of high-level states encoding the expected
trajectory:

[s1, s2, s3, · · · sn−1, sn] = Plank (12)

describes a plan consisting of n high-level states, where si ∈ Sh for all i ∈ [n], si+1 = ψ(si, µk(si)), and n ≤ Hh.
Note that given all the samples collected up to episode k and the current low-level policy νk, the plan, Plank, is
deterministic.

5Note that both algorithms suffer from the sub-optimality gap induced by their respective structures – ours is defined
by the two MDPs, and theirs by the options. However, the structure of the options allows for greater flexibility, as the
options are less constraining.
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We now state a proposition that helps to relate the regret of the low-level learning problem with the regret of the
high-level learning problem.

The low-level MDP reward is a denser version of the original reward. It is enriched with a value of 1 given when
the agent reaches the sub-goal state. This reward model allows us to state the following definition:
Definition 4. Consider the low-level MDP Ml,i with a reward that returns one when the agent reaches the
sub-goal state. For this reward model, the low-level value function V νkl,i,1(s, e) of the policy νk associated with the
sub-goal e ∈ Ei and state s ∈ Sl,i, corresponds to the probability of successful completion of the sub-goal (see
definition 1):

E [I{endνk(i, e, s)}] = P(endνk(i, e, s)) = V νkl,i,1(s, e) ∀s ∈ Sl,i. (13)

This definition is valid for any low-level policy and, in particular, for the optimal low-level policy ν∗:

E [I{endν∗(i, e, s)}] = P(endν∗(i, e, s)) = V ν
∗

l,i,1(s, e) ∀s ∈ Sl,i. (14)

D OPTIMISM

This section presents the high-level optimism necessary to prove Theorem 4.1. In particular, this section shows
that the low-level regret minimiser propagates its optimism to the high level.

Since our algorithm only considers trajectories that follow the instructed high-level plan and stops collecting
samples after the first missed sub-goal, it has an inherent sub-optimality gap as the optimal hierarchical policy
(ν∗, µ∗) does not have this limitation. The following lemma guarantees that the plan computed by the high-level
policy is optimistic up to this specific sub-optimality gap; that is, the value of the plan in the optimistic MDP
plus the sub-optimality gap is greater or equal to the value of the optimal policy pair in the true high-level MDP.

We measure the value associated with the optimistic plan using the following value function:

Ṽ
(ν,µ)
h,th

(s) = Rh(s, th) +
∑
s′∈Sh

P̃ νh (s
′|s, µ(s))Ṽ (ν,µ)

h,th+1(s
′)

for all s ∈ Sh, any th ∈ [Hh − 1] and with Ṽ
(ν,µ)
h,Hh

(s) = Rh(s,Hh) for all s ∈ Sh. The approximation of the
high-level transition function P̃h is defined in Eq. 6. Because P̃h is only an approximation of a transition function,
it only models the probability of reaching the next intended state; all other transitions have no probability mass.
It has a sub-optimality gap, upper bounded by the probability that the optimal policy pair fails each sub-goal of
the current plan,

∆th ≤
∑

s∈Plan[th:Hh]

P(¬endν∗(ϕ(s), µ(s), sl,th)). (15)

where sl,th is the first low-level state visited in the low-level episode corresponding to the stage th of Plank.
Lemma D.1. Let (ν∗, µ∗) be the optimal policies on Ml×h, and (ν, µ)k be the policy pair compute by Alg. 1 at
the beginning of any episode k. Given optimistic low-level value functions, we guarantee that the high-level value
function constructed in our algorithm and the sub-optimality gap upper bound the value function of the optimal
hierarchical policy:

Ṽ
(ν,µ)k
h,th

(s) +
∑

s′∈Plank[th:Hh]

P(¬endν∗(ϕ(s′), µk(s
′), sl,th)) ≥ V

(ν∗,µ∗)
h,th

(s) with s = Plank[th]. (16)

where P(¬endν∗(ϕ(s′), µk(s
′), sl)) is the probability for the optimal low-level policy to fail to reach sub-goal e ∈ Eϕ(s)

while starting a low-level episode in MDP i = phi(s) in the initial low-level state sl ∈ Sl,i (see Eq. 14).

