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Abstract

Preference optimization has made significant
progress recently, with numerous methods
developed to align language models with
human preferences. This paper introduces f -
divergence Preference Optimization (f -PO),
a novel framework that generalizes and ex-
tends existing approaches. f -PO minimizes
f -divergences between the optimized policy
and the optimal policy, encompassing a broad
family of alignment methods using various
divergences. Our approach unifies previous
algorithms like DPO and EXO, while offer-
ing new variants through different choices
of f -divergences. We provide theoretical
analysis of f -PO’s properties and conduct
extensive experiments on state-of-the-art
language models using benchmark datasets.
Results demonstrate f -PO’s effectiveness
across various tasks, achieving superior
performance compared to existing methods
on popular benchmarks such as AlpacaEval
2, Arena-Hard, MT-Bench, and Open LLM
Leaderboard v2. Additionally, we present
ablation studies exploring the impact of dif-
ferent f -divergences, offering insights into the
trade-offs between regularization and perfor-
mance in offline preference optimization. Our
work contributes both practical algorithms
and theoretical understanding to the field of
language model alignment. Code is available
at https://github.com/MinkaiXu/fPO.
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1 Introduction

Despite the impressive emerging ability of modern
large language models (LLMs) by weak-supervised
learning, further aligning these models with human
feedback is still crucial (Leike et al., 2018), ensur-
ing the LLMs are more helpful, honest (Askell et al.,
2021), harmless (Bai et al., 2022), faithful (Ji et al.,
2023), and unbiased (Bender et al., 2021). Reinforce-
ment learning from human feedback (RLHF) (Chris-
tiano et al., 2017; Stiennon et al., 2020; Ouyang et al.,
2022) is the canonical paradigm for fine-tuning LLMs
towards effective alignment. It typically consists of
several separate procedures, including training a re-
ward model to capture the human values with well-
labeled preference datasets, and optimizing the LLM
as the policy model to maximize the reward. While
these approaches have achieved remarkable results,
they present notable optimization challenges due to
the multi-stage process.

Lately, to mitigate this training instability and com-
plexity, simpler offline methods such as Direct Prefer-
nece Optimization (DPO) (Rafailov et al., 2023) have
been attracting increasing attention (Azar et al., 2023;
Zhao et al., 2023). Instead of a multi-stage RL
pipeline, these methods propose to directly align LLMs
with pairwise comparison datasets, which avoids the
additional efforts for training the reward model. In
DPO, the reward function is instead parameterized as
the log density ratio between the policy model and a
fixed reference model (typically the one after super-
vised fine-tuning). DPO enjoys efficient and stable
optimization by training the log density ratio with a
binary classification objective, following the Bradley-
Terry model (Bradley and Terry, 1952). Afterward,
numerous methods have been proposed to optimize the
log density ratio under various different convex func-
tions f such as IPO (Azar et al., 2023) and EXO (Ji
et al., 2024), and GPO (Tang et al., 2024) further pro-
vides a unified view of the existing algorithms. How-
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ever, the parameterization of the reward function to
density ratio is not always guaranteed when the policy
is suboptimal, and the specific choice of convex func-
tion f lacks theoretical guidance and remains heuristic.

In this paper, we argue that a more principled frame-
work can be developed from a general distribution-
matching perspective, which can also provide direct
insight in choosing the convex function f based on
desirable distribution behavior. To this end, we pro-
pose f -PO, a general and principled family of pref-
erence optimization algorithms. The key innovation
of our framework is to formulate preference optimiza-
tion as a distribution-matching problem between the
policy model and the underlying optimal model via f -
divergence minimization. Such formulation induces a
general alignment objective by wrapping the density
ratio of two policies in various f functions satisfying
certain requirements. Importantly, our framework re-
covers DPO and EXO with reverse and forward KL
divergences, and generalizes to other cases with ar-
bitrary f -divergences. More concretely, we make the
following contributions over state-of-the-art preference
optimization algorithms:

• We derive generalized offline alignment objectives
from a distribution-matching perspective using
f -divergences, and cover several major previous
methods as special cases under the pairwise com-
parison datasets setting.

• We introduce new algorithms not yet in the cur-
rent literature by using novel f -divergences, such
as α-divergence and Jeffrey’s divergence.

• We provide principled ways to further combine
f -PO with other state-of-the-art preference opti-
mization methods such as SimPO (Meng et al.,
2024), by alternative the inner density ratio with
other approximations.

• We conduct detailed analysis with different f -
divergences, and observe reasonable performance
trade-offs across f -PO variants following corre-
sponding divergence characteristics.

We conduct comprehensive experiments to compare f -
PO with competitive existing alignment methods. No-
tably, when using α-divergence, our approach can con-
sistently achieve superior or comparable performance
against state-of-the-art algorithms on standard bench-
marks, with up to 45.3% length-controlled winning
rate on AlpacaEval 2 by finetuning on Llama3-8B-
instruct. The results demonstrate that our approach
leads to substantial improvements with the principled
f -divergence design space.

2 Related Work

Aligning pretrained large language models with hu-
man preferences for high-quality responses is vital in
natural language generation. RLHF (Christiano et al.,
2017; Ouyang et al., 2022) has emerged as a common
solution to address this problem by utilizing popu-
lar RL methods such as Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017a). However, this
approach faces limitations due to training instabil-
ity and the complexity introduced by its two-stage
pipeline. DPO (Rafailov et al., 2023) overcomes this
limitation by defining the preference loss as a func-
tion of the policy directly given the pairwise preference
data. Followup works have extended this algorithm to
utilize multiple ranked responses instead of pairwise
preference data (Yuan et al., 2023b; Liu et al., 2024a;
Song et al., 2024), and avoid dependence on the refer-
ence model, effectively merging the instruction tuning
phase and preference optimization phase (Hong et al.,
2024; Meng et al., 2024). GPO (Tang et al., 2024) uni-
fies several DPO variants (Azar et al., 2023; Liu et al.,
2024b) into a family of algorithms and provides an em-
pirical analysis of the performance trade-off, but leave
the theoretical analysis in a heuristic manner. No-
tably, Wang et al. (2023) also introduces f -divergence
into the alignment problem, but the divergences are
only applied to the regularization term of the RL for-
mulation. Furthermore, all the above works are built
on the reparameterization of reward function by policy
likelihood, which cannot be guaranteed in practice (Ji
et al., 2024). In contrast, our method unifies the algo-
rithm based on the theoretical framework of statisti-
cal distribution divergence (Csiszár et al., 2004; Liese
and Vajda, 2006), which offers a principled to choose
the specific algorithm based on divergence characteris-
tics. EXO (Ji et al., 2024) proposes learning the policy
by exactly optimizing the RLHF objective that min-
imizes the reverse KL divergence against the optimal
policy, which is a special case of our proposed frame-
work. Xiao et al. (2024) leverages demonstration data
for alignment using self-imitation learning. In addi-
tion, numerous offline preference optimization works
propose different training objectives to emphasize var-
ious behaviors (Yuan et al., 2023a; Zhao et al., 2023;
Xu et al., 2024; Ethayarajh et al., 2024).

