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Abstract

In explainable machine learning, global fea-
ture importance methods try to determine
how much each individual feature contributes
to predicting the target variable, resulting in
one importance score for each feature. But
often, predicting the target variable requires
interactions between several features (such as
in the XOR function), and features might
have complex statistical dependencies that
allow to partially replace one feature with
another one. In commonly used feature im-
portance scores these cooperative effects are
conflated with the features’ individual con-
tributions, making them prone to misinter-
pretations. In this work, we derive DIP,
a new mathematical decomposition of indi-
vidual feature importance scores that dis-
entangles three components: the standalone
contribution and the contributions stemming
from interactions and dependencies. We
show how the decomposition can be esti-
mated in practice and propose a new visu-
alization of feature importance scores that
clearly illustrates the different contributions.

1 INTRODUCTION

Tools from explainable AI (xAI) are increasingly em-
ployed not only to explain a machine learning (ML)
model’s mechanism but also to gain insight into the
data generating process (DGP) (Freiesleben et al.,
2024). In this context, global loss-based feature im-
portance techniques are often used to learn about the
features’ predictive power, that is, their ability to ac-
curately predict the underlying target. To enable such
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Figure 1: Feature importance, old vs. new. Con-
sider a model that predicts house prices using the fea-
tures longitude, latitude, and ocean proximity. Left:
Leave-One-Covariate-Out scores (LOCO). Right: Our
decomposition of the same scores (black lines) into
each feature’s standalone contribution (gray) and the
contributions of interactions (green) and dependencies
(purple). The arrows of the bars indicate whether the
contribution is positive or negative; their values sum
up to the LOCO scores.

insight, the methods remove features from the model,
for example, by marginalizing out variables or refitting
the model, and quantify the global effect on the empir-
ical risk (Covert et al., 2021; Molnar, 2022). This con-
trasts methods like SHAP (Lundberg and Lee, 2017),
which explain how a specific model arrives at its pre-
diction for a particular observation.
Existing feature importance methods try to explain
the features’ joint predictive power with just one in-
dividual score for each feature. This is problematic
since, commonly, the predictive power is not simply
the sum of the features’ standalone contributions but
also the result of cooperative forces: Interactions be-
tween several variables might unlock additional pre-
dictive power, and variable dependencies might ren-
der the different standalone contributions redundant.
As such, when attributing the predictive power with
just one score per feature, the individual scores con-
flate standalone and cooperative contributions, mak-
ing them prone to misinterpretation.
The main contribution of this paper is to derive a new



Disentangling Interactions and Dependencies in Feature Attribution

mathematical decomposition of individual feature im-
portance scores that disentangles the contributions of
individual features and cooperative effects stemming
from interactions and dependencies.
Let us consider an illustrative example. Suppose the
goal is to predict the price of a house based on its longi-
tude, latitude, and proximity to the ocean. Inspecting
a typical feature importance plot such as the LOCO
scores (Lei et al., 2018) (Figure 1, left) the relevance
of feature cooperation does not become clear. Using
our method (Figure 1, right), we can see that the fea-
tures longitude and latitude have limited use alone but
are highly predictive if combined with the remaining
features via an interaction (since together they deter-
mine the exact location). We can also see that the
feature ocean proximity is useful alone, but its pre-
dictive power can be replaced due to its dependence
with the remaining variables (longitude and latitude
can replace ocean proximity). For details on the im-
plementation we refer to Appendix B.2.
In Section 4, we show that the impact of interac-
tions and dependencies are entangled in the predic-
tive power. To disentangle them, we first separate
pure interactions and main effects in the ML model
(Section 5). Knowing how to decompose a prediction
model, we can decompose the predictive power of two
groups of features as the sum of their respective stan-
dalone contributions and the contributions of between-
group cooperation via interactions and dependencies
(Section 6). The decomposition can explain the out-
puts of popular feature importance methods such as
LOCO or SAGE (Lei et al., 2018; Covert et al., 2020),
as shown in Section 7. We demonstrate its utility on
real-world data in Section 8.
In contrast to existing approaches that explain the rel-
evance of interactions for a prediction model (Lund-
berg et al., 2018; Sundararajan et al., 2020; Bordt and
von Luxburg, 2023; Herbinger et al., 2023), we focus
on learning about the relationships in the data. Thus,
we explain the relevance of interactions for the pre-
dictive power instead of a specific model’s mechanism.
Furthermore, we avoid marginal sampling – crucial to
enable insight into the data (Chen et al., 2020; Hooker
et al., 2021; Freiesleben et al., 2024). And thirdly, we
explain the cooperative contributions of both interac-
tions and dependencies.

Contributions

• We propose DIP (disentangling interactions and
dependencies), a unique decomposition of L2-loss
based predictive power that explains the con-
tributions of both interactions and dependen-
cies between two groups, as well as new plots
that clearly visualize their respective contribu-
tions (Section 6).

• In Section 4, we show that predictive power con-
flates interactions and dependencies. To disentan-
gle their contributions, we show how to uniquely
separate main effects and interactions in an ML
model in Section 5. Therefore we prove that pure
interactions are unique, show how they can be
estimated, and prove that the main effects are
unique under mild assumptions.

• In Section 7, we show that the decomposition
can be used to explain popular feature impor-
tance techniques and demonstrate the method’s
practical usefulness on real-world data in Sec-
tion 8. A python implementation of the method
is publicly available on pypi and on GitHub via
https://github.com/gcskoenig/dipd.

2 RELATED WORK

Explanation Techniques that Attribute Inter-
actions There is a large amount of literature on
explainable AI, we refer to Molnar (2022) for an
overview. Here, we focus on techniques that attribute
interactions. Shapley interaction values (Grabisch and
Roubens, 1999; Lundberg et al., 2018) and higher or-
der variants of them (Sundararajan et al., 2020; Zhang
et al., 2021; Herren and Hahn, 2022; Bordt and von
Luxburg, 2023; Hiabu et al., 2023) are local attribution
methods that attribute interactions. A range of meth-
ods for their estimation has been proposed (Fumagalli
et al., 2024a,b; Muschalik et al., 2024). Local alterna-
tives include Integrated Hessians (Janizek et al., 2021)
and directional interactions (Masoomi et al., 2022);
Friedman’s H-statistic (Friedman and Popescu, 2008)
or GADGET (Herbinger et al., 2023) are global al-
ternatives. In contrast to existing methods, we avoid
marginal sampling techniques, which do not allow in-
sight into the data (Hooker et al., 2021; Freiesleben
et al., 2024). Furthermore, we decompose the predic-
tive power instead of explaining a model’s predictions
and disentangle the contributions of interactions and
dependencies.

Functional Decomposition The generalized func-
tional ANOVA (generalized fANOVA) decomposition
(Hooker, 2007) decomposes a function into compo-
nents of different interaction order. Its computation is
generally hard (Li and Rabitz, 2012; Lengerich et al.,
2020). The decomposition lays the foundations for
generalized Sobol indices (Chastaing et al., 2015; Gao
et al., 2023). While the aforementioned methods at-
tribute every possible subset of features, we focus on
explaining the cooperation between two groups of fea-
tures. Our decomposition is comparatively easy to
estimate and interpretable. Also, we attribute both
interactions and dependencies.

https://github.com/gcskoenig/dipd
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Partial Information Decomposition When re-
placing the L2-loss with the cross-entropy-loss, the co-
operative impact becomes the interaction information
(Covert et al., 2020, Appendix C). The problem of
decomposing the interaction information into a redun-
dancy and a synergy component is called partial infor-
mation decomposition and is discussed in Williams and
Beer (2010); Barrett (2015); Griffith and Ho (2015);
Kolchinsky (2022).

Communality Analysis In a similar vein, a range
of work has focused on decomposing the explained
variance of linear regression models into the standalone
and shared contributions of the features (Seibold and
McPhee, 1979; Nathans et al., 2012; Ray-Mukherjee
et al., 2014). We generalize existing results to ML
models, allowing nonlinearities and interactions.

3 BACKGROUND

3.1 Notation

Throughout the paper, we consider (X,Y ) ∼ P to
be our data generating process (DGP), consisting of
two random variables: the features X = (X1, ..., Xd)
in Rd and the labels Y in R. They are sampled from
some probability measure P on Rd × R. We assume
X1, ..., Xd, Y as well as every prediction function to
be L2-measurable with respect to P . We denote the
set of all features by D := {1, ..., d} and its power set
by P(D). For a set of features J ⊆ D, the term J̄
refers to the set D \ J . For sets of just one feature, we
tend to drop the brackets for readability, for example,
j̄ instead of {j}. For functions f : Rd → R, we often
write E(f) instead of E(f(X)) for better readability,
likewise for Var and Cov.
By a Generalized Additive Model (GAM)
we mean a function g : Rd → R, g(X) =
g1(X1) + ... + gd(Xd) that can be written as a
sum of functions depending on only one feature
(Hastie and Tibshirani, 1986). We use the term Gen-
eralized Groupwise Additive Model (GGAM)
in XS and XT , where S, T ⊆ D,S ∩ T = ∅,
for a function that can be written in the form
g : Rd → R, g(X) = gS(XS) + gT (XT ). We refer to
the component functions of a GAM (GGAM) as main
effects. A function that cannot be written as a GAM
(GGAM in XS and XT ) is called an interaction
(interaction between XS and XT ).

3.2 Loss-Based Feature Importance

By loss-based feature importance we mean methods
that quantify the relevance of features by comparing

the predictive power of subsets of features with respect
to some loss (Breiman, 2001; Strobl et al., 2008; Lei
et al., 2018; Covert et al., 2020; König et al., 2021;
Williamson et al., 2021). To measure the predictive
power of a set of features for a specific model f and
loss L, we follow the notation of Covert et al. (2020)
and introduce a value function vf,L : P(D) → R≥0,
which measures the drop in risk when knowing XS

compared to having access to none of the features.
More formally,

vf,L(S) := E(L(f∅, Y ))− E(L(fS(XS), Y )),

where fS is a restricted function that only has ac-
cess to the features S ⊆ D. Two definitions for the re-
stricted function fS are common in the literature: the
marginal and the conditional version. Both versions
integrate out the unused features S̄, but while the con-
ditional version integrates over the conditional distri-
bution P (XS̄ | XS = xS), that is

fS(xS) := E(f(xS , XS̄) | XS = xS),

the marginal version integrates over the marginal dis-
tribution P (XS̄) of the features XS̄ .
The marginal version is unsuitable for learning about
the DGP, since it breaks any dependencies between
XS and XS̄ and thereby evaluates the model on unre-
alistic data (Freiesleben et al., 2024). Thus, we always
rely on the conditional version.
We note that in the context of additive models like
g = gS + gS̄ , the term gS always refers to the
model component and never to the restricted function
E(g(X) | XS = xS); in general they do not coincide.
Focusing on regression and on understanding a DGP
rather than a particular predictor, we study the L2-loss
of the optimal predictor f∗(x) = E(Y | X = x). In
this setting, we drop the indices of the value function.
It can be shown that the respective value function sat-
isfies

v(S) : = vf∗,L2(S) = Var(Y )− E
(
(Y − f∗

S(XS))
2
)

= Var(E(Y | XS)),

corresponding to the explained variance of Y condi-
tional on XS (Covert et al., 2020, Appendix C). We call
v(S) the predictive power of the features S. We de-
note the normalized version as v̄(S) := v(S)/Var(Y ).
In this setting, f∗

S , based on conditional expectation,
can also be estimated by refitting the model with just
XS (Lei et al., 2018; Williamson et al., 2021). The
Leave-One-Covariate-Out (LOCO) method (Lei
et al., 2018; Williamson et al., 2021) uses refitting to
compute v(D)− v (j̄), which is the drop in predictive
power when removing feature j from D.
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4 PREDICTIVE POWER DOES
NOT REVEAL COOPERATION

Throughout the paper, we develop a method that ex-
plains the relevance of cooperation via interactions and
dependencies for the predictive power. In this section,
we show that even access to the predictive power of all
subsets of features – the basis of feature importance
methods – is not sufficient to solve this task.
We start the section by introducing what we call the
cooperative impact, that is, the effect of cooperations
on the predictive power. We show that the cooperative
impact results from two forces, interactions and de-
pendencies, but that the cooperative impact may not
reveal their relevance since their effects on the pre-
dictive power might cancel out. Later in the paper
we show how to estimate pure interactions in an ML
model (Section 5), which will allow us to disentangle
the two cooperative forces in the cooperative impact
(Section 6).