Note that the sub-optimality gap consists of the failure probability only for the remaining states in the plan,
Plank. We make this explicit using the following notation: at time step th, we denote the remaining part of the
plan, Plank, using vector notation Plank[th : Hh].

Proof. We need the following observations on the construction of the optimistic high-level MDP.
First, we note that the regret minimiser A used by GHRLA computes at every episode k an optimistic value
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function for every low-level MDP Ml,i and sub-goal e ∈ Ei pair.
Second, we notice that in this goal-conditioned setting with sparse reward, the low-level value function V νl,i,1(s, e)
of a policy ν for any state s ∈ Sl,i and sub-goal e ∈ Ei is equal to the probability that the policy ν reaches the
goal e while starting the low-level episode in state s, V νl,i,1(s, e) = P(endν(i, e, s)), as explained in Definition 4.
From the high-level perspective, this corresponds to the probability under the low-level policy ν to transition to
the instructed next high-level state ψ(s, e), that is, P νh (ψ(s, e)|s, e) = V νl,ϕ(s),1(s, e). Combining these observations
with the map ψ, we obtain an approximate optimistic high-level transition function P̃ νh presented in Eq. (6).

Now, let’s define the optimistic high-level Q-function as the expected return the pair of policies (ν, µ)k can collect
after executing sub-goal e from high-level state s,

Q̃
(ν,µ)k
h,th

(s, e) = Rh(s, th) +
∑
s′∈Sh

P̃ νkh (s′|s, e)Ṽ (ν,µ)k
h,th

(s′). (17)

We now proceed with a proof by induction. We note that Lemma D.1 trivially holds for the last step of the
high-level MDP Hh since we reached the end of the episode and the agent does not have the opportunity to fail a
sub-goal the sub-optimality gap ∆Hh = 0. Hence the optimistic high-level value function and the optimal value
function at time step Hh are equal,

Ṽ
(ν,µ)k
h,Hh

(s) = V
(ν∗,µ∗)
h,Hh

(s) ∀s ∈ Sh.

Let’s now consider any step th < Hh and prove that the lemma still holds. We use the inductive hypothesis that
the lemma holds for the step th + 1, that is,

Ṽ
(ν,µ)k
h,th+1(s) +

∑
s′∈Plank[th+1:Hh]

P(¬endν∗(ϕ(s′), µ(s′), s′l,th)) ≥ V
(ν∗,µ∗)
h,th+1 (s). (18)

with s ∈ Sh being the high-level state in step th + 1 of Plank.

We now show that Eq. (18) holds for time step th for an arbitrary state s ∈ Sh and sub-goal e ∈ Eϕ(s). Note
that the plan, Plank, computed by µk from state ψ(s, e) is the sequence of high-level states with the largest
probability to reach the goal state, according to the high-level transition P̃ νkh .

In what follows, we denote the instructed next high-level state with sψ = ψ(s, e) to lighten the notation.

Q̃
(ν,µ)k
h,th

(s, e)−Q
(ν∗,µ∗)
h,th

(s, e) (19)

= Rh(s, th)−Rh(s, th) +
∑
s′∈Sh

(
P̃ νkh (s′|s, e)Ṽ (ν,µ)k

h,th+1(s
′)− P ∗

h (s
′|s, e)V (ν∗,µ∗)

h,th+1 (s′)
)

(20)

=
∑
s′∈Sh

(
P̃ νkh (s′|s, e)Ṽ (ν,µ)k

h,th+1(s
′)− P ∗

h (s
′|s, e)V (ν∗,µ∗)

h,th+1 (s′)
)

(21)