3 Preliminaries

3.1 Reinforcement Learning from Human
Feedback

We introduce the general Reinforcement Learning
from Human Feedback (RLHF), an offline fine-tuning
framework after the base model has been well pre-
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Figure 1: Illustration of the behavior of several divergences Df (πθ∥π∗)1 in the f -divergence family. π∗ indicates
the target policy while πθ is the parameterized policy obtained by optimizing θ through minimizing certain
f -divergence. Notably, α-divergence exhibits varying characteristics when adjusting the values of α.

trained. A typical RLHF process is composed of
three steps: 1) supervised fine-tuning, 2) reward model
learning, and 3) RL fine-tuning. In the RL fine-tuning
process, given the dataset D consisting of prompts and
reward function rϕ(·|x) learned following the Bradley-
Terry model (Bradley and Terry, 1952) on the prefer-
ence dataset, the language model πθ is optimized by
maximizing the following objective:

Ex∼D,y∼πθ(·|x) [rϕ(x, y)] − βDKL(πθ(·|x)|πref(·|x)),
(1)

where πref(·|x) is the fixed reference model obtained
after supervised fine-tuning, and β is a coefficient con-
trolling the reverse KL divergence penalty. Analyti-
cally, the solution to the regularized objective above
can be written as (Peters and Schaal, 2007):

π∗ = 1
Z(x)πref exp

(
β−1rϕ(x, y)

)
, (2)

where Z(x) is the partition function. The RL fine-
tuning aims to learn a parameterized policy πθ to ap-
proximate the optimal policy π∗.

3.2 Preference Optimization

The DPO method (Rafailov et al., 2023) is one of the
most popular offline preference optimization methods.
It uses the RL objective under the reverse KL diver-
gence constraint Eq. (1) to build a functional mapping
between the reward model and the optimal policy:

r(·|x) = β log πθ(·|x)
πref(·|x) + β log Z(x), (3)

which allows the direct optimization of the policy
πθ. This is obtained by plugging the reward into the
Bradley-Terry model and reparameterizing the reward
function using the policy i.e., the language model, in

a supervised manner:

− E(x,yw,yl)∼D

[
log σ

(
β log πθ(yw|x)

πref(yw|x) +�����β log Z(x)

− β log πθ(yl|x)
πref(yl|x) −�����β log Z(x)

)]
,

(4)
where D = ({x, yw, yl}) is the dataset of ranked pairs
of generations and their prompts, where yw and yl

denote “winning” and “losing” samples, and σ is the
sigmoid function, and the partition functions are can-
celed. However, this derivation of DPO is based on the
assumption that optimal solution is achieved, which in
practice is not guaranteed especially in the early stage
training(Ji et al., 2024). This issue leads to a compro-
mised approximation of the optimal policy, especially
when the optimality of πθ is not achieved in the early
stage training.

3.3 f-divergence

Divergence describes the difference between two prob-
ability distributions. A general family of divergences
is the f -divergences (Csiszár et al., 2004; Liese and Va-
jda, 2006), also known as the Ali-Silvey distances (Ali
and Silvey, 1966). For a convex function f : R+ → R
that is lower-semicontinuous, strictly convex around 1,
and satisfies f(1) = 0, given two distributions p and
q, the corresponding f -divergence for these two distri-
butions is defined as:

Df (p∥q) = Eq(x)

[
f

(
p(x)
q(x)

)]
, (5)

where f is called generator function. Different choices
of f -divergence can cover a wide class of popular diver-
gences, including forward and reverse Kullback-Leibler

1Note that, to facilitate using f -divergence framework,
in this paper we describe divergences by Df (πθ∥π∗) instead
of the conventional order Df (π∗∥πθ), which results in inter-
pretations of the divergence behaviors different from other
literature (Ji et al., 2024).
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Table 1: Summary of some typical f -divergences Df (p∥q) together with generator functions. Part of the list of
divergences are borrowed from Nielsen and Nock (2013); Nowozin et al. (2016). For all divergences we have the
generator function f : R+ → R ∪ {+∞} strictly convex and lower-semicontinuous. The function also satisfies
f(1) = 0 which ensures that Df (p∥q) = 0 when p(x) = q(x).

Name Df (p∥q) Generator f(u)

Kullback-Leibler
∫

p(x) log p(x)
q(x) dx u log u

Reverse Kullback-Leibler
∫

q(x) log q(x)
p(x) dx − log u

α-divergence (α /∈ {0, 1}) 1
α(α−1)

∫ (
q(x)

[(
p(x)
q(x)

)1−α

− (1 − α)
(

p(x)
q(x)

)
− α

])
dx 1

α(α−1)

(
u1−α − (1 − α)u − α

)
Jeffrey

∫
(p(x) − q(x)) log

(
p(x)
q(x)

)
dx (u − 1) log u

Jensen-Shannon 1
2

∫
p(x) log 2p(x)

p(x)+q(x) + q(x) log 2q(x)
p(x)+q(x) dx −(u + 1) log 1+u

2 + u log u

Squared Hellinger
∫ (√

p(x) −
√

q(x)
)2

dx
(√

u − 1
)2

(KL) divergence, Jensen-Shannon (JS) divergence, and
Jeffrey’s divergence, etc. We provide a summary of
their analytic forms and corresponding generator func-
tions in Table 1. An illustration of different behaviors
of these divergences is presented in Fig. 1.