The Impact of Cooperations On Predictive
Power. We start by defining the cooperative impact.
Definition 1 (Cooperative Impact). Let (X,Y ) ∼
P be a DGP on Rd×R and J ⊆ D a subset of features.
The cooperative impact Ψ of J and J̄ is defined as

Ψ
(
J, J̄

)
:= v

(
J ∪ J̄

)
−
(
v(J) + v

(
J̄
))

.

The cooperative impact results from two cooperative
forces: interactions and dependencies between the fea-
tures. As the housing price example in the introduc-
tion showed, interactions and dependencies can affect
the joint predictive power. They can unlock joint pre-
dictive information that is otherwise unavailable (pos-
itive cooperative impact) or induce redundancies that
reduce the joint contribution (negative cooperative im-
pact). However, in their absence, the joint contribu-
tion is simply the sum of the features’ standalone con-
tributions, and the cooperative impact is zero (Propo-
sition 2, proof in Appendix A.1.4).
Proposition 2 (Without Interactions and De-
pendencies, the Cooperative Effect is Zero). Let
(X,Y ) ∼ P be a DGP and J ⊆ D a subset of features.
If XJ and XJ̄ are independent and the L2(P )-optimal
predictor can be written as a GGAM g∗ = g∗J + g∗

J̄
in

XJ and XJ̄ , then Ψ
(
J, J̄

)
= 0.

The Cooperative Impact May Not Reveal the
Importance of Cooperations. Although the co-
operative impact is zero if no interactions or dependen-
cies are present, the converse is not true. We illustrate
this issue with an example.
Example 3 (Contributions of Interactions and
Dependencies Cancel Out). Let Y = X1 +

X2 + cX1X2, where X = (X1, X2) is normally dis-
tributed on R2 with Var(X1) = Var(X2) = 1 and
Cov(X1, X2) = β.
In DGP 1, we set c = β = 0, meaning there are no in-
teractions or dependencies, and thus no cooperations.
In DGP 2, we set c =

√
6 and β = 0.5 such that there

is cooperation both in the form of interactions and de-
pendencies. In both cases we obtain v̄(1 ∪ 2) = 1,
v̄(1) = 0.5, and v̄(2) = 0.5. Hence Ψ(1, 2) = 0. See
Appendix A.2.1 for the formal derivation.

In the example, there is no cooperation in the first
DGP, but the variables cooperate both in form of in-
teractions and dependencies in the second DGP. Nev-
ertheless, the value functions for all possible sets of
features are the same in both DGPs; the cooperative
impact is zero. The reason is that in the second DGP
the positive effect of the interaction and the negative
effect of the redundancy-inducing dependence cancel
each other out.
The example shows that value functions are not suf-
ficient to quantify the relevance of interactions and
dependencies. To reveal their impact, we disentangle
them by first decomposing the prediction model.

5 ESTIMATING PURE
INTERACTIONS

In this section, our goal is to separate interactions and
main effects in an ML model f . Given two groups
of variables, we decompose f into an interaction term
that only represents interactions between the groups,
and main effects that only permit interactions within
groups.

Characterizing Pure Interactions Using Addi-
tive Models More formally, given two groups of fea-
tures J and J̄ , we want to decompose a prediction
function f as

f(x) = gJ(xJ) + gJ̄(xJ̄) + h(x),

where g is the model that only permits within-group
interactions, that is, a generalized groupwise additive
model (GGAM) of the form g = gJ + gJ̄ . Moreover,
we want the remaining interaction term h to be “pure”,
meaning that everything that can be expressed with-
out between-group interactions should be represented
in the GGAM g. This intuition gives rise to the fol-
lowing definition.
Definition 4 (Pure Interaction). Let P be a prob-
ability distribution on Rd, f : Rd → R a function
and J ⊆ D a subset of features. Let further g be the
L2(P )-optimal approximation of f within all GGAMs
in XJ and XJ̄ . We define the pure interaction of f
with respect to XJ and XJ̄ as f − g.
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In short, the pure interaction represents what cannot
be explained by a GGAM. Since the L2(P )-optimal
predictor of a topologically closed function class is
unique, the pure interaction h is unique as well.
This characterization of pure interactions between
groups is not only unique and intuitive; in the following
paragraphs we show that it entails a simple estimation
procedure and overlaps with existing definitions. As
we will see in Section 6, its properties allow finding an
interpretable decomposition of the predictive power.

Estimation Our definition of pure interactions di-
rectly entails a procedure for their estimation. To find
the pure interaction in f with respect to two groups
J and J̄ , we only need to fit one GGAM g approx-
imating f to get the pure interaction as the resid-
ual h = f − g. Thereby, we can leverage a broad
range of machine learning methods and implementa-
tions (Hastie and Tibshirani, 1986; Servén and Brum-
mitt, 2018; Nori et al., 2019).
In our context, we want to decompose the loss-
optimal model f∗, and therefore approximate f∗ with
a GGAM. As Lemma 11 in Appendix A.1.1 shows,
we can equivalently approximate Y using the GGAM.
Since only an approximation of f∗ is available in prac-
tice, we fit the GGAM directly on Y in our experi-
ments.

Properties and Relation To Existing Definitions
We can equivalently characterize pure interactions as
terms that are not approximable by only one of the
two groups of variables, as the following theorem shows
(proof in Appendix A.1.2).
Theorem 5 (Equivalent Characterization of
Pure Interactions). Let P be a probability distri-
bution on Rd, f : Rd → R a function and J ⊆ D a
subset of features. A GGAM g = gJ+gJ̄ is the L2(P )-
optimal approximation of f within all GGAMs in XJ

and XJ̄ if and only if the residual h := f − g satisfies
E(h | XJ) = 0 and E(h | XJ̄) = 0.

Theorem 5 enables another interpretation of pure in-
teractions. In particular, E(h | XJ) = E(h | XJ̄) = 0
implies that pure interactions in the optimal predictor
f∗ for a DGP do not contribute to the standalone pre-
dictive powers v(J) and v

(
J̄
)
.

Furthermore, Theorem 5 implies that in the two-
dimensional setting, our definition of pure interactions
coincides with the one in Lengerich et al. (2020), which
is based on Hooker (2007).
We highlight that pure interactions depend not only on
the function f but also on the dependencies between
features; see Appendix A.2.1 for an example.

Uniqueness of the GGAM Components In
addition to the uniqueness of the pure interaction

term h, we show that under mild assumptions the
component functions gJ and gJ̄ of the GGAM g
in Definition 4 are unique up to a constant, see
Appendix A.1.3. This ensures that our decomposition
f = gJ + gJ̄ + h is unique up to a constant as well,
which will later imply the uniqueness of the DIP
decomposition.
The uniqueness of the GGAM components breaks, for
example, when the variables XJ and XJ̄ are perfectly
correlated such that any function in XJ can also be
written in terms of XJ̄ . Thus, intuitively speaking,
our assumption assures that all combinations of
features can occur in the distribution. More formally,
if the features are discrete we require all combinations
to have positive probability; if they are continuous we
require the density to be strictly positive everywhere
and the component functions to be continuous or to
take finitely many values. We note that these assump-
tions are met by most common distributions, such
as non-degenerate multivariate normal distributions,
and most ML models, such as tree-based models or
neural networks.

6 DISENTANGLING THE CONTRI-
BUTIONS OF INTERACTIONS
AND DEPENDENCIES

Equipped with the tools to decompose a model f , we
are ready to disentangle the effects of interactions and
dependencies on the predictive power (DIP decompo-
sition). More precisely, we decompose the cooperative
impact (see Definition 1) in Theorem 6. For the proof
we refer to Appendix A.1.4.

Theorem 6 (Cooperative Impact Decomposi-
tion). Let (X,Y ) ∼ P be a DGP on Rd×R, J ⊆ D a
subset of features, f∗ = E(Y | X) the L2(P )-optimal
predictor and g∗ = g∗J + g∗

J̄
the L2(P )-optimal GGAM

in XJ and XJ̄ . We call h∗ := f∗ − g∗. Then, we get
a decomposition

Ψ
(
J, J̄

)
= Var(h∗)︸ ︷︷ ︸

Interaction
Surplus

− Dep
(
J, J̄

)︸ ︷︷ ︸
Main Effect

Dependencies

, where

Dep
(
J, J̄

)
:=Var (E (g∗J | XJ̄)) + Var

(
E
(
g∗J̄ | XJ

))︸ ︷︷ ︸
Cross-Predictability

+ 2Cov
(
g∗J , g

∗
J̄

)︸ ︷︷ ︸
Covariance

.

Interpretation First, we recall that both pure in-
teractions and main effects are unique up to a constant
under mild assumptions (Section 5, Appendix A.1.3),
and thus the decomposition is unique, too.
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Next, we highlight that the cooperative impact decom-
poses into the sum of a term that only depends on the
pure interaction h∗ and terms that only depend on the
main effects g∗. In other words, the contributions of
interactions and main effects simply add up. This is no
coincidence but a direct consequence of the properties
of pure interactions (Definition 4). These properties
ensure that any covariance terms involving h and g
vanish (cf. the proof of Theorem 6).
The effect of interactions on the predictive power is
given by the variance of the pure interaction term h∗.
Since the variance cannot be negative, we refer to it as
the interaction surplus. It measures how much of
the joint predictive power can only be explained with
between-group interactions.
We notice that Dep

(
J, J̄

)
vanishes if the two groups of

features XJ and XJ̄ are independent. It measures how
much of the cooperative impact is caused by dependen-
cies. More precisely, by the dependencies between the
effects of XJ and XJ̄ on Y , given by the main effects
g∗J and g∗

J̄
. Thus we refer to Dep

(
J, J̄

)
as the main

effect dependencies. As we will see, the main effect
dependencies can have a positive or negative influence
on the cooperative impact. The main effect depen-
dencies consist of two parts: We refer to them as the
main effect cross-predictability and the main effect co-
variance.
Intuitively, the main effect cross-predictability
quantifies how redundant the contributions of the two
groups of features are. More formally, it measures how
much of the variance of each main effect could also be
explained by the respective other group of variables.
Being a sum of variances, the cross-predictability is
always positive, and its impact on the cooperative im-
pact is always negative. This is consistent with the in-
tuition that the joint predictive power should decrease
if the variables share more variation.
Unlike the cross-predictability, the main effect co-
variance can be either positive or negative. If it is
negative and its absolute value outweighs the cross-
predictability, the main effect dependencies increase
the cooperative impact Ψ

(
J, J̄

)
. This may seem coun-

terintuitive because then the two groups of variables
are more predictive together than individually, even if
they do not interact. For an intuitive example on how
a negative main effect covariance induces this improve-
ment in predictive power, we refer to Example 8 below.
This phenomenon can also be observed in multivariate
linear models and is tied to the terms “enhancement”
(Friedman and Wall, 2005) or “suppression” (Shieh,
2006). We extend the analysis of this phenomenon to
the more general setting of ML involving GAMs.
Note that Dep

(
J, J̄

)
and its two components cannot

simply be determined from the dependencies between
features. Instead they explain the relevance of depen-

dencies for the underlying target, measured by the pre-
dictive power (details in Appendix A.2.2 and A.2.3).

