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Abstract

The Local Learning Coefficient (LLC) is in-
troduced as a novel complexity measure for
deep neural networks (DNNs). Recognizing
the limitations of traditional complexity mea-
sures, the LLC leverages Singular Learning
Theory (SLT), which has long highlighted the
significance of singularities in the loss land-
scape geometry. This paper provides an ex-
tensive exploration of the LLC’s theoretical
underpinnings, offering both a clear defini-
tion and intuitive insights into its applica-
tion. Moreover, we propose a new scalable es-
timator for the LLC, which is then effectively
applied across diverse architectures including
deep linear networks up to 100M parameters,
ResNet image models, and transformer lan-
guage models. Empirical evidence suggests
that the LLC provides valuable insights into
how training heuristics might influence the
effective complexity of DNNs. Ultimately,
the LLC emerges as a crucial tool for rec-
onciling the apparent contradiction between
deep learning’s complexity and the principle
of parsimony.

1 INTRODUCTION

Occam’s razor, a foundational principle in scientific in-
quiry, suggests that the simplest among competing hy-
potheses should be selected. This principle has empha-
sized simplicity and parsimony in scientific thinking
for centuries. Yet, the advent of deep neural networks
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(DNNs), with their multi-million parameter configu-
rations and complex architectures, poses a stark chal-
lenge to this time-honored principle. The question
arises: how do we reconcile the effectiveness of these
intricate models with the pursuit of simplicity?

It is natural to pose this question in terms of model
complexity. Unfortunately, many existing definitions
of model complexity are problematic for DNNs. For
instance, the parameter count, which in classical sta-
tistical learning theory is a commonly-used measure of
the amount of information captured in a fitted model,
is well-known to be inappropriate in deep learning.
This is clear from technical results on generalization
(Zhang et al., 2017), pruning (Blalock et al., 2020)
and distillation (Hinton et al., 2015): the amount of
information captured in a trained network is in some
sense decoupled from the number of parameters.

As forcefully argued in (Wei et al., 2022), the gap in
our understanding of DNN model complexity is in-
duced by singularities, hence the need for a singularity-
aware complexity measure. This motivates our appeal
to Singular Learning Theory (SLT), which recognizes
the necessity for sophisticated tools in studying statis-
tical models exhibiting singularities. Roughly speak-
ing, a model is singular if there are many ways to
vary the parameters without changing the function;
the more ways to vary without a change, the more
singular (and thus more degenerate). DNNs are prime
examples of singular models, characterized by complex
degeneracies that make them highly singular.

SLT continues a longstanding tradition of using free
energy as the starting point for measuring model com-
plexity (Bialek et al., 2001), and here we see the im-
plications of singularities. Specifically, the free energy,
also known as the negative log marginal likelihood,
can be shown to asymptotically diverge with sample
size n according to the law an+ b log n+ o(log logn);
the coefficient a of the linear term is the minimal loss
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Figure 1: Impact of SGD learning rate (top), batch size (middle) and momentum (bottom) when training
ResNet18 on CIFAR10. We plot the LLC estimate (left), test accuracy (middle) and train loss (right) across
training time. As the strength of the implicit regularization increases — through higher learning rate, lower batch
size and higher momentum — LLC decreases (the network gets “simpler”) and test accuracy increases. Even
though most training losses collapse to zero, the LLC can discern the implicit regularization pressure applied by
various training heuristics.

achievable and the coefficient b of the remaining
logarithmic divergence is then taken as the model
complexity of the model class. In regular statistical
models, the coefficient b is the number of parameters
(divided by 2). In singular statistical models, b is not
tied to the number of parameters, indicating a differ-
ent kind of complexity at play.