4 Methodology

In this section, we present our proposed f -PO in de-
tails. We start by introducing the f -PO framework
in Section 4.1, which conducts alignment under the
probability matching perspective with f -divergence.
In Section 4.2, we show practical f -PO implementa-
tion given common pair-wise preference data without
reward labeling, and in Section 4.3, we further present
several instances of f -PO with specified f -divergence,
covering DPO as a specific case. In Section 4.4, we fur-
ther discuss the connections between f -PO and several
recent heuristic alignment methods, and further intro-
duce several variants of f -PO.

4.1 The f-PO Framework

As shown in Section 3, the goal of preference optimiza-
tion is to fine-tune the LLM πθ toward the optimal
policy π∗, i.e., minimizing the distances between πθ

and π∗. In this paper, we explicitly define the LLM
alignment task as a distribution matching problem:
Theorem 1. Let π̂θ(y|x) ∝ πθ(y|x)βπref(y|x)(1−β)

and π̂∗ ∝ πref exp (r(x, y)). We define our alignment
objective as minimizing the following f -divergence:

Df (π̂θ∥π̂∗) = Eπ̂∗

[
f

(
π̂θ

π̂∗

)]
= Eπref

[
π̂∗

πref
f

(
π̂θ

π̂∗

)]
.

(6)
With unlimited model capacity and perfect optimiza-
tion, the optimal policy π∗

θ satisfies that π∗
θ = π∗.

We leave the full proof in Appendix A. Intuitively,

this objective aims to optimize π̂θ(y|x) towards π̂∗,
which is equivalent to optimizing πθ(y|x) towards
π∗ in Eq. (2). According to the definition of π̂∗,
we have that the reward function can be written as
r(x, y) = log π̂∗(y|x) − log πref(y|x). By further defin-
ing the log ratio gθ(x, y) = log π̂θ(y|x)− log πref(y|x) =
β(log πθ(y|x) − log πref(y|x)), the above objective can
be simplified as:

Df (π̂θ∥π̂∗) = Eπref

[
πrf

(
πgθ

πr

)]
, (7)

where we define πgθ = 1
Zgθ

(x) exp(gθ(x, y)) and πr =
1

Zr(x) exp(r(x, y)), with Zgθ
and Zr being the parti-

tion functions. In practice, it is intractable to com-
pute these partition functions in the high dimensional
space. Instead, we take Monte Carlo estimation by the
multiple samples from the preference dataset. In gen-
eral case, for every prompt x we have K i.i.d. comple-
tions y1:K = {y1, · · · , yK} drawn from πref(y|x), where
we approximate the distributions πgθ and πr by nor-
malizing the exponential rewards over the K samples:

πgθ (i|y1:K , x) = egθ(x,yi)∑K
j=1 egθ(x,yj)

, (8)

πr(i|y1:K , x) = er(x,yi)∑K
j=1 er(x,yj)

. (9)

Plugging the above expression into Eq. (7), we have
the complete form of f -PO objective Lf-PO as follows:

Lf-PO(πθ) = Ex∼DEy1:K∼πref

[
er(x,yi)∑K

j=1 er(x,yj)
f

(
egθ(x,yi)∑K

j=1 egθ(x,yj)

/ er(x,yi)∑K
j=1 er(x,yj)

)]
.

(10)
Formally, the approximated objective with K samples
enjoys the following theoretical property,
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Theorem 2. With K → ∞, asymptotically we have

Lf-PO(πθ) = Ex∼DDf (π̂θ(y|x)∥π̂∗(y|x)) , (11)

where π̂θ(y|x) and π̂∗(y|x) follows the definition in
Theorem 1.

The theorem states that the general f -PO objective
is an unbiased optimizer for f -divergences between π̂θ

and π̂∗. In the following, we give the practical form of
Lf-PO under typical preference optimization scenario.

4.2 Generalized Preference Optimization

Under the distribution matching perspective, we have
presented the general f -PO framework where we use f -
divergence to align πθ, with K data completions and
an underlying reward model r. In this section, we
show the instance of f -PO objective under practical
preference optimization settings:

Pair-wise Preference Data. The most common
preference dataset typically consists of pair-wise com-
pletions for each prompt, i.e., setting K = 2. Since
there are two completions y for each prompt x, we
can denote them as “winning" sample yw and “losing"
sample yl. Then Eq. (10) can be simplified as:

Lf-PO(πθ) = Ex∼DEy1:2∼πref

[
πrf

(
egθ(x,yi)∑2

j=1 egθ(x,yj )

/
πr

)]
,

=Ex∼DE{yw,yl}∼πref

[
πrw f

(
σ(gθ(x, yw) − gθ(x, yl))

πrw

)

+ πrl f

(
σ(gθ(x, yl) − gθ(x, yw))

πrl

)]
,

(12)
where πrw = σ(rw − rl) and πrl = σ(rl − rw) are
self-normalized reward values for winning and losing
samples, respectively. Such formulation follows the
Bradley-Terry model (Bradley and Terry, 1952).

Preference Data without Reward Value. In com-
mon cases, the preference data is accessible without
reward label. We follow the BT model form and turn
πrw and πrl to binary supervision labels, i.e., we set
πrw ≈ 1 and πrl ≈ 0. To avoid the numerical is-
sue, we smooth the labels by setting πrw = 1 − ϵ and
πrl = ϵ, where ϵ > 0 is a hyperparameter controlling
the smoothness. Then we further simplify Eq. (12) as:

Lf-PO(πθ) = Ex∼DE{yw,yl}∼πref

[

(1 − ϵ)f
(

σ(gθ(x, yw) − gθ(x, yl))
1 − ϵ

)
+ ϵf

(
σ(gθ(x, yl) − gθ(x, yw))

ϵ

)]
.

(13)

By far we have derived the f -PO objective with com-
mon pair-wise preference data. By plugging in any
function f that satisfies the requirement in Section 3.3,
e.g. the generator functions in Table 1, we can get
practical f -PO optimization objectives. We will intro-
duce several instances of f -PO in the following section.

4.3 Instances of f-PO

In this section, we show several instances of f -PO
with specified f -divergences. We first briefly show that
when taking the reverse KL divergence as instance, f -
PO can recover the original DPO objective. Then we
present the specific instance with α-divergence, a.k.a
α-PO, as an example, which achieves the most com-
petitive results in our experiments.