Estimation Irrespective of the dimensionality of J
and J̄ we need access to three models to compute the
cooperative impact Ψ(J, J̄): the full model f∗ and the
restricted models f∗

J and f∗
J̄
. To decompose the coop-

erative impact using DIP, only one additional model
fit is required (the GGAM g∗). Since the number
of model fits needed to compute one DIP decomposi-
tion is independent of the dimension of the underlying
space, DIP can also be applied in higher dimensional
settings.
In practice, the optimal models are not available but
can be approximated using ML. To avoid bias due to
overfitting when estimating the components of the DIP
decomposition, the scores can be reformulated in terms
of empirical risk on test data (details in Appendix B.1).

Illustrative Examples First, we revisit Example 3,
where we can now reveal the relevance of cooperation
(derivations in Appendix A.2.1). Then we illustrate
the interpretation of DIP in Examples 7 to 9 (deriva-
tions in Appendix A.2.4).

Example 3 Continued (Cooperative Forces May
Cancel Out, Figure 2a). Using DIP, we can distin-
guish the cooperative and non-cooperative DGP in Ex-
ample 3. For DGP 1 (c = β = 0), the interaction sur-
plus and the main effect dependencies are both zero, as
one would expect; see Figure 2a, left bar. On the other
hand, for DGP 2

(
c =
√
6, β = 0.5

)
we get a (normal-

ized) interaction surplus of 0.26, cross-predictability of
0.07 and covariance of 0.19, such that interaction sur-
plus and main effect dependencies cancel out (Figure
2a, right bar).

Example 7 (Negative Cooperative Impact via
Dependence, Figure 2b). Suppose we want to pre-
dict a student’s points Y in an exam based on two bi-
nary features that indicate whether a student did their
homework (X1 = 1) or not (X1 = 0) and whether a
student studied for at least 10 hours (X2 = 1) or not
(X2 = 0). We assume the two features are Ber (0.5)-
distributed and positively correlated with P (X1 =
X2) = 0.75 (see Figure 2b, top left), because doing
homework requires time. Assume the points follow
the rule Y = 4X1 + 4X2 (see Figure 2b, bottom left),
meaning there are no interactions, so h∗ = 0. This
results in a negative cooperative impact Ψ(1, 2) = −6
(v(1) = 9, v(2) = 9, and v(1 ∪ 2) = 12). The DIP
decomposition delivers a cross-predictability of 2 and
a main effect covariance of 4, whose negatives sum up
to the observed cooperative effect of Ψ(1, 2) = −6.

Intuitively, this negative cooperative impact makes
sense since the two features are correlated and can
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(b) Example 7

p X2
0 1

X1
0 3/8 1/8

1 1/8 3/8

g* X2
0 1

X1
0 0 4

1 4 8

h* X2
0 1

X1
0 -1 3

1 3 -1

g* X2
0 1

X1
0 0 2

1 4 6

p X2
0 1

X1
0 1/8 3/8

1 3/8 1/8

p X2
0 1

X1
0 3/8 1/8

1 1/8 3/8

−1

0

1

2

3

S
co
re
s

(c) Example 8
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(d) Example 9

Figure 2: Examples. For each example, we show a forceplot visualizing the DIP decomposition into standalone
contributions (v(1) and v(2)), main effect dependencies (Dep(1, 2)) and interaction suplus, where the direction
of each bar (upward or downward) represents the sign. They sum up to v(1, 2) (black horizontal line). The slim
bars (right) show the decomposition of Dep(1, 2) (purple horizontal line) into covariance and cross-predictability.
For Examples 7-9, we additionally show heatmaps visualizing the distribution (top) and g∗ or h∗ (bottom).

partially replace each other. This leads to either vari-
able being able to recover more than half of the ex-
plained variance of Y on its own and thus Ψ(1, 2) < 0.
In short, the negative effect of the main effect depen-
dencies indicates that the two variables have similar
information about the target.

Example 8 (Positive Cooperative Impact via
Dependence, Figure 2c). In our second example, Y
still reflects the points and X1 whether a student did
homework, but feature 2 now indicates whether the
student attended the review session (X2 = 1) or not
(X2 = 0). Students who did their homework tend
not to attend the review session, so we again choose
X1 and X2 to be Ber (0.5)-distributed, but this time
negatively correlated with P (X1 = X2) = 0.25, see
Figure 2c, top left. The relationship between points
and features is given by Y = 4X1 + 2X2 (see Figure
2c, bottom left), so again h∗ = 0. This time, we get
a positive cooperative impact (v(1) = 2.25, v(2) = 0,
and v(1∪ 2) = 3). The cross-predictability is 1.25 and
the main effect covariance −2, outweighing the former.

Why do the two features have more predictive power
together than individually, despite the absence of any
interaction? Although attending the review session
adds two points, we have v(2) = 0. Indeed, both
columns of the lower table in Figure 2c have a weighted
average of 3, that is, E(Y | X2 = 0) = E(Y | X2 =
1) = 3. So, knowing solely X2 does not help pre-
dicting Y . This is due to the correlation. For stu-
dents who attended the review session, it is more likely
that they did not do homework, which is bad for their
score. This cancels out the positive effect of the review
session. One could say the correlation works against
the prediction. Once we use both features, the pre-
dictive power of X2 is revealed because X1 is known.
The lower table of Figure 2c again illustrates this well:

Once we can distinguish the rows, the difference be-
tween the two columns becomes visible.
The crucial part of Example 8 is that the values of X1

and X2 that are likely to occur concurrently have op-
posing effects on Y . Formally, that is Cov(g∗1 , g∗2) < 0.
The example illustrates how a negative main effect
covariance can improve the features’ joint predictive
power compared to their individual ones.1

Example 9 (Interactions, Figure 2d). Let us again
consider the positively correlated Ber (0.5)-distributed
variables X1 and X2 from Example 7 that satisfy
P (X1 = X2) = 0.75. This time, we set Y = 8(X1 ∨
X2)−1, where ∨ denotes the logical OR-operator. This
may be rewritten as as Y = 4X1+4X2+4(X1⊕X2)−1,
where ⊕ denotes the XOR-operator. The expres-
sion h(X) = 4(X1 ⊕ X2) − 1 is a pure interaction.
To verify this, consider the lower table of Figure 2d.
The weighted average of each row and each column
is zero, which formally means E(h | X1) = 0 and
E(h | X2) = 0.2 Consequently, we obtain the (unique)
decomposition of Y into the GAM g∗(X) = 4X1+4X2

and the pure interaction h∗(X) = 4(X1⊕X2)−1. Us-
ing this decomposition, we get the same standalone
and main effect dependence contributions as in Exam-
ple 7 (v(1) = 9, v(2) = 9, cross-predictability of 2, and
covariance of 4). This illustrates that the standalone
contributions and Dep

(
J, J̄

)
are not affected by the

pure interaction. The interaction surplus Var(h∗) = 3
is simply added to these values causing Ψ(1, 2) and
v(1 ∪ 2) to be increased by 3.

1Note that this phenomenon does not need one of the
two value functions to vanish. We simply chose an example
with a vanishing value function for better illustration.

2Note that the constant −1 is required to ensure that
h is mean-centered, which is a necessary condition for our
definition. Otherwise, the expressions E(h | X1) and E(h |
X2) would be constant but not zero.
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California Housing

Figure 3: Applications. We decompose the LOCO scores on the wine quality dataset (left) and the California
Housing dataset (right) into each feature’s standalone contribution, the interaction surplus, and the contribution
of main effect dependencies.

7 APPLYING THE DECOMPOSI-
TION TO FEATURE IMPORTANCE

Now, we show how to apply the DIP decomposition
to explain Leave-One-Covariate-Out (LOCO) impor-
tance (Lei et al., 2018; Williamson et al., 2021), a pop-
ular feature importance technique. The LOCO score
is defined as the drop in predictive power when remov-
ing one variable from the full set of features and can
be rewritten using Definition 1 as

LOCOj := v (j ∪ j̄)− v (j̄) = v(j) + Ψ (j, j̄) .

To explain the relevance of interactions and dependen-
cies for a LOCO score, we can decompose the cooper-
ative impact Ψ(j, j̄) using Theorem 6.
Using the same trick, we can also explain the relevance
of cooperation for Shapley effects (Song et al., 2016),
also called SAGE values (Covert et al., 2020) (Ap-
pendix A.3). More generally, we can apply the method
to any feature importance method based on predictive
power comparisons of the form v(S ∪ T )− v(T ).
Notably, computing the DIP decomposition of a fea-
ture importance method does not increase the asymp-
totic complexity of the method, since a constant num-
ber of additional model fits is needed for the decom-
position of each surplus v (j ∪ j̄)−v (j̄). For details on
runtime we refer the reader to Appendix B.2.

8 APPLICATIONS

We now apply the DIP decomposition to real-world
data. More specifically, we compute and decompose
LOCO scores. We apply the method to two datasets,
the wine quality dataset (Cortez et al., 2009) and the
California Housing dataset found in (Géron, 2022).

Implementation To estimate the full model and
to decompose it into pure interactions and main ef-

fects, we leverage the explainable boosting machine
implemented in the interpretML package (Nori et al.,
2019). We compute the scores on test data as de-
scribed in Appendix B.1. We employ a 10-fold cross-
validation scheme. All scores are normalized by the
variance of the target variable, thus indicating the pro-
portion of the variance that is explained. We imple-
mented the methods as a python package; all code
is publicly available on GitHub. Details on the im-
plementation and computational cost are reported in
Appendix B.2.