The LLC arises out of a consideration of the local free
energy. We explore the mathematical underpinnings
of the LLC in Section 3, utilizing intuitive concepts
like volume scaling to aid understanding. Our contri-
butions encompass 1) the definition of the new LLC
complexity measure, 2) the development of a scalable
estimator for the LLC, and 3) empirical validations
that underscore the accuracy and practicality of the
LLC estimator. In particular, we demonstrate that the

estimator is accurate and scalable to modern network
size in a setting where theoretical learning coefficients
are available for comparison. Furthermore, we show
empirically that some common training heuristics ef-
fectively control the LLC.

On this last point, we preview some results; Figure
1 displays the LLC estimate, test accuracy, and and
training loss over the course of training ResNet18 on
CIFAR10. Loosely speaking, lower LLC means a less
complex, and thus more degenerate, neural network.
In each of the rows, lighter colors represent stronger
implicit regularization, e.g., higher learning rate, lower
batch size, higher SGD momentum, which corresponds
to a preference for lower LLC, i.e., simpler NNs.
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2 SETUP

LetW ⊂ Rd be a compact space of parameters w ∈W .
Consider the model-truth-prior triplet

(p(x, y|w), q(x, y), φ(w)), (1)

where q(x, y) = q(y|x)q(x) is the true data-generating
mechanism, p(x, y|w) = p(y|x,w)q(x) is the posited
model with parameter w representing the neural net-
work weights, and φ is a prior on w. Suppose we
are given a training dataset of n input-output pairs,
Dn = {(xi, yi)}ni=1, drawn i.i.d. from q(x, y).

To these objects, we can associate the sample neg-
ative log likelihood function defined as Ln(w) =
− 1

n

∑n
i=1 log p(yi|xi, w), and its theoretical counter-

part defined as L(w) = −Eq(x,y) log p(y|x,w). It is
appropriate to also call Ln and L the training and
population loss, respectively, since using the negative
log likelihood encompasses many classic loss functions
used in machine learning and deep learning, such as
mean squared error (MSE) and cross-entropy.

The behavior of the training and population losses is
highly nontrivial for neural networks. To properly ac-
count for model complexity of neural network models,
it is critical to engage with the challenges posed by
singularities. To appreciate this, we follow (Watanabe,
2009) and make the following distinction between regu-
lar and singular statistical models. A statistical model
p(x, y|w) is called regular if it is 1) identifiable, i.e.
the parameter to distribution map w 7→ p(x, y|w) is
one-to-one, and 2) its Fisher information matrix I(w)
is everywhere positive definite. We call a model sin-
gular if it is not regular.

For an introduction to the implications of singular
learning theory for deep learning, we refer the read-
ers to Appendix A and further reading in (Wei et al.,
2022). We shall assume throughout the triplet (1) sat-
isfies a few fundamental conditions in SLT (Watanabe,
2009). These conditions are stated and discussed in an
accessible manner in A.1.

3 THE LOCAL LEARNING
COEFFICIENT

In this paper, we introduce the Local Learning Co-
efficient (LLC), an extension of Watanabe (2009)’s
global learning coefficient, referred to as simply learn-
ing coefficient there. Below we focus on explaining the
LLC through its geometric intuition, specifically as an
invariant based on the volume of the loss landscape
basin.

For readers interested in the detailed theoretical foun-
dations, we have included comprehensive explanations

in the appendices. Appendix A offers a short introduc-
tion to the basics of Singular Learning Theory (SLT),
and Appendix B sets out formal conditions of the well-
definedness of the LLC. This structure ensures that
readers with varying levels of familiarity with SLT can
engage with the content at their own pace.

3.1 Complexity via volume of low loss
parameters

At a local minimum of the population loss landscape
there is a natural notion of complexity, given by the
number of bits required to specify the minimum to
within a tolerance ϵ. This idea is well-known in the lit-
erature on minimum description length (Grünwald and
Roos, 2019) and was used by (Hochreiter and Schmid-
huber, 1997) in an attempt to quantify the complexity
of a trained neural network. However, a correct treat-
ment has to take into consideration the degeneracy of
the geometry of the population loss L.