DPO as f-PO with Reverse KL. First, we show
that from our f -divergence minimization perspective,
it can be easily demonstrated that DPO (Rafailov
et al., 2023) corresponds to minimizing the reverse KL
divergence DRKL(πθ∥π∗), as briefly derived here:

Proof. By realizing the function f in Eq. (13) as the
generator function of reverse KL, i.e., − log u, we have:

Lf-PO-RKL(πθ) = Ex∼DE{yw,yl}∼πref

[
− (1 − ϵ) log (σ(gθ(x, yw) − gθ(x, yl)))
− ϵ log (σ(gθ(x, yl) − gθ(x, yw)))
− (1 − ϵ) log(1 − ϵ) − ϵ log ϵ

]
.

When ϵ → 0, we have that limϵ→0(1 − ϵ) log(1 − ϵ) =
0 and limϵ→0 ϵ log ϵ = 0. Besides, we also have
limϵ→0 ϵ log (σ(gθ(x, yl) − gθ(x, yw))) = 0. Therefore,
without reward label smoothing, the objective is:

lim
ϵ→0

Lf-PO-RKL(πθ) = − log (σ(gθ(x, yw) − gθ(x, yl))) ,

which recovers the original DPO objective Eq. (4).

Similarly, when combined with forward KL function
u log u, the f -PO instance corresponds to EXO (Ji
et al., 2024). The derivation is provided in Appendix A
due to limited space, akin to the DPO derivation above
but with a different generator function.

f-PO with α-divergence. We present the alignment
objective when using α-divergence, a.k.a α-PO, as an
example. By plugging the generator function of α-
divergence into Eq. (13), we have the objective as:

Lf-PO(πθ) = Ex∼DE{yw,yl}∼πref

[ 1
α(α − 1)

(1 − ϵ)
(
u1−α

1 − (1 − α)u1 − α
)

+ ϵ
(
u1−α

2 − (1 − α)u2 − α
) ]

,

(14)
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Figure 2: The win rate (%) against SFT and Chosen
of Pythia-2.8B fine-tuned by f -PO on Anthropic HH
dataset with different values of α.

where the densities ratios u are defined as u1 =
σ(gθ(x,yw)−gθ(x,yl))

1−ϵ and u2 = σ(gθ(x,yl)−gθ(x,yw))
ϵ , re-

spectively. α-divergence covers a family of divergences
with varying α values. As |α| increases, the divergence
becomes more sensitive to differences in the tails of
the distributions. Specifically, it converges to KL di-
vergence when α → 0 and reverse KL divergence when
α → 1. This property allows us to interpolate between
KL and reverse KL. In our empirical study, we achieve
the most competitive results using α divergence among
all f -PO variants.

4.4 Empirical Variants with Approximations

As shown in the objective Lf-PO(πθ) in Eq. (13),
we conduct optimization over the log density odds
gθ(x, yw)−gθ(x, yl) = β(log πθ(yw|x)− log πref(yw|x)−
log πθ(yl|x) + log πref(yl|x)). This expression is re-
ported to have several drawbacks (Meng et al., 2024):
1) the presence of πref incurs additional training cost,
and 2) the objective mismatch the generation met-
ric where sentence likelihood is averaged by sentence
length. To this end, heuristic approximations have
been proposed, which yield better empirical results:

ĝθ(x, yw)−ĝθ(x, yl) = β

|yw| log πθ(yw|x)− β

|yl|
log πθ(yl|x)−γ,

(15)
where |y| is the sentence length of corresponding com-
pletions y, and γ is a target margin hyperparameter
approximating β(log πref(yw|x) − log πref(yl|x)). Re-
cent progress shows that this practical implementation
simplifies the training objective and greatly improves
alignment performance (Meng et al., 2024). Thanks
to the generality of our framework, empirically we can
take this approximation into our method by substitut-
ing the gθ odds in Eq. (13) with the ĝθ one above. This
empirical variant enjoys improved training efficiency
and also leads to significantly higher performance.
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Figure 3: The win rate (%) of Pythia-2.8B fine-tuned
by 6 different f -divergences using f -PO on Anthropic
HH dataset. α-divergence generally performs the best.

5 Experiments

In this section, we start by investigating the choices of
the f -divergence in our f -PO in Section 5.1 that helps
us identity the most performant form, which is further
evaluated on popular LLM benchmarks in Section 5.2.

5.1 Experiments on the Choice of f in f-PO

In this subsection, we empirically investigate the effect
of different instantiations of f in performing preference
optimization of LLMs. We detail our setups as follows.

Datasets. Here we utilize two datasets, the Reddit
TL;DR summarization dataset (Völske et al., 2017)
and the Anthropic Helpful and Harmless (HH) di-
alogue datasets (Bai et al., 2022), in this subsec-
tion. The TL;DR dataset contains Reddit posts with
user-generated summaries. We employ the filtered
dataset (Stiennon et al., 2020) to train the SFT model,
and the preference dataset for preference optimization.
The HH dataset provides multi-turn dialogues between
users and AI assistants. We leverage the chosen re-
sponse for SFT model and the helpful subset of this
preference dataset for preference optimization.

Setups. Following Ji et al. (2024), we explore two
alignment protocols for each dataset. 1. Direct prefer-
ence training (w/ Preferences): We employ a dataset
Dpref with data points in the form of (x, yw, yl), where
x is the input, yw and yl represent the preferred and re-
jected response, respectively. 2. Reward-based train-
ing (w/ Reward Model): We employ a dataset Drw,
where each instance comprises an input x and K pairs
of (yk, rk), with yk being a response generated by the
SFT model, and rk being the corresponding reward
labeled by certain reward model trained on the pref-
erence dataset Dpref.
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Table 2: The win rate (%) against SFT and Chosen
of Pythia-2.8B fine-tuned by various alignment algo-
rithms on TLDR and Anthropic HH datasets. Results
of baselines are taken from Ji et al. (2024). Best num-
bers of preference optimization methods are boldfaced.