Wine Quality For this dataset (n = 6496, Cortez
et al. (2009)), obtained from the UCI ML Repository
(Dua and Graff, 2017) the goal is to predict wine qual-
ity (a score between one and ten) using ten physico-
chemical characteristics such as citric acidity, residual
sugar, and density. Suppose we use LOCO to gain in-
sight into which variables are most relevant for predict-
ing the target. The scores in Figure 3 (left, black hor-
izontal lines) suggest that density and residual sugar
are most relevant, but that citric acidity is irrelevant.
The scores are prone to misinterpretation.
First, one may erroneously infer that variables with
large scores, like residual sugar, also have large stan-
dalone predictive power. The DIP decomposition (Fig-
ure 3, left) reveals that residual sugar is relevant due
to cooperation instead, and thus, its role in predicting
the target can only be understood in combination with
other features. A pairwise DIP decomposition further
reveals a positive cooperative impact between residual
sugar and density (Appendix C.1.1); an in-depth anal-
ysis shows that the features are positively correlated
(adding sugar increases the density) but have oppos-
ing effects on wine quality that cancel out unless both
features are observed (Appendix C.1.2).
Second, one may erroneously conclude that features
with small LOCO scores, like citric acidity, contain
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little predictive information about Y . Instead, DIP
reveals that citric acidity is one of the most predic-
tive standalone features but is considered irrelevant by
LOCO due to its redundancy with the remaining fea-
tures. A pairwise DIP decomposition reveals that cit-
ric acidity shares most of its contribution with volatile
acidity, suggesting that they have similar roles for the
target (Appendix C.1.1).

California Housing The goal of the California
Housing dataset (n = 20433, Géron (2022)) is to pre-
dict the 1990 median house price of districts in Califor-
nia based on characteristics such as longitude, latitude,
and ocean proximity. The variables longitude and lat-
itude have the highest LOCO scores, and one may er-
roneously conclude that the variables are individually
important for the outcome. However, as DIP reveals,
the variables’ LOCO scores mostly stem from interac-
tions (Figure 3, right). As such, we need to consider
both variables together to fully understand their role
for Y . Furthermore, DIP reveals that seemingly irrel-
evant variables such as ocean proximity and income in
fact are useful standalone predictors that receive low
scores since they share their contributions with the re-
maining features.

Additional experiments are reported in Appendix C.
We use pairwise DIP decompositions to better un-
derstand which features cooperate, we apply the DIP
decomposition to another feature importance tech-
nique called SAGE, and we demonstrate the usefulness
of DIP on two higher-dimensional datasets. In Ap-
pendix D we demonstrate that the DIP decomposition
can be used to assess whether the cPDP (Apley and
Zhu, 2020), a technique explaining the effect of each
feature on the prediction, can be trusted to faithfully
reflect the role of a feature in a multivariate context.

9 CONCLUSION

Throughout the paper, we introduced DIP, a method
to decompose the L2-loss-based predictive power of
two groups of features into their standalone predic-
tive power as well as their cooperation via interactions
and dependencies.
DIP can be used to explain the outputs of commonly
used global feature importance methods such as LOCO
(Lei et al., 2018; Williamson et al., 2021) or SAGE
(Covert et al., 2020). More generally, DIP is applicable
to any method based on predictive power comparisons
involving two groups of features.
Thereby, DIP allows novel insight into the DGP: It
reveals which features are individually relevant and
which are due to interactions and dependencies, show-
ing whether variables must be analyzed jointly to un-
derstand their role for the target. Furthermore, we

can assess which variables share predictive contribu-
tions and thus have similar relationships with Y ; in-
sight that cannot be obtained by simply measuring the
dependencies between features. Since these questions
are of central interest to scientific inquiry, we are con-
vinced that DIP has great potential to enable relevant
discoveries.
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A THEORY

A.1 Proofs

A.1.1 Necessary Lemmata

Lemma 10 (Equivalence of Orthogonality and Non-approximability). Let P be a probability distribution
on Rd, f : Rd → R a function and J ⊆ R a subset of variables. Then the following are equivalent:

1. E(f · h) = 0 for all h ∈ L2
(
RJ , P

)
2. E(f | XJ) = 0.

Proof.

1. =⇒ 2. Note that by setting h ≡ 1 we get E(f) = 0. We start by considering h = E(f | XJ) which gives
E(f · E(f | XJ)) = 0. Since f is centered we can replace the expected value of the product by a covariance
and then use the law of total covariance to receive

0 = E(f · E(f | XJ)) = Cov(f,E(f | XJ))

= Cov(E(f | XJ),E(f | XJ)) + E(Cov(f,E(f | XJ) | XJ))︸ ︷︷ ︸
=0

= Var(E(f | XJ)),

so E(f | XJ) is constant. Since its expected value yields E(E(f | XJ)) = E(f) = 0, the function E(f | XJ)
must already be constant zero.

2. =⇒ 1. Note that again, E(f) = E(E(f | XJ)) = 0. For an arbitrary h ∈ L2
(
RJ , P

)
, using the law of total

covariance, we directly compute

E(f · h) = Cov(f, h) = Cov(E(f | XJ)︸ ︷︷ ︸
=0

,E(h | XJ)) + E(Cov(f, h | XJ))︸ ︷︷ ︸
=0

= 0.

Lemma 11 (Equivalence of Approximating the Data and Approximating a Better Predictor). Let
(X,Y ) ∼ P be a data generating process on Rd×R and consider two function classes F and G such that G ⊆ F .
Let f be the L2(P )-optimal predictor in the function class F . Then, for a function g ∈ G the following are
equivalent:

1. The function g is the L2(P )-optimal predictor for Y within G

2. The function g is the L2(P )-optimal approximation of f within G.

Proof. Note that a predictor is L2(P )-optimal within a function class if and only if its residual is perpendicular
to the function class (Luenberger, 1997).

1. =⇒ 2. Let us assume that g is optimal for Y . So, for an arbitrary h ∈ G we have

0 = E((Y − g(X)) · h(X)) = E((Y − f(X)) · h(X))︸ ︷︷ ︸
=0

+E((f(X)− g(X)) · h(X))

= E((f(X)− g(X)) · h(X)),

where E((Y − f(X)) · h(X)) vanishes because f is the optimal predictor for Y within F and h is contained
in F . From that, we directly conclude that g is L2(P )-optimal for f(X).
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2. =⇒ 1. If g is optimal for f(X) we again take an arbitrary h ∈ G and compute

0 = E((f(X)− g(X)) · h(X)) = E((Y − g(X)) · h(X))− E((Y − f(X)) · h(X))︸ ︷︷ ︸
=0

= E((Y − g(X)) · h(X))

and hence, g is optimal for Y .

A.1.2 Proof of Theorem 5

Proof of Theorem 5. The function g is the L2(P )-optimal approximation of f within all GGAMs in XJ and XJ̄

if and only if f − g is perpendicular to the class of all GGAMs in XJ and XJ̄ (Luenberger, 1997). This is
equivalent of saying f − g is perpendicular to all functions that only depend on XJ and all functions that only
depend on XJ̄ . The claim then follows from Lemma 10.

A.1.3 Uniqueness of the GGAM Components

Here, we prove that the GGAM components are unique up to a constant under some mild assumptions on the
underlying distribution and the GGAM. Note that a stronger result than uniqueness up to a constant cannot
be proven because it is always possible to add a constant to gJ and subtract the same one from gJ̄ , no matter
how strong our assumptions are. However, when decomposing the cooperative impact in Theorem 6, we take
variances and covariances and hence, these constants do not change the DIP decomposition.

Theorem 12 (Uniqueness of the GGAM Components). Let P be a probability distribution on Rd and
g : Rd → R a measurable function that admits a decomposition

g(x) = gJ(xJ) + gJ̄(xJ̄).

Assume that one of the following three assumptions is satisfied:

1. The probability measure on Rd is discrete and P (AJ ×AJ̄) > 0 for all values AJ , AJ̄ that XJ and XJ̄ take

2. The probability measure on Rd is continuous with some strictly positive density p > 0 and g, gJ , gJ̄ only take
finitely many values

3. The probability measure on Rd is continuous with some strictly positive density p > 0 and g, gJ , gJ̄ are
continuous.

Then, the components gJ and gJ̄ are unique almost surely up to a constant.

Proof. Given two decompositions g = gJ + gJ̄ = g̃J + g̃J̄ we may subtract them to receive

(gJ − g̃J) + (gJ̄ − g̃J̄) = 0 a.s.

For simplicity of the notation we write fJ := gJ − g̃J and fJ̄ := − (gJ̄ − g̃J̄). So we know fJ = fJ̄ a.s., from
which we will derive that fJ and fJ̄ are already constant a.s. This is the same as saying gJ and g̃J as well as gJ̄
and g̃J̄ coincide up to a constant.
Lets first consider the assumptions 1 and 2. In either of the two cases the two functions fJ , fJ̄ only take finitely
many values. For the sake of contradiction, assume one of the functions takes two distinct values a1, a2, each
with probability greater than zero. W.l.o.g. we assume this is fJ . We denote the preimages of a1 and a2 with
A1, A2 ⊆ RJ . Furthermore, let b be a value that fJ̄ takes with probability greater than zero and B ⊆ RJ̄ its
preimage. W.l.o.g. we assume b ̸= a1, otherwise, we may switch a1 and a2. In case of assumption 1 we know
that P (A1 ×B) > 0.
Under assumption 2 P (A1 × B) > 0 still holds true as we show in the following. Note that since the density
p is strictly positive, a subset of Rd has some positive probability if and only if it has some positive Lebesgue-
measure. This holds true for A1 × RJ̄ and RJ × B, because P (fJ = a1) > 0 and P (fJ̄ = b) > 0. Hence, A1
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has some positive J-dimensional Lebesgue-measure and B some positive J̄-dimensional Lebesgue-measure. From
that we conclude that A1 × B has some positive Lebesgue-measure too and hence P (A1 × B) > 0 holds true
under assumption 2 as well.
But fJ(A1 × B) = a1 ̸= b = fJ̄(A1 × B) and therefore P (fJ ̸= fJ̄) > 0, which is a contradiction. Thus, fJ and
fJ̄ are both constant a.s.
Let us now consider assumption 3. The proof follows a very similar argumentation here. Let us again assume
for the sake of contradiction that one of the two functions is not almost surely constant, w.l.o.g. we again
assume this to be fJ , and let a1, a2 be two values that fJ takes. As before, let b be a value that fJ̄ takes and
assume w.l.o.g. that b ̸= a1. If P (fJ = a1) > 0 and P (fJ̄ = b) > 0, the rest of the proof follows exactly as
for assumption 2. Otherwise, pick two points z ∈ f−1

J (a1) ⊆ RJ , w ∈ f−1
J̄

(b) ⊆ RJ̄ . Since the functions fJ
and fJ̄ are continuous, points close to z or w map to points close to a1 or b respectively. More formally, there
exist small balls A1 := Bε1(z) ⊆ RJ around z and B := Bε2(w) ⊆ RJ̄ around w for some ε1, ε2 > 0, such
that fJ(A1) ∩ fJ̄(B) = ∅. By construction, A1 has some positive J-dimensional Lebesgue-measure and B some
positive

(
J̄
)
-dimensional Lebesgue-measure. Hence, also A1 × B has some positive Lebesgue-measure, which

again implies P (A1 × B) > 0. But due to fJ(A1) ∩ fJ̄(B) = ∅ we again receive P (fJ ̸= fJ̄) > 0, which is a
contradiction. So, fJ and fJ̄ are constant a.s.

A.1.4 Proof of Theorem 6 and Proposition 2

Proposition 2 is a special case of Theorem 6 resulting from XJ and XJ̄ being independent and h∗ = 0.