Consider a local minimum w∗ of population loss L and
a sufficiently small neighborhood B(w∗), such that for
all w ∈ B(w∗) we have L(w) ≥ L(w∗). Given a tol-
erance ϵ > 0 we can consider the set of parameters
B(w∗, ϵ) = {w ∈ B(w∗) | L(w) − L(w∗) < ϵ} whose
loss is within the tolerance, the volume of which we
define to be

V (ϵ) := Vol(B(w∗, ϵ)) =

∫
B(w∗,ϵ)

dw . (2)

The minimal number of bits to specify this set within
the neighbourhood B(w∗) is

− log2(V (ϵ)/Vol(B(w∗))) . (3)

This can be taken as a measure of the complexity of
the set of low loss parameters near w∗. However, as it
stands this notion depends on ϵ and has no intrinsic
meaning. Classically, this is addressed as follows: if a
model is regular and thus L(w) is locally quadratic
around w∗, the volume satisfies a law of the form
V (ϵ) ≈ cϵd/2, where c is a constant that depends on
the curvature of the basin around the local minimum
w∗, and d is the dimension of W .

This explains why d
2 is a valid measure of complexity

in the regular case, albeit one that cannot distinguish
w∗ from any other local minima. The curvature c is
less significant than the scaling exponent, but can dis-
tinguish local minima and log c is sometimes used as a
complexity measure.

The population loss of a neural network is not locally
quadratic near its local minima, from which it follows
that the functional form of the volume V (ϵ) is more
complicated than in the regular case. The correct func-
tional form was discovered by Watanabe (2009) and we
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Figure 2: The LLC λ(w∗) measures volume scaling around a local minimum of the loss. Top: the area (or
“2D-volume”) under the loss L(w1, w2) = w1

2 + w2
2 scales as V (ϵ) ∝ ϵ around w∗ = (0, 0), so λ(w∗) = 1.

Bottom: the area under the loss L(w1, w2) = w1
2w2

4 scales as V (ϵ) ∝ ϵ1/4 around w∗ = (0, 0), so λ(w∗) = 1
4 .

Lower λ(w∗) means more volume: as we approach the minimum (ϵ → 0), there is much more volume available
for the bottom loss function compared to the top for any given small tolerance ϵ. Reproduced with permission
from (Hoogland and van Wingerden, 2023).

adapt it here to a local neighborhood of a parameter
(see Appendix A for details):

Definition 1 (The Local Learning Coefficient (LLC),
λ(w∗)). There exists a unique rational1 number λ(w∗),
a positive integer m(w∗) and some constant c > 0 such
that asymptotically as ϵ→ 0,

V (ϵ) = c ϵλ(w
∗)(− log ϵ)m(w∗)−1+

o(ϵλ(w
∗)(− log ϵ)m(w∗)−1).

(4)

We call λ(w∗) the Local Learning Coefficient (LLC),
and m(w∗) the local multiplicity.

The volume scaling relationship in Equation (4) is an
important result in singularity theory, see for example
Theorem 7.6 of Arnold et al. (2012). In the context of
statistical learning theory, Theorem 7.1 and Main The-
orem 6.2 in Watanabe (2009) establish a deep connec-
tion between the scaling exponent λ(w∗) and learning-
theoretic quantities of singular models.

In the case where m(w∗) = 1, the formula simplifies,
and

V (ϵ) ∝ ϵλ(w
∗) (5)

Thus, the LLC λ(w∗) is the (asymptotic) volume scal-
ing exponent near a minimum w∗ in the loss land-
scape: increasing the error tolerance by a factor of a
increases the volume by a factor of aλ(w

∗). Applying
Equation (3), the number of bits needed to specify
V (ϵ) within B(w∗), for sufficiently small ϵ and in the

1The fact that λ(w∗) is rational-valued, and not real-
valued, as one would naively assume, is a deep fact of al-
gebraic geometry derived from the celebrated Hironaka’s
resolution of singularities.

case m(w∗) = 1, is approximated by

−λ(w∗) log2 ϵ+O(log2 log2 ϵ) .