TLDR Anthropic HH
vs SFT vs Chosen vs SFT vs Chosen

w/ Preferences

DPOpref 57.0 30.5 58.0 37.0
EXOpref 83.0 55.0 73.0 51.0
f -POpref 84.0 61.5 80.5 56.0

w/ Reward Model

Best-of-N 83.5 60.0 86.0 63.0
PPO 77.0 52.0 66.5 52.0
DPOrw 70.0 41.0 75.5 49.0
EXOrw 84.5 64.0 83.5 60.0
f -POrw 87.5 60.0 85.0 63.5

Model and evaluation. Here we use Pythia-
2.8B (Biderman et al., 2023) as the backbone to
perform preference optimization. For evaluation, we
adopt GPT-4 for zero-shot pair-wise comparisons of
outputs generated by our current model against those
produced by (1) the SFT model and (2) the preferred
responses from our original preference dataset. We
reuse the evaluation prompt from Ji et al. (2024) de-
tailed in Appendix C, which has been shown to align
closely with human judgments (Rafailov et al., 2023).

The effect of α in α-PO. We first examine the im-
pact of α in α-PO in the preference training setup by
performing a sweep over α, with results illustrated in
Fig. 2. We find that by controlling α we are able to
effectively maneuver between mode-seeking and mode-
covering, which results in a smooth change of win rate.
Notably, the performance approximates that of for-
ward KL when α approaches 0 and that of reverse KL
when α becomes close to 1 (c.f. Fig. 3), aligning with
our theoretical analysis. We obtain the best result
with α = 0.1 under this experimental setup.

The effect of different f in the f-divergence
family. We further study the empirical performance
when optimizing the model with different f enumer-
ated in Table 1. For α-divergence, we use α that leads
to the best performance as investigated in the pre-
vious study. As depicted in Fig. 3, we observe that
α-divergence generally contributes to the highest win
rate with up to > 20% enhancement compared with
reverse KL (i.e., DPO), while some other types of
f -divergences, e.g., Jeffrey’s divergence, also demon-
strate competitive performance. Inspired by these re-
sults, we will prioritize α-PO in the benchmarks in the
following sections due to its superior performance.

Overall comparison. We thoroughly compare f -

PO against several baselines (e.g., DPO and EXO)
in both w/ Preferences and w/ Reward Model set-
ting with results displayed in Table 2. For the re-
ward model setting, we additionally report the num-
bers of PPO (Schulman et al., 2017b) and Best-of-
N , which samples N = 128 outputs from the SFT
policy and then selects the highest scored response
judged by the reward model. As shown in Table 2,
our f -PO outperforms both DPO and EXO by a sig-
nificant margin in both settings across the two datasets
with, for instance, an average of 4% gain in win rate
against SFT model and 6% against the chosen re-
sponse over EXOpref. Notably, these improvements
generalize to reward-based training paradigms, under-
scoring the method’s robustness. The substantial en-
hancements validate our theoretical framework and
highlight the practical advantages of our generalized
approach towards preference optimization of LLMs.

5.2 Benchmarking f-PO

In this subsection, we further demonstrate the strong
performance of our f -PO on four popular benchmarks
through four different settings.

Models and training details. We adopt two base
models: Llama-3-8B (Dubey et al., 2024) and Mistral-
7B (Jiang et al., 2023), under two setups, Base and In-
struct, following the approach outlined in Meng et al.
(2024). In the Base setup, we first train an SFT
model on UltraChat-200k (Ding et al., 2023a) be-
fore performing preference optimization on UltraFeed-
back (Cui et al., 2023), offering high reproducibility
with open-source data and methods. The Instruct
setup instead utilizes publicly available instruction-
tuned models (Llama-3-8B-Instruct and Mistral-7B-
Instruct) as the SFT models, which are more perfor-
mant but less transparent due to undisclosed finetun-
ing procedures. We use specifically constructed prefer-
ence datasets for Llama-3 and Mistral, following Meng
et al. (2024). More details are deferred to Appendix B.

This leads to four configurations in total: Llama-
3-Base, Llama-3-Instruct, Mistral-Base, and Mistral-
Instruct. For our f -PO, we employed the α-divergence
algorithm family with a properly tuned α parameter,
inspired by the study in Section 5.1. Notably, we
also utilize the SimPO-style parameterization of f -PO
in Eq. (15) due to its superior performance, and re-
port the best performance over a range of α. Detailed
hyperparameters can be found in Appendix B.

Evaluation metrics. We evaluate our models using
four popular open-ended instruction-following bench-
marks: AlpacaEval 2 (Dubois et al., 2024), MT-
Bench (Zheng et al., 2023), Arena-Hard 0.1 (Li et al.,
2024), and Open LLM Leaderboard v2 (Fourrier et al.,
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Table 3: Results on AlpacaEval 2 (Li et al., 2023), Arena-Hard (Li et al., 2024), and MT-Bench (Zheng et al.,
2023) under four settings. LC and WR denote length-controlled and raw win rate, respectively. SFT models
are trained on UltraChat dataset for Base settings and initialized as off-the-shelf models for Instruct settings.
Results of baselines are taken from Meng et al. (2024).

Method
Mistral-Base (7B) Mistral-Instruct (7B)

AlpacaEval 2 Arena-Hard MT-Bench AlpacaEval 2 Arena-Hard MT-Bench
LC (%) WR (%) WR (%) GPT-4 Turbo GPT-4 LC (%) WR (%) WR (%) GPT-4 Turbo GPT-4

SFT 8.4 6.2 1.3 4.8 6.3 17.1 14.7 12.6 6.2 7.5
RRHF 11.6 10.2 5.8 5.4 6.7 25.3 24.8 18.1 6.5 7.6
SLiC-HF 10.9 8.9 7.3 5.8 7.4 24.1 24.6 18.9 6.5 7.8
DPO 15.1 12.5 10.4 5.9 7.3 26.8 24.9 16.3 6.3 7.6
IPO 11.8 9.4 7.5 5.5 7.2 20.3 20.3 16.2 6.4 7.8
CPO 9.8 8.9 6.9 5.4 6.8 23.8 28.8 22.6 6.3 7.5
KTO 13.1 9.1 5.6 5.4 7.0 24.5 23.6 17.9 6.4 7.7
ORPO 14.7 12.2 7.0 5.8 7.3 24.5 24.9 20.8 6.4 7.7
R-DPO 17.4 12.8 8.0 5.9 7.4 27.3 24.5 16.1 6.2 7.5
SimPO 21.5 20.8 16.6 6.0 7.3 32.1 34.8 21.0 6.6 7.6
f -PO 23.7 22.0 16.8 6.0 7.4 32.9 35.8 21.5 6.6 7.6