Proof of Theorem 6. Note that g∗ is also the best L2(P )-approximation of f∗ due to Lemma 11 and so, h∗ is
the pure interaction of f∗. We begin by simply expanding v(D) = Var(f∗). We receive

Var(f∗) =Var(g∗J + g∗J̄ + h∗)

=Var(g∗J) + Var(g∗J̄) + Var(h∗) (1)
+ 2Cov(g∗J , g

∗
J̄) + 2Cov(g∗J , h

∗)︸ ︷︷ ︸
=0

+2Cov(g∗J̄ , h
∗)︸ ︷︷ ︸

=0

,

where the last two summands vanish due to Theorem 5 and Lemma 10. We now consider the approximations
based on only one of the two subsets of features. Remember that E(Y | XJ) = E(f∗ | XJ) as shown in Lemma
11. We compute

E(Y | XJ) = E(f∗ | XJ) = E(g∗J | XJ) + E(g∗J̄ | XJ) + E(h∗ | XJ)︸ ︷︷ ︸
=0

= g∗J + E(g∗J̄ | XJ),

E(Y | XJ̄) = g∗J̄ + E(g∗J | XJ̄),

where we again used the fact that h∗ is a pure interaction. Computing variances leads to

v(J) = Var(g∗J) + Var(E(g∗J̄ | XJ)) + 2Cov(g∗J ,E(g
∗
J̄ | XJ))

v
(
J̄
)
= Var(g∗J̄) + Var(E(g∗J | XJ̄)) + 2Cov(g∗J̄ ,E(g

∗
J | XJ̄)).

Using the law of total covariance we can simplify

Cov(g∗J ,E(g
∗
J̄ | XJ)) = Cov(E(g∗J | XJ),E(g

∗
J̄ | XJ))

= Cov(g∗J , g
∗
J̄)− E(Cov(g∗J , g

∗
J̄ | XJ))︸ ︷︷ ︸

=0

and analogously,

Cov(g∗J̄ ,E(g
∗
J | XJ̄)) = Cov(g∗J , g

∗
J̄),

leading to

v(J) = Var(g∗J) + Var(E(g∗J̄ | XJ)) + 2Cov(g∗J , g
∗
J̄) (2)

v
(
J̄
)
= Var(g∗J̄) + Var(E(g∗J | XJ̄)) + 2Cov(g∗J̄ , g

∗
J). (3)

Putting the equations (1), (2) and (3) together proves the claim.
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A.2 Examples

A.2.1 Example 3: Linear Function on Normally Distributed Data

We consider
Y = X1 +X2 + cX1X2

where X ∼ N
(
0,

(
1 β
β 1

))
for arbitrary c ∈ R, β ∈ [0, 1). In the following, we will derive the value functions,

the functional decomposition and the DIP decomposition in a purely theoretical way.

Mathematical Basics and Precomputations For all these computations we need the generalized Isserlis
theorem, formalized in Withers (1985).

Theorem (Withers, 1985). If (X1, ..., Xd) is a zero-mean multivariate normal random vector and A =
{α1, ..., αl} is a subset of (not necessarily distinct) indices between 1 and d, we have

E(Xα1 · · ·Xαl
) =

∑
p∈P 2

A

∏
{i,j}∈p

E(XiXj).

Here, P 2
A is the set of all possible partitions of the set A into pairs. The product then goes over all these pairs in

a particular partition p.

This means in particular that the expression vanishes if l is odd, because in this case there are zero possible
partitions of {α1, ..., αl} into pairs.
With the aid of this theorem we compute the following expressions that will be used afterwards. Note that
E
(
X2

1

)
= E

(
X2

2

)
= 1 and E(X1X2) = β.

Var(X1X2) = E
(
X2

1X
2
2

)
− E (X1X2)

2

= E
(
X2

1

)
E
(
X2

2

)
+ E(X1X2)

2
+ E(X1X2)

2 − E(X1X2)
2

= E
(
X2

1

)
E
(
X2

2

)
+ E(X1X2)

2

= 1 + β2,

Var
(
X2

1

)
= E

(
X4

1

)
− E

(
X2

1

)2
= 3E

(
X2

1

)2 − E
(
X2

1

)2
= 2E

(
X2

1

)2
= 2,

Cov (X1, X1X2) = E
(
X2

1X2

)
− E(X1) E(X1X2) = 0,

Cov(X2, X1X2) = 0,

Cov
(
X1, X

2
1

)
= E

(
X3

1

)
− E

(
X2

1

)
E (X1) = 0.

Cov
(
X2, X

2
2

)
= 0

Cov
(
X1X2, X

2
1

)
= E

(
X3

1X2

)
− E(X1X2) E

(
X2

1

)
= 3E

(
X2

1

)
E(X1X2)− E(X1X2) E

(
X2

1

)
= 3β − β = 2β

Cov
(
X1X2, X

2
2

)
= 2β

Cov
(
X2

1 , X
2
2

)
= E

(
X2

1X
2
2

)
− E

(
X2

1

)
E
(
X2

2

)
= E

(
X2

1

)
E
(
X2

2

)
+ 2E(X1X2)

2 − E
(
X2

1

)
E
(
X2

2

)
= 2E(X1X2)

2

= 2β2.

Computation of the Value Functions With these expressions, we can now compute

v(1 ∪ 2) = Var(Y ) = Var(X1 +X2 + cX1X2)

= Var(X1) + Var(X2) + c2 Var(X1X2) + 2Cov(X1, X2) + 2cCov(X1, X1X2)︸ ︷︷ ︸
=0

+2cCov(X2, X1X2)︸ ︷︷ ︸
=0

= 2 + 2β + c2(1 + β2).
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Note that E(X2 | X1) = βX1, which is known from the conditional distribution of a multivariate normal. With
this identity in mind, we compute

v(1) = Var(E(Y | X1)) = Var(E(X1 +X2 + cX1X2 | X1))

= Var(X1 + E(X2 | X1) + cX1 E(X2 | X1)) = Var
(
X1 + βX1 + cβX2

1

)
= (1 + β)2 Var(X1) + c2β2 Var

(
X2

1

)
+ 2(1 + β)cβ Cov

(
X1, X

2
1

)︸ ︷︷ ︸
=0

= (1 + β)2 + 2c2β2.

Analogously,
v(2) = (1 + β)2 + 2c2β2.

Plugging in c = β = 0 and c =
√
6, β = 0.5 from our two DGPs in Example 3 and dividing by Var(Y ) =

2 + 2β + c2(1 + β2) we receive

v̄(1 ∪ 2) = 1, v̄(1) =
1

2
, v̄(2) =

1

2

as claimed.

Functional Decomposition For the components of the cooperative impact, we first need the functions g∗1 , g∗2
and h∗. Note that Y = f∗(X). The component functions are given by

g∗1(X1) = X1 +
cβ

1 + β2
X2

1 −
cβ(1− β2)

2(1 + β2)

g∗2(X2) = X2 +
cβ

1 + β2
X2

2 −
cβ(1− β2)

2(1 + β2)

h∗(X) = cX1X2 −
cβ

1 + β2
X2

1 −
cβ

1 + β2
X2

2 +
cβ(1− β2)

1 + β2
.

To prove this, we verify E(h∗ | X1) = E(h∗ | X2) = 0, which is equivalent to g∗ being the L2(P )-optimal GAM
as we showed in Theorem 5. We first note that

E
(
X2

2 | X1

)
= Var(X2 | X1) + E(X2 | X1)

2 = 1− β2 + β2X2
1

where Var(X2 | X1) and E(X2 | X1) are known from the conditional distributions of the multivariate normal
distribution. We then compute

E(h∗ | X1) = cX1 E(X2 | X1)−
cβ

1 + β2
X2

1 −
cβ

1 + β2
E
(
X2

2 | X1

)
+

cβ(1− β2)

1 + β2

= cβX2
1 −

cβ

1 + β2
X2

1 −
cβ(1− β2)

1 + β2
− cβ3

1 + β2
X2

1 +
cβ(1− β2)

1 + β2

= cβX2
1 −

cβ

1 + β2
X2

1 −
cβ3

1 + β2
X2

1

=
cβ(1 + β2)− cβ

1 + β2
X2

1 −
cβ3

1 + β2
X2

1

=
cβ3

1 + β2
X2

1 −
cβ3

1 + β2
X2

1

= 0.

Analogously, one can compute E(h∗ | X2) = 0. Hence, Y − h∗(X) is the L2(P )-optimal GAM for Y . The two
components g∗1 and g∗2 are unique up to a constant as we know from Theorem 12. We simply split the additive
constant equally between the two. For the computation of the variance they can simply be dropped.
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Decomposition of the Cooperative Impact Again taking use of the quantities we computed with the
generalized Isserlis theorem, we can now determine the components of the cooperative impact. For the cross-
predictability we get

Var (E (g∗1 | X2)) = Var

(
E(X1 | X2) +

cβ

1 + β2
E
(
X2

1 | X2

))
= Var

(
βX2 +

cβ

1 + β2

(
1 + β2 + β2X2

2

))
= Var

(
βX2 +

cβ

1 + β2

(
β2X2

2

))
= β2 Var(X2) +

(
cβ3

1 + β2

)2

Var
(
X2

2

)
+ 2

cβ4

1 + β2
Cov

(
X2, X

2
2

)︸ ︷︷ ︸
=0

= β2 +
2c2β6

(1 + β2)2

and in the same manner

Var (E (g∗2 | X1)) = β2 +
2c2β6

(1 + β2)2
.

Summed up we have

Var (E (g∗1 | X2)) + Var (E (g∗2 | X1)) = 2β2 +
4c2β6

(1 + β2)2
.

For the covariance we compute

Cov(g∗1 , g
∗
2) = Cov

(
X1 +

cβ

1 + β2
X2

1 , X2 +
cβ

1 + β2
X2

2

)
= Cov(X1, X2) +

cβ

1 + β2
Cov

(
X1, X

2
2

)︸ ︷︷ ︸
=0

+
cβ

1 + β2
Cov

(
X2, X

2
1

)︸ ︷︷ ︸
=0

+

(
cβ

1 + β2

)2

Cov
(
X2

1 , X
2
2

)
= β +

2c2β4

(1 + β2)2
.

Eventually, for the interaction surplus we have

Var(h∗) = Var

(
cX1X2 −

cβ

1 + β2
X2

1 −
cβ

1 + β2
X2

2

)
= c2 Var(X1X2) +

c2β2

(1 + β2)2
Var

(
X2

1

)
+

c2β2

(1 + β2)2
Var

(
X2

2

)
− 2

c2β

1 + β2
Cov

(
X1X2, X

2
1

)
− 2

c2β

1 + β2
Cov

(
X1X2, X

2
2

)
+ 2

c2β2

(1 + β2)2
Cov

(
X2

1 , X
2
2

)
= c2

(
1 + β2

)
+ 4

c2β2

(1 + β2)2
− 8

c2β2

1 + β2
+ 4

c2β4

(1 + β2)2

= c2
(
1 + β2

)
+ 4

c2β2
(
1 + β2

)
(1 + β2)2

− 8
c2β2

1 + β2

= c2
(
1 + β2

)
− 4

c2β2

1 + β2
.

Plugging in the values for c and β delivers the values of the DIP decomposition. Those can be normalized by
dividing by Var(Y ) = 2 + 2β + c2(1 + β2) to receive the values presented in the paper.
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A.2.2 Main Effect Dependencies Cannot Be Derived by Only Value Functions and Feature
Correlation

In the following, we give an example of three two-dimensional DGPs, where X follows the same distribution
in each of the three and the value functions for all subsets of features coincide. However, we get different DIP
decompositions for each DGP, illustrating that we cannot deduce the main effect dependencies from just the
dependencies of the features, even if all the value functions are known.