Informally, the LLC tells us the number of additional
bits needed to halve an already small error of ϵ:

− log2

[
V ( ϵ2 )/V (ϵ)

]
≈ −λ(w∗) log2

ϵ

2
+ λ(w∗) log2 ϵ

= λ(w∗)

See Figure 2 for simple examples of the LLC as a scal-
ing exponent. We note that, in contrast to the regular
case, the scaling exponent λ(w∗) depends on the un-
derlying data distribution q(x, y).

The (global) learning coefficient λ was defined by
Watanabe (2001). If w∗ is taken to be a global mini-
mum of the population loss L(w), and the neighbour-
hood B(w∗) is taken to be the entire parameter space
W , then we obtain the global learning coefficient λ as
the scaling exponent of the volume V (ϵ). The learn-
ing coefficient and related quantities like the WBIC
(Watanabe, 2013) have historically seen significant ap-
plication in Bayesian model selection (e.g. Endo et al.,
2020; Fontanesi et al., 2019; Hooten and Hobbs, 2015;
Sharma, 2017; Kafashan et al., 2021; Semenova et al.,
2020).

In Appendix C, we prove that the LLC is invariant
to local diffeomorphism: that is, roughly, a locally
smooth and invertible change of variables. This prop-
erty is motivated by the desire that a good complexity
measure should not be confounded by superficial dif-
ferences in how a model is represented: two models
which are essentially the same should have the same
complexity.
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It is important to note that the LLC can differ be-
tween networks implementing the same function, even
between different parameter choices within the same
architecture that result in the same input-output map.
This directly relates to the information-theoretic in-
tuition of the LLC: it quantifies the number of bits
needed to locally improve parameter precision for the
desired function, reflecting how discoverable or learn-
able the function is from data. Consider how spec-
ifying the function y = x in a zero-parameter model
that contains only this hypothesis is much simpler than
specifying the same function in a 3-parameter model
y = a + bx + cx2 or within a deep network. We view
this as a feature rather than a limitation. The LLC
measures the complexity of a network’s specific im-
plementation given a parameter setting, rather than
measuring the complexity based solely on the input-
output behavior. This aligns with the intuition that
if two networks achieve the same task but one does
so through a more convoluted process, the more con-
voluted implementation should be recognized as more
complex.

4 LLC ESTIMATION

Having established the intuition behind the theoretical
LLC in terms of volume scaling, we now turn to the
task of estimating it. As described in the introduction,
the LLC is a coefficient in the asymptotic expansion
of the local free energy. It is this fact that we leverage
for estimation. There is a mathematically rigorous link
between volume scaling and the appearance of the LLC
in the local free energy which we will not discuss in
detail; see (Watanabe, 2009, Theorem 7.1).

We first introduce what we call the idealized LLC esti-
mator which is theoretically sound, albeit intractable
from a computational point of view. In the sections
that follow the introduction of the idealized LLC esti-
mator, we walk through the steps taken to engineer a
practically implementable version of the idealized LLC
estimator.

4.1 Idealized LLC estimator

Consider the following integral

Zn(Bγ(w
∗)) =

∫
Bγ(w∗)

exp{−nLn(w)}φ(w) dw, (6)

where Ln(w) is again the sample negative log likeli-
hood, Bγ(w

∗) denotes a small ball of radius γ around
w∗2, and φ is a prior over model parameters w. If (6)

2Note that in contrast to the notation B(w∗, ϵ) used in
Section 2, Bγ(w

∗) denotes the set of all parameters within
distance γ of w∗ instead of the set of all parameters within
loss ϵ of w∗.

is high, there is high posterior concentration around
w∗. In this sense, (6) is a measure of the concentra-
tion of low-loss solutions near w∗. Next consider a log
transformation of Zn(Bγ(w

∗)) with a negative sign,
i.e.,

Fn(Bγ(w
∗)) = − logZn(Bγ(w

∗)). (7)