Method
Llama3-Base (8B) Llama3-Instruct (8B)

AlpacaEval 2 Arena-Hard MT-Bench AlpacaEval 2 Arena-Hard MT-Bench
LC (%) WR (%) WR (%) GPT-4 Turbo GPT-4 LC (%) WR (%) WR (%) GPT-4 Turbo GPT-4

SFT 6.2 4.6 3.3 5.2 6.6 26.0 25.3 22.3 6.9 8.1
RRHF 12.1 10.1 6.3 5.8 7.0 31.3 28.4 26.5 6.7 7.9
SLiC-HF 12.3 13.7 6.0 6.3 7.6 26.9 27.5 26.2 6.8 8.1
DPO 18.2 15.5 15.9 6.5 7.7 40.3 37.9 32.6 7.0 8.0
IPO 14.4 14.2 17.8 6.5 7.4 35.6 35.6 30.5 7.0 8.3
CPO 10.8 8.1 5.8 6.0 7.4 28.9 32.2 28.8 7.0 8.0
KTO 14.2 12.4 12.5 6.3 7.8 33.1 31.8 26.4 6.9 8.2
ORPO 12.2 10.6 10.8 6.1 7.6 28.5 27.4 25.8 6.8 8.0
R-DPO 17.6 14.4 17.2 6.6 7.5 41.1 37.8 33.1 7.0 8.0
SimPO 22.0 20.3 23.4 6.6 7.7 44.7 40.5 33.8 7.0 8.0
f -PO 23.5 20.9 28.2 6.6 7.8 45.3 41.0 33.5 7.1 8.2

Table 4: Results on LLM Leaderboard v2 with Llama3-Instruct (8B) and Mistral-Base (7B).
IFEval BBH MATH Lvl 5 GPQA MUSR MMLU-PRO Average

SimPO-Llama3-8B-Instruct 65.04 26.71 2.57 5.82 8.15 27.66 22.66
f -PO-Llama3-8B-Instruct 67.69 28.75 4.98 4.92 9.08 28.79 24.04
SimPO-Mistral-7B-Base 47.01 22.33 0.60 4.47 8.03 18.91 16.89
f -PO-Mistral-7B-Base 48.46 24.16 1.66 6.38 12.73 19.72 18.85

2024). These benchmarks assess diverse conversational
abilities across various queries. For AlpacaEval 2,
we report both the raw win rates (WR) and length-
controlled win rates (LC). MT-Bench scores are aver-
aged using GPT-4 and GPT-4-Preview-1106 as judges.
Arena-Hard results are reported as win rates against
the baseline model.

Baselines. We compare our f -PO with a compre-
hensive set of offline preference optimization methods:
(i) RRHF (Yuan et al., 2023a) and SLiC-HF (Zhao
et al., 2023) rank losses using length-normalized and
direct log-likelihood with an SFT objective, respec-
tively; (ii) DPO (Rafailov et al., 2023) refers to
the original direct preference optimization approach;
(iii) IPO (Azar et al., 2023) commits to preventing
potential overfitting problems in DPO; (iv) CPO (Xu

et al., 2024) employs direct likelihood as a reward
and trains in conjunction with a behavior cloning ob-
jective for winning responses; (v) KTO (Ethayarajh
et al., 2024) eliminates the need for pair-wise prefer-
ence datasets; (vi) ORPO (Hong et al., 2024) intro-
duces a reference-model-free odd ratio term to penalize
undesired generation styles; (vii) R-DPO (Park et al.,
2024) incorporates additional regularization to pre-
vent length exploitation; (viii) SimPO (Meng et al.,
2024) proposes reference-free rewards that incorporate
length normalization and target reward margins be-
tween winning and losing responses.

Results. Table 3 shows the primary evaluation
outcomes of Mistral-7B and Llama-3-8B in both Base
and Instruct configurations. While all methods effec-
tively boost the performance over the SFT model, our
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proposed method, f -PO, achieves the highest score on
16 out of 20 metrics while being competitive on the
rest, which highlights the efficacy and robustness of
our technique. Quantitatively, f -PO achieves an aver-
age improvement of 1.4% over the strongest baseline
SimPO on the AlpacaEval 2 length-controlled win rate
metric. Interestingly, in the Llama-3-8B Base setup,
we are able to obtain a remarkable enhancement of
4.8% (28.2% against 23.4%) in win rate compared
with SimPO on Arena-Hard, further demonstrating
the superiority of f -PO. The results consistently
advocate f -PO as an effective and broadly applicable
LLM alignment approach across a wide suite of
models and tasks. The results in Table 4 further
verifies the superiority of our f -PO, where f -PO
outperforms SimPO consistently with both models
(Llama3-8B-Instruct and Mistral-7B-Base) by a sig-
nificant margin, leading to 8% relative improvement
in average score. Notably, f -PO enhances the score
of Mistral-7B-Base on the MUSR benchmark from
8.03 to 12.73, and Llama3-8B-Instruct on the IFEval
benchmark from 22.66 to 24.04. The results further
strengthen our findings of f -PO as a general and
effective preference optimization approach.

6 Conclusion

In this paper, we introduce f -PO, a generalized ap-
proach towards preference optimization through f -
divergence minimization. Our key insight lies in view-
ing LLM alignment task as distribution matching be-
tween the optimal and parameterized policy with the
objective defined with f -divergence. Our approach
generalizes existing techniques to a broader family of
alignment objectives, among which the variant of α-
PO has been demonstrated to achieve state-of-the-
art performance on various challenging LLM bench-
marks. Our work offers a novel theoretical perspective
in understanding preference optimization while enjoy-
ing strong empirical performance and wide applicabil-
ity across different models and tasks.
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A Proofs

A.1 Proof of Theorem 1

In this section, we present the formal proof of Theorem 1. For clarity we first repeat the theorem below.
Theorem 1. Let π̂θ(y|x) ∝ πθ(y|x)βπref(y|x)(1−β) and π̂∗ ∝ πref exp (r(x, y)). We define our alignment objective
as minimizing the following f -divergence:

Df (π̂θ∥π̂∗) = Eπ̂∗

[
f

(
π̂θ

π̂∗

)]
= Eπref

[
π̂∗

πref
f

(
π̂θ

π̂∗

)]
. (16)

With unlimited model capacity and perfect optimization, the optimal policy π∗
θ satisfies that π∗

θ = π∗.