Consider the following DGPs:

DGP 1:

X ∼ N
(
0,

(
1 0.5
0.5 1

))
Y = −4.3X1 − 0.9X2 − 3.9X2

1 + 3.0X2
2

DGP 2:

X ∼ N
(
0,

(
1 0.5
0.5 1

))
Y = −1.3X1 − 4.7X2 + 3.6X2

1 − 3.0X2
2 + 4.7X1X2

DGP 3:

X ∼ N
(
0,

(
1 0.5
0.5 1

))
Y = 10.9X1 + 2.4X2 − 5.1X2

1 − 5.3X2
2 + 11.3X1X2.

In each of the three cases, we get the (empirical and rounded) normalized value functions

v̄(1) = 0.7, v̄(2) = 0.3, v̄(1 ∪ 2) = 1.

Despite the coinciding value functions and the same correlation, we get three different DIP decompositions as
the following plot shows.

DGP 1

DGP 2

DGP 3
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Figure 4: For each example, we show a forceplot visualizing the DIP decomposition into standalone contributions
(v(1) and v(2)), main effect dependencies (Dep(1, 2)) and interaction suplus, where the direction of each bar
(upward or downward) represents the sign. They sum up to v(1, 2) (black horizontal line). The slim bars (right)
show the decomposition of Dep(1, 2) (purple horizontal line) into covariance and cross-predictability.
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A.2.3 Vanishing Main Effect Dependencies Despite Variable Dependence

In the following, we show an example of a two-dimensional DGP, where the two features are strongly correlated,
but their main effect dependencies vanish.

Let Z0, Z1, Z2 ∼ Unif(0, ..., 9) be independently distributed. We define

X1 = 10Z0 + Z1

X2 = 10Z0 + Z2

Y = (X1 mod 10) + (X2 mod 10) = Z1 + Z2,

that is, Z0 defines the first digit and Z1, Z2 define the second digit of X1 and X2. The target variable Y is just
the sum of their last digits.
Clearly, X1 and X2 are strongly correlated due to Z0. However, we have

g1(X1) = X1 mod 10 = Z1

g2(X2) = X2 mod 10 = Z2

and therefore E(g1 | X2) = E(Z1 | 10Z0 + Z2) = E(Z1), E(g2 | X1) = E(Z2 | 10Z0 + Z1) = E(Z2). Hence, the
cross-predictability

Var(E(g1 | X2)) + Var(E(g2 | X2)) = 0

as well as the main effect covariance

2Cov(g1, g2) = Cov(Z1, Z2) = 0

vanish.

Here, we see an example where all of the dependencies between X1 and X2 stem from their shared first digit Z0,
which is independent from the target Y . All of their information about Y is contained in their last digits Z1, Z2,
which are independent. This means that although our variables have a strong dependencies, they do not share
information about the target, so their main effects dependencies vanish. This once more illustrates that main
order dependencies cannot be determined by just the correlation, rather, they measure the dependencies of only
those parts of our features that are relevant for predicting.

A.2.4 Binary Examples 7 - 9
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X1
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1 1/8 3/8

g* X2
0 1

X1
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1 4 8
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X1
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(c) Example 9

Figure 5: Visualizing the data generating process of the three illustrative student examples.

Example 7 Since Y = 4X1+4X2 can exactly been determined by a GAM, we have f∗(X) = g∗(X) = 4X1+4X2

and h∗ = 0. Note that

E(X2 | X1 = 1) =
3

4
,

E(X2 | X1 = 0) =
1

4
.
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We can also write this as E(X2 | X1) = 0.5X1 + 0.25. In the same way, E(X1 | X2) = 0.5X2 + 0.25.
The best univariate predictors are given by

E(Y | X1) = E(4X1 + 4X2 | X1) = 4X1 + 4(0.5X1 + 0.25) = 6X1 + 1,

E(Y | X2) = 6X2 + 1.

The variance of a Ber(p)-distributed variable is given by p(1− p), so Var(Xi) = 0.25 in our case. This leads to

v(1) = Var(E(Y | X1)) = Var(6X1 + 1) = 36Var(X1) = 9

v(2) = 9

v(1 ∪ 2) = Var(Y ) = E
(
Y 2
)
− E(Y )2 =

3

8
· 82 + 2 · 1

8
· 42 − 42 = 12.

This leads to main effect dependencies of 6 because there is no interaction surplus. For main effect covariance
we get

2Cov(4X1, 4X2) = 32Cov(X1, X2) = 32(E(X1X2)− E(X1) E(X2)) = 32 ·
(
3

8
− 1

4

)
= 32 · 1

8
= 4,

leading to a cross-predictability of 6− 4 = 2.

Example 8 Again, f∗(X) = g∗(X) = 4X1 + 2X2 and h∗ = 0. This time,

E(X2 | X1 = 1) =
1

4
,

E(X2 | X1 = 0) =
3

4
,

which means E(X2 | X1) = −0.5X1 + 0.25 and E(X1 | X2) = −0.5X2 + 0.25. For the univariate predictors we
compute

E(Y | X1) = E(4X1 + 2X2 | X1) = 4X1 + 2(−0.5X1 + 0.25) = 3X1 + 0.5.

E(Y | X2) = E(4X1 + 2X2 | X2) = 4 · (−0.5X2 + 0.25) + 2X2 = 1,

leading to

v(1) = Var(E(Y | X1)) = Var(3X1 + 0.5) = 9Var(X1) = 2.25

v(2) = Var(1) = 0

v(1 ∪ 2) = Var(Y ) = E
(
Y 2
)
− E(Y )2 =

1

8
· 82 + 3

8
· 42 + 3

8
· 22 − 32 = 3.

This implies Dep(1, 2) = −0.75 because again, the interaction surplus vanishes. The main effect covariance is
given by

2Cov(4X1, 2X2) = 16Cov(X1, X2) = 16(E(X1X2)− E(X1) E(X2)) = 16 ·
(
1

8
− 1

4

)
= −2,

so the cross-predictability is −0.75 + 2 = 1.25.

Example 9 Note that the distribution of X is the same as in Example 7. We first prove that the decomposition
Y = g∗(X) + h∗(X) for g∗(X) = 4X1 + 4X2 and h∗(X) = 4(X1 ⊕ X2) − 1 is indeed the unique functional
decomposition into a GAM and a pure interaction. According to Theorem 5 it is sufficient to prove E(h∗ | X1) =
E(h∗ | X2) = 0. We get

E(4(X1 ⊕X2)− 1 | X1 = 1) = P (X2 = 1 | X1 = 1)︸ ︷︷ ︸
= 3

4

·(0− 1) + P (X2 = 0 | X1 = 1)︸ ︷︷ ︸
= 1

4

·(4− 1) = 0

E(4(X1 ⊕X2)− 1 | X1 = 0) = P (X2 = 1 | X1 = 0)︸ ︷︷ ︸
= 1

4

·(4− 1) + P (X2 = 0 | X1 = 0)︸ ︷︷ ︸
= 3

4

·(0− 1) = 0.
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So, it holds E(h∗ | X1) = 0 and due to the symmetry also E(h∗ | X2) = 0. In particular, E(h∗) = E(E(h∗ |
X1)) = 0, so h∗ is centered. The univariate predictor yields

E(Y | X1) = E(g∗ | X1) + E(h∗ | X1)︸ ︷︷ ︸
=0

= E(4X1 + 4X2 | X1),

likewise for X2. This means, the univariate predictors are the same as in Example 7, from which we may conclude
that also v(1) = v(2) = 9. Since g∗ as well coincides with the one in Example 7, we can also conclude that
Dep(1, 2) = 6, the cross-predictability equals 2 and the main effects covariance equals 4. For the interaction
surplus we compute

Var(h∗) = E
(
h2
)
− E(h)2︸ ︷︷ ︸

=0

=
3

4
· (−1)2 + 1

4
· 32 = 3.

From this, we right away conclude

v(1 ∪ 2) = v(1) + v(2) + Var(h∗)−Dep(1, 2) = 15.

A.3 Decomposition of SAGE

The SAGE value (Covert et al., 2020), also known as Shapley effect (Song et al., 2016) of a feature j is defined
as

Φj :=
∑

S⊆D\j

cS · (v(S ∪ j)− v(S)), (4)

where the weights cS are given by

cS =
(d− |S| − 1)!|S|!

d!
.

Note that
∑

S⊆D\j cS = 1. In the following, we write Int(j, S) for the interaction surplus and Dep(j, S) for the
main order dependencies between the feature groups j and S. By decomposing every summand of (4) we receive

Φj : =
∑

S⊆D\j

cS · (v(S ∪ j)− v(S)) =
∑

S⊆D\j

cS · (v(j) + Int(j, S)−Dep(j, S))

= v(j) +
∑

S⊆D\j

cS · Int(j, S)−
∑

S⊆D\j

cS ·Dep(j, S),

yielding a decomposition of Φj into its standalone contribution, the contribution stemming from interactions
and the one stemming from dependencies. Here, instead of only computing the interaction surplus and the main
order dependencies between j and j̄, we do so for j and every subset S ⊆ D \ j and compute a weighted average,
just as in the formula for the Shapley effect.
One disadvantage of the Shapley effect over LOCO is the exponential runtime in the number of features since we
need to refit a model for every S ⊆ D\j or at least use a sufficiently large number of subsets for an approximation.
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B DETAILS ON ESTIMATION AND IMPLEMENTATION

B.1 Estimation

In Theorem 6 we derived a decomposition of the cooperative impact, assuming the optimal models f∗ and g∗ and
the true data distribution (X,Y ) ∼ P to be known. In practice, the optimal models are not available; Instead
we fit and evaluate ML models using some dataset

(
(x, y)(1), . . . , (x, y)(n)

)
with indices I = {1, . . . , n}.

To avoid bias due to overfitting, we reformulate the quantities such that they can be estimated using test set
performance. We start by reformulating interaction surplus and main effect dependencies in terms of value
functions.

Interaction Surplus And Main Effect Dependencies In Terms of Value Functions First, we recall that
we defined the interaction surplus for optimal model f∗ and optimal GGAM g∗ as Var(h∗) where h∗ := f∗ − g∗.
In Lemma 13, we show that we can equivalently define the interaction surplus, in the following denoted as
Int
(
J, J̄

)
, as the difference in value function between the full model f∗ and the GGAM g∗.

Lemma 13. Let (X,Y ) ∼ P be a DGP, J ⊆ D a subset of features, f∗ the L2(P )-optimal predictor and
g∗ = g∗J + g∗

J̄
the L2(P )-optimal GGAM in XJ and XJ̄ . We call h∗ = f∗ − g∗. Then, the interaction surplus

Int
(
J, J̄

)
:= V ar(h∗) is given by

Int
(
J, J̄

)
= vf∗

(
J ∪ J̄

)
− vg∗

(
J ∪ J̄

)
.