This quantity is sometimes called (negative) log
marginal likelihood or free energy, depending on the
discipline. Given a local minimum w∗ of the popu-
lation negative log likelihood L(w), it can be shown
using the machinery of SLT that, asymptotically in n,
we have

Fn(Bγ(w
∗)) = nLn(w

∗)︸ ︷︷ ︸
energy

+ λ(w∗)︸ ︷︷ ︸
entropy

log n

+Op(log log n)

(8)

where λ(w∗) is the theoretical LLC expounded in Sec-
tion 3. Remarkably, the asymptotic approximation in
(8) holds even for singular models such as neural net-
works; further discussion on this can be found in Ap-
pendix B. The asymptotic approximation in (8) sug-
gests that a reasonable estimator of λ(w∗) might come
from re-arranging (8) to give what we call the idealized
LLC estimator,

λ̂idealized(w∗) =
Fn(Bγ(w

∗))− nLn(w
∗)

log n
. (9)

But as indicated by the name, the idealized LLC es-
timator cannot be easily implemented; computing or
even MCMC sampling from the posterior to estimate
Fn(Bγ(w

∗)) is made no less challenging by the need
to confine sampling to the neighborhood Bγ(w

∗). In
what follows, we use the idealized LLC estimator as
inspiration for a practically-minded LLC estimator.

4.2 Laplace no more

We take a moment to contrast the idealized LLC esti-
mator with the estimator that would result if we had
used the standard (and incorrect) Laplace approxima-
tion to derive the asymptotic expansion of the local
free energy Fn(Bγ(w

∗)).

Prior works including Zhang et al. (2018) and Le
(2018) rely on the Laplace approximation to arrive at
the result

Fn(Bγ(w
∗)) = nLn(w

∗) +
d

2
log n

+
1

2
log detH(w∗) +OP (1),

(10)

where H is the Hessian of the loss. However, a critical
issue arises with (10) when the model is singular – the
log determinant term becomes ill-defined. Both afore-
mentioned works acknowledge this limitation. Zhang
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et al. (2018) explicitly remark that “a more nuanced
metric is needed to characterise flat minima with sin-
gular Hessian matrices,” and Le (2018) state in their
introduction that “to compute the (model) evidence,
we must carefully account for this degeneracy”.

Our work directly addresses these open questions. The
correct asymptotics in (8) demonstrates that it is the
log n term that is at play when the model is singular,
indicating the energy-entropy competition in singular
models is far more pronounced than in regular models.
Furthermore, we show the correct notion of complexity
is given by the LLC, not the parameter count d/2 nor
the Hessian determinant.

4.3 Gaussian confinement instead of hard
boundary

The first step towards a practically-minded LLC esti-
mator is to circumvent the hard constraint posed by
the neighborhood Bγ(w

∗). To this end, we introduce a
localizing Gaussian prior as a practical alternative to
hard enforcement of the domain of integration given
by Bγ(w

∗). Specifically, let

φγ(w) ∝ exp
{
−γ

2
||w||22

}
be a Gaussian prior centered at the origin with scale
parameter γ > 0. We replace (6) with

Zn(w
∗, γ) =

∫
exp{−nLn(w)}φγ(w − w∗) dw,

which, for β = 1, can also be recognized as the normal-
izing constant to the tempered posterior distribution
given by

p(w|w∗, β, γ) ∝ exp
{
− nβLn(w)

− γ

2
||w − w∗||22

}
,

(11)

where β > 0 plays the role of an inverse tempera-
ture. Large values of γ force the posterior distribution
in (11) to stay close to w∗. A word on the notation
p(w|w∗, β, γ): this is a distribution in w solely, the pa-
rameters w∗, β, γ are fixed, hence the normalizing con-
stant to (11) is an integral over w only. As Zn(w

∗, γ)
is to be viewed as a proxy to (6), we shall accordingly
treat

Fn(w
∗, γ) := − logZn(w

∗, γ)

as a proxy for Fn(Bγ(w
∗)) in (7). Although it is tempt-

ing at this stage to simply drop Fn(w
∗, γ) into the ide-

alized LLC estimator in place of Fn(Bγ(w
∗)), we have

to address estimation of Fn(w
∗, γ), the subject of the

next section.