To prove the theorem, we consider the following property of f -divergence.
Lemma 1. Df (p∥q) ≥ 0 and the global optimal of Df (p∥q) only achieves when q = p.

Proof. By the definition of a convex function, for any t ≥ 0, f(t) ≥ f(1) + f ′(1)(t − 1). Given that f(1) = 0, the
inequality simplifies to f(t) ≥ f ′(1)(t − 1). Then we have

f

(
p(x)
q(x)

)
≥ f ′(1)

(
p(x)
q(x) − 1

)
. (17)

Taking expectation over q, we have that

Df (p∥q) =
∫

q(x)f
(

p(x)
q(x)

)
dx ≥

∫
q(x)f ′(1)

(
p(x)
q(x) − 1

)
dx,

= f ′(1)
(∫

p(x)dx −
∫

q(x)dx

)
= f ′(1)(1 − 1) = 0. (18)

The equation is satisfied only when f
(

p(x)
q(x)

)
= 0, i.e. p(x)

q(x) = 1. Then we finish the proof of Lemma 1.

Now we get back to the definition of π̂θ and π̂∗:

π̂θ(y | x) = πθ(y | x)βπref(y | x)(1−β)/Zθ(x), π̂∗ = πref(y|x) exp (r(x, y))/Zr(x). (19)

Here Zθ(x) and Zr(x) are the corresponding partition functions. By Lemma 1 we know that the minimizer of
our f -divergence objective is achieved only when π̂θ∗ = π̂∗, which is equivalent to

πθ∗(y | x)βπref(y | x)(1−β)/Zθ(x) = πref(y|x) exp (r(x, y))/Zr(x),

⇔ πθ∗(y | x)β/Zθ(x) = πβ
ref(y|x) exp (r(x, y))/Zr(x),

⇔ πθ∗(y | x) = πref(y|x) exp
(
β−1r(x, y)

)
(Zθ(x)/Zr(x))

1
β . (20)

Eliminating the partition-related constant, we have:

πθ∗(y | x) ∝ πref(y|x) exp
(
β−1r(x, y)

)
= 1

Z(x)πref(y|x) exp
(
β−1r(x, y)

)
= π∗, (21)

which concludes the proof.
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A.2 Proof of Theorem 2

Theorem 2. With K → ∞, asymptotically we have
Lf-PO(πθ) = Ex∼DDf (π̂θ(y|x)∥π̂∗(y|x)) , (22)

where π̂θ(y|x) and π̂∗(y|x) follows the definition in Theorem 1.

Proof. We first consider following equation
∑K

j=1 egθ(x,yj)/K = Eπref(y|x)e
gθ(x,y). When K → ∞, the above

equation holds because the LHS is the unbiased Monte Carlo estimation of the expectation. Note that gθ(x, y) =
log π̂θ(y | x) − log πref(y | x) = log π̂θ(y|x)

πref(y|x) . Then we have the fact that:

K∑
j=1

egθ(x,yj) = KEπref(y|x)
π̂θ(y | x)

πref(y | x) = K. (23)

Similarly, we obtain an expectation formulation of
∑K

j=1 er(x,yj) as:
K∑

j=1
er(x,yj) = KEπref(y|x)e

r(x,y) = KZr(x). (24)

Here Zr(x) is a partition function with respect to r and x. Putting the above Eq. 24 and Eq. 23 to the Eq. 10,
we obtain

Lf-PO(πθ) = Ex∼DEy1:K∼πref

[
er(x,yi)∑K

j=1 er(x,yj)
f

(
egθ(x,yi)∑K

j=1 egθ(x,yj)

/ er(x,yi)∑K
j=1 er(x,yj)

)]
,

= Ex∼D

[
Ey1:K ∼πref

er(x,yi)

KZr(x)f

 π̂θ(yi|x)
πref(yi|x)

K

/ er(x,yi)

KZr(x)

],

= Ex∼D

[
1
K

K∑
i=1

πref(yi | x)er(x,yi)

Zr(x) f(π̂θ(yi | x)
/πref(yi | x)er(x,yi)

Zr(x) )
]

. (25)

Recalling that πref(yi|x)er(x,yi)

Zr(x) = π̂∗(y | x) given the definition, we have that

Lf-PO(πθ) = Ex∼D

[
Eπ̂∗(y|x)f( π̂θ(yi | x)

π̂∗(y | x) )
]

= Ex∼DDf (π̂θ(y | x)∥π̂∗(y | x)) , (26)

which finishes the proof.

A.3 Derivation for EXO as f-PO with Forward KL

In this section, we provide a brief derivation on how EXO (Ji et al., 2024) corresponds to minimizing the forward
KL divergence DKL(πθ∥π∗).

Proof. By realizing the function f in Eq. (13) as the generator function of forward KL, i.e., u log u, we have,

Lf-PO-RKL(πθ) =Ex∼DE{yw,yl}∼πref

[
(1 − ϵ) · σ(gθ(x, yw) − gθ(x, yl))

1 − ϵ
log
(

σ(gθ(x, yw) − gθ(x, yl))
1 − ϵ

)

+ ϵ · σ(gθ(x, yl) − gθ(x, yw))
ϵ

log
(

σ(gθ(x, yl) − gθ(x, yw))
ϵ

)]
,

=Ex∼DE{yw,yl}∼πref

[
σ(gθ(x, yw) − gθ(x, yl)) log

(
σ(gθ(x, yw) − gθ(x, yl))

1 − ϵ

)

+ σ(gθ(x, yl) − gθ(x, yw)) log
(

σ(gθ(x, yl) − gθ(x, yw))
ϵ

)]
,

(27)

which recovers the original EXO objective Eq. (23) in Ji et al. (2024).
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B More Experiment Details

This section provides comprehensive details on the experimental setup for our studies presented in Section 5.1
and Section 5.2. We adhere to the training and evaluation protocols outlined in EXO (Ji et al., 2024) and
SimPO (Meng et al., 2024) for our method, while utilizing reported hyperparameters and results for baseline
comparisons. The following subsections elaborate on the specific hyperparameters, training procedures, and
evaluation methodologies employed in our experiments.