Proof. We compute

vf∗
(
J ∪ J̄

)
− vg∗

(
J ∪ J̄

)
= E

(
(Y − g∗)2

)
− E

(
(Y − f∗)2

)
= E

(
(Y − f∗ + h∗)2

)
− E

(
(Y − f∗)2

)
= E

(
(Y − f∗)2

)
+ 2E ((Y − f∗) · h∗)︸ ︷︷ ︸

=0

+E
(
(h∗)2

)
− E

(
(Y − f∗)2

)
= Var(h∗).

Here, E ((Y − f∗) · h∗) vanishes because f∗ is the optimal predictor, and its residual is hence perpendicular to
every function in L2

(
Rd, P

)
(Luenberger, 1997). Furthermore, h∗ is mean-centered due to Theorem 5 and thus

E
(
h2
)
= Var

(
h2
)
.

Estimaton of Dep and Int As a consequence of Lemma 13, we can estimate the interaction surplus for some
f̂ , ĝ and observation indices I as the difference in estimated value functions. Therefore, we first recapitulate
that the definition the value function for the L2-loss and a model f is given by

vf,L2(S) := E
(
(f∅ − Y )2

)
− E

(
(fS(XS)− Y )2

)
,

which can be estimated in terms of test data with indices Ite using the empirical risk by

v̂Ite

f,L2(S) =
1

|Ite|

(∑
i∈Ite

(
f∅ − y(i)

)2
−
∑
i∈Ite

(
fS

(
x(i)
)
− y(i)

)2)
.

We recall that fS can be obtained using refitting or via conditional integration. The term f∅ is the best constant
approximation of f , which is E(f). For an optimal predictor, this is the same as E(Y ). Both of these terms can
be approximated by the empirical mean. To avoid biased results, all models must be fit on training data with
indices Itr where Itr ∩ Ite = ∅.
Based on the empirical value function, we can estimate the interaction surplus for some test set Ite as

Înt
Ite

f̂ ,ĝ

(
J, J̄

)
:= v̂Ite

f̂ ,L2

(
J ∪ J̄

)
− v̂Ite

ĝ,L2

(
J ∪ J̄

)
.

To estimate Dep
(
J, J̄

)
, we recall that Ψ

(
J, J̄

)
= Var(h∗)−Dep

(
J, J̄

)
, and thus Dep

(
J, J̄

)
:= Ψ

(
J, J̄

)
−Int

(
J, J̄

)
.

We can estimate Ψ(J, J̄) as

Ψ̂Ite

f̂

(
J, J̄

)
= v̂Ite

f̂ ,L2

(
J ∪ J̄

)
− v̂Ite

f̂ ,L2
(J)− v̂Itr

f̂ ,L2

(
J̄
)
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and get

D̂ep
Ite

f̂ ,ĝ

(
J, J̄

)
:= Ψ̂Ite

f̂

(
J, J̄

)
− Înt

Ite

f̂ ,ĝ

(
J, J̄

)
.

We summarize the estimation procedure in Algorithm 1.

Algorithm 1 Estimation of Int and Dep Using Empirical Risk on Test dData

Input: Feature indices J , data (x, y)I , split into train and test Itr ∪ Ite = I, model f̂ .
Output: Estimates of interaction surplus Int

(
J, J̄

)
and main effect dependencies Dep

(
J, J̄

)
.

1: f̂J , f̂J̄ , f̂∅ ← L2 fits on (xS , y)
Itr for S = J , S = J̄ , and S = ∅.

2: ĝ ← L2 fit of GGAM in J, J̄ on (x, y)Itr

3: Înt
Ite

f̂ ,ĝ

(
J, J̄

)
← v̂Ite

f̂ ,L2

(
J, J̄

)
− v̂Ite

ĝ,L2

(
J, J̄

)
4: Ψ̂Ite

f̂

(
J, J̄

)
← v̂Ite

f̂ ,L2

(
J, J̄

)
− v̂Ite

f̂ ,L2
(J)− v̂Ite

f̂ ,L2

(
J̄
)

▷ uses f̂J , f̂J̄ , f̂∅

5: D̂ep
Ite

f̂ ,ĝ

(
J, J̄

)
← Ψ̂Ite

f̂

(
J, J̄

)
− Înt

Ite

f̂ ,ĝ

(
J, J̄

)

Estimation of Main Effect Cross-Predictability and Covariance We recall that Dep
(
J, J̄

)
is the sum

of cross-predictability and main effect covariance

Dep
(
J, J̄

)
:= Var (E (g∗J | XJ̄)) + Var

(
E
(
g∗J̄ | XJ

))︸ ︷︷ ︸
Cross-Predictability CP

(
J, J̄

) + 2Cov
(
g∗J , g

∗
J̄

)︸ ︷︷ ︸
Covariance CO

(
J, J̄

).

Given an estimate of Dep
(
J, J̄

)
, we can now either estimate the cross-predictabilty CP

(
J, J̄

)
or the covariance

CO
(
J, J̄

)
and get the respective other term as the difference of both.

In our experiments, we estimate the covariance of the GGAM components, which is efficient to compute, since the
GGAM components are readily available, and the covariance is a comparatively cheap computation (Algorithm
2). On the other hand, estimating the cross-predictability is also possible but requires two further fits for
approximating E(ĝJ | XJ̄) and E(ĝJ̄ | XJ).

Algorithm 2 Estimation of cross-predictability and covariance

Input: D̂ep
Ite

f̂ ,ĝ

(
J, J̄

)
, GGAM ĝ = ĝJ + ĝJ̄ fitted on (x, y)Itr to minimize L2

Output: Estimates of cross-predictability CP
(
J, J̄

)
and covariance CO

(
J, J̄

)
1: ĈO

Ite

f̂ ,ĝ

(
J, J̄

)
← 2Cov

(
ĝJ
(
xIte

)
, ĝJ̄

(
xItr

))
2: ĈP

Ite

f̂ ,ĝ

(
J, J̄

)
← D̂ep

Ite

f̂ ,ĝ

(
J, J̄

)
− ĈO

Ite

f̂ ,ĝ

(
J, J̄

)

B.2 Implementation and Code

Python Package We implemented the method in a python package called dipd. The package and installa-
tion instructions are available via https://github.com/gcskoenig/dipd. The package is publicly available on
GitHub and pypi.
For the GGAMs, we rely on the interpretML package that implements so-called explainable boosting machines
(Nori et al., 2019). Furthermore, we use numpy, pandas, matplotlib, seaborn, tqdm, scipy, statsmodels,
and scikit-learn in the most current version available in python3.11.7 (a full list of the installed packages
including version can be found in the linked repository).
In all experiments involving the explainable boosting machine, we fit the model using the default hyperpa-
rameters, except that we specify which interventions are and are not allowed. In cases where we use a linear
model as GAM (or GGAM), we use the OLS implementation in the statsmodels package, also using default
hyperparameters.

https://github.com/gcskoenig/dipd
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Experiments To reproduce our experiments, we refer to the instructions in our repository (https://github.
com/gcskoenig/aistats_2025_DIP). As follows, we summarize the key parameters for each of the experiments,
that is, which models were used, how much data was used, and how we split test and training data.
For the student examples (Example 7 to 9), we sampled 105 observations and randomly split the dataset into
80% training and 20% test data. For the first two examples, we use a linear model as GAM; for the interaction
example, the explainable boosting machine.
For Example 3, where the cooperative forces cancel out, we sample 105 data points, again hold out 20 % of the
data for testing, and leverage explainable boosting machines for all model fits.
For the real-world applications, we split the data into 10 folds, train on the respective training, and compute the
scores on the test data. For all model fits, we leverage the explainable boosting machines.
For the example introduced in Appendix A.2.2 we sampled 106 observations and used explainable boosting
machines for all model fits.
In Appendix C we present additional experimental results. In all cases we use test train splits with 20% test
data and rely on explainable boosting machines.

Compute The experiments were run on a MacBook Pro with M3 Pro Chip. The illustrative examples all ran
in less than one minute, the DIP decompositions of LOCO on the housing and wine dataset took about ten
minutes each. The DIP decompositions of SAGE on the wine and housing datasets (Appendix C.2) took about
one and a half hours each. The DIP decompositions of LOCO for the superconductivity/online news datasets
(Appendix C.3) took four hours/ten minutes.

https://github.com/gcskoenig/aistats_2025_DIP
https://github.com/gcskoenig/aistats_2025_DIP
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C EXPERIMENTAL RESULTS

In the main paper, we decomposed the LOCO scores on the wine quality dataset using DIP (Section 8, Figure
3 left). In this section, we present additional experimental results. In Section C.1, we investigate the pairwise
relationships of variables using DIP. In Appendix C.2, we additionally present the results of a DIP decomposition
of SAGE values. The code for all presented experiments is availble in the repository accompanying the paper
(https://github.com/gcskoenig/aistats_2025_DIP).
For more detailed results regarding the experiments in the main paper (such as standard deviations or the
results for individual folds) we refer to the repository accompanying the paper.

C.1 Detailed Analysis on the Wine Quality Dataset

C.1.1 Pairwise Decompositions Reveal Cooperation Partners
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(b) Residual Sugar

Figure 6: Pairwise DIP decomposition on the Wine Quality Dataset. The two gray bars indicate the standalone
contributions of each of the features in the pair, the black horizontal lines indicate the total performance than
can be achieved with all features. The interaction surplus is highlighted green, the main effect dependencies
purple.

In Section 8, we found that the variable citric acidity has a large standalone contribution, but is largely
redundant with the remaining features. Furthermore, we found that main effect dependencies between residual
sugar and the remaining variables have a positive impact on the performance. In this section, we leverage
pairwise DIP decompositions to better understand their relationship with specific individual variables.
First, we have a closer look at the role of citric acidity. We use DIP to understand which specific variables the
feature shares information with (Figure 6a). The decomposition reveals that citric acidity has a large negative
contribution of main effect dependencies when combined with volatile acidity, density, and chlorides, indicating
that the variables have similar roles for the target.
Moreover, we are interested in the role of residual sugar for the quality of a wine. We recall that the main effect
dependencies between the variable and the remaining variables had a positive impact on the joint performance
(and the LOCO score, Figure 3). Using pairwise DIP decompositions (Figure 6b) we find a large positive effect
of the main effect dependencies for the pairing with density, chlorides, and volatile acidity. In other words, the
DIP decompositions indicate that in these three pairings the variables have opposing relationships with target
that are only revealed when analyzed jointly. 3 As follows, we focus on analyzing the relationship with density
using exploratory data analysis.