4.4 The LLC estimator

Let us denote the expectation of a function f(w)
with respect to the posterior distribution in (11)
as Ew|w∗,β,γf(w) :=

∫
f(w)p(w|w∗, β, γ) dw. Consider

the quantity

Ew|w∗,β∗,γ [nLn(w)] (12)

where the inverse temperature is deliberately set to
β∗ = 1/ log n. The quantity in (12) may be re-
garded as a localized version of the widely applica-
ble Bayesian information criterion (WBIC) first in-
troduced in (Watanabe, 2013). It can be shown that
(12) is a good estimator of Fn(w

∗, γ) in the following
sense: the leading order terms of (12) match those of
Fn(w

∗, γ) when we perform an asymptotic expansion
in sample size n. This justifies using (12) to estimate
Fn(w

∗, γ). See Appendix D for further discussion.

Going back to (9), we approximate Fn(Bγ(w
∗)) first

with Fn(w
∗, γ), which is further estimated by (12). We

are finally ready to define the LLC estimator.

Definition 2 (Local Learning Coefficient (LLC) es-
timator). Let w∗ be a local minimum of L(w). Let
β∗ = 1/ log n. The associated local learning coefficient
estimator is given by

λ̂(w∗) := nβ∗ [Ew|w∗,β∗,γLn(w)− Ln(w
∗)
]
. (13)

Note that λ̂(w∗) depends on γ but we have suppressed
this in the notation. Let us ponder the pleasingly sim-
ple form that is the LLC estimator. The expectation
term in (13) is a measure of the loss Ln under per-
turbation near w∗. If the perturbed loss, under this
expectation, is very close to Ln(w

∗), then λ̂(w∗) is
small. This accords with our intuition that if w∗ is
simple, its loss should not change too much under rea-
sonable perturbations. Finally we note that in appli-
cations, we use the empirical loss Ln(w) to determine
a critical point of interest, i.e., ŵ∗

n := argminw Ln(w) .
We lose something by plugging in ŵ∗

n to (13) directly
since we end up using the dataset Dn twice. However
we do not observe adverse effects in our experiments,
see Figure 3 for an example.

4.5 The SGLD-based LLC estimator

The LLC estimator defined in (13) is not prescriptive
as to how the expectation with respect to the posterior
distribution should actually be approximated. A wide
array of MCMC techniques are possible. However, to
be able to estimate the LLC at the scale of modern
deep learning, we must look at efficiency. In practice,
the computational bottleneck to implementing (13) is
the MCMC sampler. In particular, traditional MCMC
samplers must compute log-likelihood gradients across
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the entire training dataset, which is prohibitively ex-
pensive at modern dataset sizes.

If one modifies these samplers to take minibatch gra-
dients instead of full-batch gradients, this results in
stochastic-gradient MCMC, the prototypical example
of which is (Welling and Teh, 2011)’s Stochastic Gra-
dient Langevin Dynamics (SGLD). The computational
cost of this sampler is much lower: roughly the cost of a
single SGD step times the number of samples required.
The standard SGLD update applied to sampling (11)
at the optimal temperature β∗ required for the LLC
estimator is given by

∆wt =
ϵ

2

(
β∗n

m

∑
(x,y)∈Bt

∇ log p(y|x,wt) + γ(w∗ − wt)

)
+N(0, ϵ)

where Bt = {(xi, yi)}mi=1 is a randomly sampled mini-
batch of samples of size m for step t, and ϵ controls
both the variance of injected Gaussian noise N(0, ϵ)
and step size. Crucially, the log-likelihood gradient is
evaluated using mini-batches. In practice, we choose
to shuffle the dataset once and partition it into a se-
quence of size m segments as minibatches instead of
drawing fresh random samples of size m.