= P̃ νkh (sψ|s, e)Ṽ (ν,µ)k
h,th+1(sψ)− P ∗

h (sψ|s, e)V
(ν∗,µ∗)
h,th+1 (sψ)

+
∑

s′∈Sh\{sψ}

(
P̃ νkh (s′|s, e)Ṽ (ν,µ)k

h,th+1(s
′)− P ∗

h (s
′|s, e)V (ν∗,µ∗)

h,th+1 (s′)
)

(22)

= P̃ νkh (sψ|s, e)Ṽ (ν,µ)k
h,th+1(sψ)− P ∗

h (sψ|s, e)V
(ν∗,µ∗)
h,th+1 (sψ)−

∑
s′∈Sh\{sψ}

P ∗
h (s

′|s, e)V (ν∗,µ∗)
h,th+1 (s′) (23)

≥ P̃ νkh (sψ|s, e)Ṽ (ν,µ)k
h,th+1(sψ)− P ∗

h (sψ|s, e)V
(ν∗,µ∗)
h,th+1 (sψ)− P(¬endν∗(ϕ(s), e, sl,th)) (24)

≥
(
P̃ νkh − P ∗

h

)
(sψ|s, e)V (ν∗,µ∗)

h,th+1 (sψ)− P(¬endν∗(ϕ(s), e, sl,th))

− P̃ νkh (sψ|s, e)
∑

s′∈Plank[th+1:Hh]

P(¬endν∗(ϕ(s′), µk(s
′), s′l,th+1)) (25)

≥
(
P̃ νkh − P ∗

h

)
(sψ|s, e)V (ν∗,µ∗)

h,th+1 (sψ)−
∑

s′∈Plank[th:Hh]

P(¬endν∗(ϕ(s′), µk(s
′), s′l,th)) (26)
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=
(
Ṽ νkl,ϕ(s),1(sψ)− V ∗

l,ϕ(s),1(sψ)
)
V

(ν∗,µ∗)
h,th+1 (sψ)−

∑
s′∈Plank[th:Hh]

P(¬endν∗(ϕ(s′), µk(s
′), s′l,th)) (27)

≥ −
∑

s′∈Plank[th:Hh]

P(¬endν∗(ϕ(s′), µk(s
′), s′l,th)) (28)

Eq. (20) is simply the definition of the optimistic Q-function and the optimal Q-function. Eq. (21) follows from
the fact that the two high-level rewards are identical. Eq. 22 divides the summation over all possible next states
in two; the first term considers the next state defined by the map ψ(s, e), sψ = ψ(s, e), and the other term
considers all the other possible next states. Eq. 23 holds since P̃ νkh is zero for all the potential next high-level
states not supported by the map s′ ̸= ψ(s, e) (as defined in Eq. 6). Eq. 24 uses the fact the V (ν∗,µ∗)

h,th+1 (s) can be
upper bounded by one for all s ∈ Sh and the sum of the probabilities to reach any other states than sψ, is the
failure event P(¬endν∗(ϕ(s), e, sl,th)). Eq. (25) follows from the induction hypothesis defined in Eq. 18, note
that the induction hypothesis is applied to P̃ νkh (sψ|s, e)Ṽ (ν,µ)k

h,th+1(sψ). Eq. (26) upper bounds P̃ νkh (sψ|s, e) with 1.
As the failure event P(¬endν∗(ϕ(s), e, sl,th)) consists of failing the tthh step of the plan, s = Plank[th], started
the low-level episode in the corresponding low-level state sl, and ψ(s, e) = Plank[th + 1]. We then extend the
sum over the sub-plan Plank[th : Hh] to account for this additional failure event. Eq. (27) follows directly from
the equivalence between the high-level transition function and the low-level value function (see Eq. 6). Finally,
Eq. (28) is obtained by the optimistic guarantee of the value function computed by the low-level algorithm A ∈ Ξ
and because the optimal value function is necessarily positive, V (ν∗,µ∗) ≥ 0.