3We note that in the pairwise DIP, interactions play a more prominent role. This was not the case in the DIP
decomposition of the LOCO scores. The reason is that while we previously analyzed the role of residual sugar when added
to the remaining variables, we now analyze the role of the variable when added to just one other feature. In this bivariate
setting, interactions are necessary to explain what previously could be explained with other variables.

https://github.com/gcskoenig/aistats_2025_DIP
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C.1.2 Residual Sugar and Density Have Opposing Effects that Cancel Out

As follows, we have a closer look at the relationship between density, residual sugar, and wine quality. More
specifically, we compare a pairwise histogram plot between a feature and target with the plot when additionally
conditioning on the respective other feature.
While quality decreases with density (correlation coefficient −0.30, Figure 7a), no clear trend can be observed
when looking at the pairwise relationship between sugar and quality (correlation coefficient −0.03, Figure 7c).
When conditioning on sugar, the negative relationship between density and quality becomes more pronounced
(mean correlation over all bins −0.36, Figure 7b). A positive relationship between sugar and quality becomes
visible when conditioning on density (mean correlation over all bins 0.17, Figure 7d). This suggests that sugar
and density have opposing effects on the target but are positively correlated (coefficient 0.55), such that their
effects (partially) cancel each other out unless analyzed jointly.
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Figure 7: Histogram plots showing the pairwise relationship of density and quality (top row), and sugar and
quality (bottom row). To allow a visualization using a heatmap, we first encode the two features as ordinal
variables with twenty levels. All levels have the same probability mass and correspond to equal-size quantile
ranges. The left plots (Figure 7a and Figure 7c) show the pairwise relationship between each of the features and
the target. The right plots (Figure 7b and 7d) show the relationship when conditioning on the respective partner.
More specifically, to visualize the conditional density using a histogram plot, we discretize the conditioning
variable into six equally sized bins (Q1 to Q6), and create one histogram plot for each bin. In both cases, the
variable’s relationship with the target becomes more visible when conditioning on the cooperation partner.

C.2 DIP Decomposition of SAGE on the Wine Quality and California Housing Datasets

The DIP decomposition cannot only be applied to LOCO, but more generally to any explanation technique
that is based on comparing the predictive power for different sets of features (v(S ∪ T )− v(S)). One prominent
example are so-called SAGE values.
As follows, we decompose SAGE values using DIP. For their computation we sampled 100 orderings of the
features, which each define which feature is added to which coalition of other features. Then, the SAGE value
for a feature j is the mean surplus v(C ∪ j)− v(C) achieved over the coalitions C implied by the orderings. Each
surplus v(C ∪ j)−v(C) can be decomposed into a standalone contribution and the cooperative impact. The final
SAGE value is the standalone contribution plus the average cooperative impact (details in Appendix A.3).
The results are presented in Figure 8. We apply DIP to the cooperative impact for each coalition, and present
the respective average scores for interaction surplus and main effect dependencies.
First, we have a look at the wine dataset. The feature citric acidity again receives a relatively small SAGE
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(b) California Housing Dataset (Géron, 2022).

Figure 8: DIP Decompositions of SAGE values (as introduced in Appendix A.3). The grey bars show the
features standalone contributions, the purple bars indicate the contributions of dependencies, the green bars the
contributions of interactions.

score. The DIP decomposition reveals that the feature is relevant standalone, but receives a small score due
to its redundancy with the remaining features. The feature residual sugar has a high SAGE score. The DIP
decomposition reveals that it has little standalone contribution, but contributes via interactions and positive
main effect dependencies.
In the California housing dataset, we again observe that longitude and latitude are, to a large degree, important
due to interactions. The feature ocean proximity has a large standalone contribution, but receives a relatively
small SAGE score due to its redundancy with the remaining features.

C.3 Additional Datasets

In addition to the two datasets presented in the main paper, we apply the DIP decomposition to LOCO scores
on the online news popularity dataset (Fernandes et al. (2015), d = 62, n = 39797) and the superconductivity
dataset (Hamidieh (2018), d = 81, n = 21263), both taken from the UCI ML repository (Dua and Graff, 2017).
We use explainable boosting machines (Nori et al., 2019) as GGAMs and employ a 10-fold cross-validation
scheme. Details on estimation, implementation, and computational cost are reported in Appendix B.

Online News Popularity The goal is to predict the number of shares of online articles on a platform called
Mashable. The R2 score of the predictor is 0.033. The DIP decompositions of the LOCO scores are presented in
Figure 9. According to the LOCO scores, the features kw_avg_avg (the average number of shares per keyword
averaged over the keywords in the article), num_videos (the number of videos), kw_max_avg (the maximum
number of shares per keyword averaged over all keywords in the article) and n_unique_tokes (the rate of unique
tokens) are most important, and for example LDA_03 (the closeness of the topic to LDA 3) is not important.
DIP reveals that LDA_03 indeed has a large standalone contribution, but receives a low LOCO score due to its
redundancy with the remaining features. kw_avg_avg, and kw_max_avg have large standalone contributions and
are partly redundant with the remaining features. Furthermore one may think that n_unique_tokens is highly
predictive of the number of shares; DIP reveals that it has a small standalone contribution but is considered
important by LOCO due to the contribution of interactions.

Superconductivity The goal is to predict the critical temperature of superconducting materials. The R2
score of the predictor is 0.924. The results are plotted in Figure 10. We observe that all variables have LOCO
scores close to zero, and one may erroneously conclude that all variables are irrelevant for predicting Y . DIP
reveals that many features have large standalone relevances but are redundant with the remaining variables due
to dependencies between features. Interactions do not contribute to the LOCO scores in this dataset.
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D Use Case: Using DIP to Assess Whether Features Must Be Interpreted Jointly

Throughout the paper, we argued that features commonly cooperate via dependencies and interactions, meaning
they must be interpreted jointly to understand their role for the prediction target. However, many explanation
techniques try to explain each feature in isolation. Over the course of this section, we demonstrate how DIP
can be used to assess whether such methods reflect the role of the feature in a multivariate context.
Therefore, we first recall a popular interpretation technique that explains the features in isolation. Then we
show that the method generally fails, but that DIP identifies cases where it can be applied.

The Conditional Partial Dependence Plot (cPDP) One popular explanation tool that tries to explain
features individually is the so-called conditional partial dependence plot (cPDP), also referred to as M-Plot
(Apley and Zhu, 2020). The cPDP plots the restricted functions that we defined in Section 3.2. That is, the
cPDP for a feature Xj summarizes the role of Xj by integrating out all remaining features using the conditional
distribution

fj(xj) := E(f(xj , Xj̄) | Xj = xj).

We recall that for L2(P )-optimal predictors f the restricted function is equivalent to the L2(P )-optimal univariate
predictor E(Y | Xj). As such, the cPDP for feature j explains the bivariate relation of the feature with the
target and does not take the interplay with the remaining features into account.

Illustrative Examples: cPDPs Are Not Faithful If Features Cooperate In general, explanations
such as the cPDP do not reflect the role of the variable in a multivariate model. First of all, if dependencies
are present, the effect of a feature on the outcome in a multivariate model, as represented for example in the
GGAM component gj , can change depending on which other variables are included in the model. Second, if
there are interactions, the role of the feature may not only change depending on which variables are included in
the model, but also depending on the values they take. In both these settings, we must look at the cooperating
features jointly to understand the role of the variable for the underlying target. Let us illustrate this with an
example.

Example 14. We consider three data generating processes. For each dataset we present a plot of the restricted
function fj (cPDP) (Apley and Zhu, 2020), a plot of the respective GGAM component gj , and plots that show
for each observation x′ how the prediction f(x′) changes when we vary the value of the feature of interest xj

while keeping the remaining values fixed (f(x′)−f(xj , x
′
j̄
), ICE curves (Friedman, 2001)) The plots can be found

in Figure 11.

• DGP 1 (Y → X1 ← X2): Y ∼ N(0, 1), X2 ∼ N(0, 1), ϵ1 ∼ N(0, 0.2), X1 := Y +X2 + ϵ1.

• DGP 2 (X1 → Y ← X2): X1 ∼ N(0, 1), X2 ∼ N(0, 1), ϵY ∼ N(0, 0.2), Y := X1X2 + ϵY .

• DGP 3 (X1 → Y ← X2): X1 ∼ N(0, 1), X2 ∼ N(0, 1), ϵY ∼ N(0, 0.2), Y := X1 +X2 + ϵY

In DGP 1 dependencies are present such that the bivariate and multivariate relationships between feature and
target differ. Specifically, the feature X2 is pairwise independent of Y but becomes dependent on Y conditional
on X1. As such, due to the dependencies with the remaining features, the role of the feature for the target
depends on which other variables are included in the model. This is reflected in the Figure 11 (a), left, where
we see that the restricted model f2 (cPDP) differs from the GGAM component g2: While f2 (cPDP) is flat, g2
has a strong negative slope. To understand this negative slope, we have to regard the two features together: In
this DGP, the role of X2 is to denoise the feature X1.
In DGP 2, there are no dependencies and f2 and g2 coincide. However, since there is an interaction, the f2 and
g2 differ from the effect of changing the value of x2 for a specific fixed value of x1. This can be seen in Figure 11
(a), center, where we additionally plot the effect of changing the feature X2 for every observation in the dataset
(ICE curves (Friedman, 2001), represented in grey). Thus, to understand the role of the variable for the target,
the value of the remaining features need to be taken into account in the interpretation.
Only In DGP 3, where there are no interactions and no dependencies, the cPDP f2, the GGAM component g2,
and observation-wise effects (ICE curves) coincide.
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Figure 11: (a) We plot the cPDP in blue, the GGAM component in orange, and the ICE curves in grey. (b)
The DIP decompositions for the three DGPs. Grey bars indicate the features’ standalone contributions, purple
bars the relevance of dependencies (and more specifically of covariance and cross-predictability, and green the
contributions of interactions.

DIP Reveals Whether the cPDP Reflects the Role of the Feature As we show in Proposition 15, DIP
can distinguish these scenarios: If the cross-predictability score is zero, we know that the univariate predictor
and the GGAM component coincide. If the interaction score is zero, we know that the GGAM component and
the ICE curves are the same.

Proposition 15. Let (X,Y ) ∼ P be a data generating process on Rd × R, j ∈ D the feature of interest,
g∗ = g∗j + g∗

j̄
the L2(P )-optimal GGAM in Xj and Xj̄, and f∗

j the restriction function of f∗, where f∗ is the
L2(P )-optimal predictor of Y given X.

1. If the cross-predictability score CP (j, j̄) = 0, then f∗
j and g∗j coincide up to a constant. More precisely, it

holds that f∗
j = g∗j + E(g∗

j̄
).

2. If Int (j, j̄) = 0, it holds that f∗(x′
j , xj̄)− f∗(xj , xj̄) is independent of xj̄.

Proof.

1. Since CP (j, j̄) = Var(E(g∗j | Xj̄))+Var(E(g∗
j̄
| Xj)) = 0, we know that E(g∗

j̄
| Xj) is constant, which implies

E(g∗
j̄
| Xj) = E(g∗

j̄
). We compute

f∗
j := E(f∗ | Xj) = E(g∗j + g∗j̄ + h∗ | Xj) = g∗j + E(g∗j̄ | Xj) + E(h∗ | Xj) = g∗j + E(g∗j̄ ).

2. As Int (j, j̄) = Var(h∗) = 0, we know that h∗ = 0 because h∗ is mean-centered. We compute

f∗(x′
j , xj̄)− f∗(xj , xj̄) = g∗j (x

′
j) + g∗j̄ (xj̄) + h∗(x′

j , xj̄)

− g∗j (xj)− g∗j̄ (xj̄)− h∗(xj , xj̄)

= g∗j (x
′
j)− g∗j (xj).

Coming back to our example, we see that the DIP decomposition in Figure 11 (b) distinguishes the three
settings. DIP reveals a large cross-predictability score for DGP1 and zero for the remaining DGPs; Indeed,
we observe that fj and gj only diverge in DGP1. Furthermore, DIP reveals that interactions are important in
DGP2 but irrelevant in the remaining DGPs; Indeed, the ICE curves only differ for DGP2.
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