B.1 Experiment Details in Section 5.1

In our experiments, we follow the training and evaluation hyperparameters outlined in EXO (Ji et al., 2024),
while for all baselines, we utilized their reported hyperparameters and results for comparison. Below, we detail
the key hyperparameters employed in Ji et al. (2024), as well as those used for our method.

Hyperparameters. For f -POpref, we set βr = 0.5, βπ = 0.5, and α = 0.1. For f -POrw, we use βr = 0.1,
βπ = 0.35, α = 0.1, and K = 4. The label smoothing hyperparameter ϵ in f -POpref is set to 1e-3. Both methods
employ the Adam optimizer with a learning rate of 1e-6 and a batch size of 64, training for one epoch on each
dataset, which is more than sufficient for convergence.

Evaluation Details. We sample 4 completions from the learned policy for each of 512 prompts from the test
set across all datasets. For consistency, we maintain a sampling temperature of t = 0.8 during both training and
inference. To calculate the win rate using the reward model, we compare all pairs of completions between the
learned policy and base completions (either from the SFT policy or the chosen completion in the dataset).

For GPT-4 evaluations, we sample 100 prompts with 1 completion per prompt for each policy. To mitigate
position bias, we evaluate each pair of generations twice, swapping their order. We use the concise prompt
from (Rafailov et al., 2023) for summary quality assessment and a modified prompt for evaluating helpfulness in
multi-turn dialogues. The evaluation prompts are detailed in Appendix C.

B.2 Experiment Details in Section 5.2

Hyperparameter tuning is critical for maximizing the performance of preference optimization methods. In our
experiments, we adhered to the general training hyperparameters outlined in SimPO (Meng et al., 2024), while
for all baselines, we utilized their reported hyperparameters and results for comparison. Below, we detail the
setup and key hyperparameters employed in Meng et al. (2024), as well as those used for our method, f -PO.

Setup. In Base setup, models were fine-tuned on the UltraChat-200k corpus (Ding et al., 2023b) with a learn-
ing rate of 2e-5, batches of 128 samples, and sequence length capped at 2048 tokens. The learning schedule
followed a cosine curve with a 10% warm-up phase over a single epoch. The Adam optimizer (Kingma and
Ba, 2014) was used for all model training. For the preference optimization dataset, the 2048 token limit was
maintained and the same cosine learning rate schedule and warm-up strategy were used. For Instruct setting,
we use specifically constructed preference datasets princeton-nlp/llama3-ultrafeedback-armorm for Llama-3 and
princeton-nlp/mistral-instruct-ultrafeedback for Mistral. These datasets are created using prompts from Ultra-
Feedback, with chosen and rejected response pairs (yw, yl) regenerated using the SFT models and annotated by
reward models, to approximate an on-policy setting for the Instruct models.

Hyperparameters. We used the following hyperparameters for each experimental scenario: For Mistral-Base,
we set α=0.99, β=2.0, γ=1.6, with a learning rate of 3e-7. For Mistral-Instruct, we used α=0.925, β=2.5, γ=0.3,
and a learning rate of 6e-7. In the Llama3-Base setting, we employed α=0.99, β=2.0, γ=1.0, with a learning
rate of 7e-7. Finally, for Llama3-Instruct, we set α=0.99, β=2.6, γ=1.43, and used a learning rate of 1e-6.

Evaluation Details. For AlpacaEval 2, we generated responses using a sampling strategy. We set the
temperature to 0.7 for Mistral-Base (in line with zephyr-7b-beta),2 0.5 for Mistral-Instruct (following
Snorkel-Mistral-PairRM-DPO), and 0.9 for both Llama3 variants. Arena-Hard saw us employ greedy de-
coding across the board. For MT-Bench, we adhered to the official guidelines, which prescribe different sampling
temperatures for various categories.

2https://github.com/tatsu-lab/alpaca_eval/blob/main/src/alpaca_eval/models_configs/zephyr-7b-beta/
configs.yaml

https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k
https://huggingface.co/datasets/princeton-nlp/llama3-ultrafeedback-armorm
https://huggingface.co/datasets/princeton-nlp/mistral-instruct-ultrafeedback
https://github.com/tatsu-lab/alpaca_eval/blob/main/src/alpaca_eval/models_configs/zephyr-7b-beta/configs.yaml
https://github.com/tatsu-lab/alpaca_eval/blob/main/src/alpaca_eval/models_configs/zephyr-7b-beta/configs.yaml
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B.3 Computing Resources

In this work, we ran all our training experiments on four 80GB A100 GPUs, and all inference process using one
80GB A100 GPUs for each model.

C Prompt Details

In this section, we provide the specific prompts used in our model evaluation, as described in Sections 5.1 and 5.2.

C.1 Dialogue Generation Evaluation Prompt

For evaluating the helpfulness of generated dialogues, particularly in multi-turn settings, we use the following
prompt structure:

Table 5: Prompt for GPT-4 evaluation on the Anthropic HH dataset. Texts in blue are placeholders to be
substituted by the real data.

For the following dialogue history to a chatbot, which response is more helpful?
Dialogue history: <dialogue history>
Response A: <Response A>
Response B: <Response B>
FIRST, provide a one-sentence comparison of the two responses and explain which you feel is more helpful.
SECOND, on a new line, state only "A" or "B" to indicate which response is more helpful. Your response should use
the format:
Comparison: <one-sentence comparison and explanation>
More helpful: <"A" or "B">

C.2 Summarization Evaluation Prompt

For assessing the quality of summaries, we employ the concise prompt structure from Rafailov et al. (2023):

Table 6: Prompt for GPT-4 evaluation on the TL;DR dataset. Texts in blue are placeholders to be substituted
by real data.

Which of the following summaries does a better job of summarizing the most important points in the
given forum post, without including unimportant or irrelevant details? A good summary is both precise
and concise.
Post: <post>
Summary A: <Summary A>
Summary B: <Summary B>
FIRST, provide a one-sentence comparison of the two summaries, explaining which you prefer and why.
SECOND, on a new line, state only "A" or "B" to indicate your choice. Your response should use the format:
Comparison: <one-sentence comparison and explanation>
Preferred: <"A" or "B">
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