E PROOF OF THEOREM 4.1 AND COROLLARY 4.2

We first prove Theorem 4.1 that we restate below for clarity.

Theorem 4.1. Given δ ∈ [0, 1] and β = δ
KAh

, for any hierarchical decomposition Ml×h, and any (1−β)-optimistic
low-level regret minimiser B ∈ Ξ, the regret of GHRLB is bounded, with probability 1− δ, by:

RhGHRL(Ml×h,K) ≤
L∑
i=1

∑
e∈Ei

(
RlB

(
(Ml,i, e), N(i, e)

)
+ 2N(i, e) max

sl∈Sl,i,1
P(¬endν∗(i, e, s))

)
(7)

where N(i, e), ∀i ∈ [L] and e ∈ Ei, is the number of times in which sub-goal e has been chosen in the state sh,
with ϕ(sh) = i and e = µk(sh). RlB

(
(Ml,i, e), N(i, e)

)
is the regret suffered by B while learning to solve goal e

in low-level MDP Ml,i for N(i, e) low-level episodes. Sl,i,1 is the set of potential initial states in the MDP Ml,i,
Sl,i,1 =

⋃
e∈Ah{s1 = ρl,i(e) : s1 ∈ Sl,i}.

Proof. The total regret suffered consists of the regret suffered while learning policies to solve every sub-goal of
each low-level MDP. Let’s first recall how the GHRL (Alg. 1) works. In every episode k, GHRL updates the
low-level policy with an optimistic regret minimiser B using the samples collected in the low-level MDPs. Note
that the collected samples are modified with an artificial reward, i.e. the low-level reward function Rl, which gives
an additional reward of 1 when the agent fulfils the sub-goal. Because the low-level reward function is sparse and
only rewards the agent when it completes the low-level episode in the sub-goal state, the low-level optimistic value
function (computed by B) can be used to approximate the transition function of the high-level MDP P̃ νkh (defined
in Eq. 6). Equipped with this approximation of the high-level transition function and the known high-level reward
function, we compute the high-level policy, µk, using backward induction in the high-level MDP. The algorithm
collects new samples using νk to interact with the environment when trying to complete sub-goals selected by
µk. The sequence of sub-goals considered for a given episode k is computed by the current high-level policy µk
at the beginning of episode k. The high-level trajectory induced by this sequence of sub-goals is stored in the
high-level trajectory Plank. Note that each time the low-level policy fails to achieve its sub-goal, the algorithm
stops collecting samples until the end of the episode.

The regret of the algorithm GHRL, on the hierarchical structure Ml×h = ({Ml,i}i∈[L],Mh), is defined as the
sum over K episodes of differences between the value function of the optimal hierarchical policy (ν∗, µ∗) and the
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learned policies at time step k, (ν, µ)k, evaluated at the first state in the episode s1 ∈ Sh:

RhGHRL(Ml×h,K) =

K∑
k=1

V
(ν∗,µ∗)
h,1 (s1)− V

(ν,µ)k
h,1 (s1) (29)

≤
K∑
k=1

Ṽ
(ν,µ)k
h,1 (s1)− V

(ν,µ)k
h,1 (s1)︸ ︷︷ ︸

(a)

+

K∑
k=1

∑
s∈Plank

P(¬endν∗(s, µk(s), sl))︸ ︷︷ ︸
(b)

(30)

Eq. (30) is obtained through the optimism guarantee of Lemma D.1 and decomposes the regret into two terms
(a) and (b).

It is important to observe that the above theorem only holds if the optimism holds for every low-level MDP,
sub-goal pair (i, e), and episode k, which is formally defined as the following event:

A = ∩Kk=1 ∩Li=1 ∩e∈Ei{Ṽ
νk
l,i,1(s, e) ≥ V ∗

l,i,1(s, e)} (31)

where the low-level optimism, i.e. {Ṽ νkl,i,1(s, e) ≥ V ∗
l,i,1(s, e)}, is guarantee to hold with probability 1− β for all

i ∈ [L], e ∈ Ei and s = Sl,i.

Theorem 4.1 requires that the event A holds with high probability, P(A) > 1 − δ. To ensure this, we need to
set the low-level optimism failure probability to β = δ

AhK
. This can be obtained by observing that we need to

guarantee P(Ac) ≤ δ. Where Ac is the complement of A:

Ac = ∪Kk=1 ∪Li=1 ∪e∈Ei{Ṽ
νk
l,i,1(s, e) < V ∗

l,i,1(s, e)}. (32)

The probability P(Ac) consists of the union of independent failure of low-level optimism guarantee for every
episode k ∈ [K], low-level MDP i ∈ [L], and sub-goal e ∈ Ei. Since each optimism guarantee is independent, P(Ac)
can be written as the sum over all the failure probabilities, which gives us the following upper bound on delta:

δ ≤
K∑
k=1

L∑
i=1

∑
e∈Ei

β = KAhβ (33)

where we recall that
∑L
i=1

∑
e∈Ei 1 = Ah. This implies that β = δ

KAh

We first analyse the term (a) in Eq. (30):

(a) ≤
K∑
k=1

Hh∑
j=1

[
(Rh(s

k
j , j)−Rh(s

k
j , j)) +

∑
s′∈Sh

(
P̃ νkh (s′|skj , µk(skj ))− P νkh (s′|skj , µk(skj ))

)
Ṽ

(ν,µ)k
h,j+1 (s′)

]
(34)

≤
K∑
k=1

∑
skj∈Plank

[(
P̃ νkh

(
skj+1|skj , µk(skj )

)
− P νkh

(
skj+1|skj , µk(skj )

))
Ṽ

(ν,µ)k
h,j+1 (skj+1)

]
(35)

≤
K∑
k=1

∑
skj∈Plank

[(
P̃ νkh (skj+1|skj , µk(skj ))− P νkh (skj+1|skj , µk(skj ))

)]
(36)

≤
K∑
k=1

∑
skj∈Plank

(
1− P νkh (skj+1|skj , µk(skj ))

)
(37)

=

K∑
k=1

∑
skj∈Plank

P(¬endνk(ϕ(s
k
j ), µk(s

k
j ), s

k
l )) with skl = ρl,ϕ(skj−1)

(µk(s
k
j−1)) (38)

=

L∑
i=1

∑
e∈Ei

N(i,e)∑
n=1

P(¬endνn(i, e, sn)) (39)
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Eq. 34 uses the performance difference lemma (see Lemmma E.15 Dann et al. (2017)). Then, Eq. 35 reformulates
the regret as the difference in performance following in each episode a predefined high-level trajectory. These
trajectories correspond to the high-level plan, Plank, which is deterministically constructed with the policy µk
and the map ψ (see Definition 3). The state skj+1 corresponds to the next state considered in the plan, Plank.
Then considering only the steps anticipated by Plank is possible since the optimistic high-level transition 0 for
transitions to a high-level state do not correspond to the instructed subgoal, that is, P̃ νkh (s′|s, e) = 0 for all
s′ ̸= ψ(s, e). We obtain Eq. (36) by upper bounding the optimistic value function Ṽ (ν,µ)k

h with 1, this yields a valid
upper bound as the optimism property of the low-level algorithm guarantees P̃ νkh ≥ P νkh with high-probability.
Then in Eq. (37) we upper bound the optimistic transition function P̃ νkh with 1. Finally, we rewrite Eq. (37) in
terms of the probability that the current low-level policy νk does not reach the instructed sub-goal µk(sj) to
obtain Eq. (38). Eq. (39) is obtained by taking the sum over N(i, e) instead of K, with N(i, e) being a counter
of the number times in which the pair (i, e) has been visited, considering the counter to be updated until the
execution follows the plan – when we discard samples we are not updating the counter N(i, e). The state sn is
the low-level state from which the low-level episode played by the nth policy started.

This allows us to analyse the pairs (i, e) separately, explicitly indicating the regret suffered in the single problem
using the fact that the sum of failing probability can be related to the low-level regret.

To bound
∑L
i=1

∑
e∈Ei

∑N(i,e)
n=1 P(¬endνn(i, e, sn)), we use the following relationship between the low-level regret

of an optimistic algorithm and its failure probability. For any N number of steps, the regret suffered by any
optimistic algorithm B ∈ Ξ to learn an optimal policy to solve a sub-goal e in a low-level MDP Ml,i is defined as:

RlB((Ml,i, e), N) =

N∑
n=1

V ∗
l,i,1(sn, e)− V νnl,i,1(sn, e)

=

N∑
n=1

V ∗
l,i,1(sn, e)− 1 + 1− V νnl,i,1(sn, e)

=

N∑
n=1

P(endν∗(i, e, sn))− 1 + P(¬endνn(i, e, sn)), (40)

where we use the notation (Ml,i, e) to explicitly mention that we compute the regret suffered on MDP Ml,i while
trying to solve the sub-goal e. The state sn is the low-level state in which the low-level episode n started.

Eq. 40 directly relates the expected probability of failing of a policy νn to the regret paid to learn the sub-goal e.
Rearranging, we obtain:

N∑
n=1

P(¬endνn(i, e, sn)) ≤ RlB((Ml,i, e), N) +N max
s∈Sl,i,1

(
P(¬endν∗(i, e, s))

)
. (41)

where Sl,i,1 is the set of potential initial states in the MDP Ml,i, Sl,i,1 =
⋃
e∈Ah{s1 = ρl,i(e) : s1 ∈ Sl,i}. Hence,

we use this in (39) to show that,

(a) ≤
L∑
i=1

∑
e∈Ei

N(i,e)∑
n=1

P(¬endνn(i, e, sn)) ≤
L∑
i=1

∑
e∈Ei

(
RlB((Ml,i, e), N(i, e)) +N(i, e) max

s∈Sl,i,1

(
P(¬endν∗(i, e, sn))

))
.

(42)

It is important to notice that the algorithm B can be any optimistic algorithm in Ξ. Optimism is required with
high probability (i.e. 1 − β) to guarantee that the high-level policy considers the uncertainty of the low-level
transition model while planning; refer to section D for further details.

Let’s now focus on analysing the term (b). With similar algebraic modifications, we can relate it to:

(b) =

K∑
k=1

∑
s∈Plank

P(¬endν∗(s, µk(s), sl)) (43)
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=

L∑
i=1

∑
e∈Ei

N(i,e)∑
n=1

P(¬endν∗(i, e, sn)) (44)

≤
L∑
i=1

∑
e∈Ei

N(i, e) max
s∈Sl,i,1

(
P(¬endν∗(i, e, s))

)
(45)

In Eq. 44, we sum over all possible low-level MDP, sub-goal pair (i, e) and the corresponding number of visits
N(i, e). As the probability that the optimal policy ν∗ fails is independent of the number of visits, we directly
obtain Eq. 45.

Then, by summing (a) and (b), we see that the regret can be upper bounded by:

RhGHRL(Ml×h,K) ≤
L∑
i=1

∑
e∈Ei

(
RlB((Ml,i, e), N(i, e)) + 2N(i, e) max

sl∈Sl,i,1
P(¬endν∗(i, e, s))

)
. (46)

which concludes the proof.

We now focus on proving Corollary 4.2. For clarity, we first restate the result.

Corollary E.1. Let δ ∈ [0, 1] and β = δ
KAh

be the failure probability of the low-level algorithm, UCBVI. For any
hierarchical decomposition Ml×h the regret suffered by GHRLUCBVI for K high-level episodes is bounded, with
probability 1− δ, by:

RhGHRL(Ml×h,K) ≤
√
AoAhmax

i
{S+

l,i}HlKHh +∆ (8)

with

∆ =

L∑
i=1

∑
e∈Ei

2N(i, e) max
sl∈Sl,i,1

P(¬endν∗(i, e, s)).

Proof. Let’s now consider the first term in Theorem 4.1 (i.e. Eq. (7)) with UCBVI as a low-level regret minimiser.
The regret of UCBVI is upper bounded by Õ(

√
AoHlSl,iN(i, e)) (Theorem 2, Azar et al., 2017) – note that

the upper bound differs for a term Hl, for the sparse reward setting, the infinity norm of the value function is
bounded by one and not by Hl, ∥V νk∥∞ ≤ 1.

L∑
i=1

∑
e∈Ei

RlUCBVI((Ml,i, e), N(i, e)) ≤
L∑
i=1

∑
e∈Ei

√
AoHlSl,iN(i, e)

≤
√
AoHl

√√√√ L∑
i=1

∑
e∈Ei

1

√√√√ L∑
i=1

∑
e∈Ei

Sl,iN(i, e) (47)

≤
√
AoAhmax

i
{Sl,i}HlKHh. (48)

Eq. (47) follows by applying Cauchy Schwarz inequality, while the last inequality follows from:

L∑
i=1

∑
e∈Ei

Sl,iN(i, e) ≤ max
i

{Sl,i}
L∑
i=1

∑
e∈Ei

N(i, e) ≤ max
i

{S+
l,i}KHh. (49)

where Ah is the set of all possible sub-goals the high-level can instruct in all low-level MDPs, that is
∑L
i=1

∑
e∈Ei 1 =

|Ah|, and the last inequality in Eq.(49), follow from the fact that by discarding the samples and not considering
them to update N(i, e), in the episodes we could have visited less than Hh times one pair (i, e).
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F ADDITIONAL EXPERIMENTS

In this section, we first illustrate the path-like environment used in Section 6. As shown in Fig. 3, the environment
consists of a sequence of rooms. The agent starts in the leftmost room, and its goal is to reach the right room;
the goal state corresponds to the first cell of the rightmost room. In the experiment conducted in Section 6
(Fig. 2, four leftmost plots), we consider paths of varying length, and on the rightmost plot of Fig. 2, we run the
algorithm on the four corridor environments depicted in Fig. 3. From top to bottom, we add each time a different
room profile, making it more challenging for the low-level, who needs to learn how to navigate in a new room.
Then, in Fig. 4, we show that GHRL with Q-UCB to compute the low-level policy is outperforming Q-UCB on a
slightly different maze task where, this time, the rooms are arranged on a grid instead of a path.

Figure 3: An illustration of the four path-like MDPs considered. All path MDPs shown in this figure are composed
of five rooms. The plot at the top shows an MDP with identical rooms. In each row, we change the room profile
of a room; that is, we add a unique obstacle inside the room. We repeat this until all rooms have a unique room
profile, as shown in the bottom plot.

Figure 4: An illustration of the results obtained on the n-room environment. The leftmost plot shows an example
of a maze composed of 4 rooms, while the plots on the right show the performance obtained by our framework
(in blue) against Q-UCB (in red). As expected, as we increase the number of rooms, the efficiency gains of our
method become more evident.
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G BACKWARD INDUCTION

For completeness, we present the Backward Induction algorithm used to perform low-level planning in Alg. 1.

Algorithm 3 Planning with Backward Induction
1: Input: {Ph}Hh=1, {rh}Hh=1, S, A
2: Output: V , π
3: for s ∈ S do
4: VH(s) = maxa∈A rH(s, a)
5: end for
6: for t ∈ {H − 1, · · · , 1} do
7: for s ∈ S do
8: Vt(s) = maxa∈A rt(s, a) +

∑
s′∈S Pt(s

′|s, a)Vt+1(s
′)

9: π(s, t) = argmaxa∈A rt(s, a) +
∑

s′∈S Pt(s
′|s, a)Vt+1(s

′)
10: end for
11: end for
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