Let us now suppose we have obtained T approximate
samples {w1, w2, . . . , wT } of the tempered posterior
distribution at inverse temperature β∗ via SGLD. This
is usually taken from the SGLD trajectory after burn-
in. We can then form what we call the SGLD-based
LLC estimator,

λ̂SGLD(w∗) := nβ∗

[
1

T

T∑
t=1

Ln(wt)− Ln(w
∗)

]
. (14)

For further computation saving, we also recycle
the forward passes that compute Lm(wt), which
is required for computing ∇wLm(wt) via back-
propagation, as unbiased estimate of Ln(wt). Here by
Lm(wt), we mean − 1

m

∑
(x,y)∈Bt

log p(y|x,wt), though
the notation suppresses the dependence on Bt for
brevity. Pseudocode for this minibatch version of the
SGLD-based LLC estimator is provided in Appendix
G. Henceforth, when we say the SGLD-based LLC es-
timator, we are referring to the minibatch version. In
Appendix H, we give a comprehensive guide on best
practices for implementing the SGLD-based LLC es-
timator including choices for γ, ϵ, number of SGLD
iterations, and required burn-in.

5 EXPERIMENTS

The goal of our experiments is to give evidence that
the LLC estimator is accurate, scalable and can re-

veal insights on deep learning practice. Throughout
the experiments, we implement the minibatch version
of the SGLD-based LLC estimator presented in the
pseudo-algorithm in Appendix G3.

There are also a number of experiments we performed
that are relegated to the appendices due to space con-
straints. They include

• deploying LLC estimation on transformer lan-
guage models (Section L)

• an experiment on a small ReLU network verifying
that SGLD sampler is just as accurate as one that
uses full-batch gradients (Appendix M)

• an experiment comparing the optimizers SGD and
entropy-SGD with the latter having intimate con-
nection to our notion of complexity (Appendix N)

• an experiment verifying the scaling invariance
property (Appendix O) set out in Appendix C

Every experiment described in the main text below
has an accompanying section in the Appendix that of-
fers full experimental details, further discussion, and
possible additional figures/tables.

5.1 LLC for Deep Linear Networks (DLNs)

In this section, we verify the accuracy and scalability
of our LLC estimator against theoretical LLC values
in deep linear networks (DLNs) up to 100M param-
eters. Recall DLNs are fully-connected feedforward
neural networks with identity activation function. The
input-output behavior of a DLN is obviously trivial; it
is equivalent to a single-layer linear network obtained
by multiplying together the weight matrices. However,
the geometry of such a model is highly non-trivial —
in particular, the optimization dynamics and induc-
tive biases of such networks have seen significant re-
search interest (Saxe et al., 2013; Ji and Telgarsky,
2018; Arora et al., 2018).

Thus one reason we chose to study DLN model com-
plexity is because they have long served as an impor-
tant sandbox for deep learning theory. Another key
factor is the recent clarification of theoretical LLCs
in DLNs by Aoyagi (2024), making DLNs the most
realistic setting where theoretical learning coefficients
are available. The significance of Aoyagi (2024) lies
in the substantial technical difficulty of deriving theo-
retical global learning coefficients (and, by extension,
theoretical LLCs) which means that these coefficients

3Code for the experiments can be found at this
link: https://github.com/edmundlth/local_learning_
coefficient/tree/aistats2025_submission.
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are generally unavailable except in a few exceptional
cases, with most of the research conducted decades ago
(Yamazaki and Watanabe, 2005b; Aoyagi et al., 2005;
Yamazaki and Watanabe, 2003, 2005a). Further de-
tails and discussion of the theoretical result in Aoyagi
(2024) can be found in Appendix I.
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Figure 3: Estimated LLC against true learning coeffi-
cient; model dimension shown in color. The estimated
LLCs accurately measures the learning coefficient λ up
to 100 million parameters in deep linear networks, as
compared to known theoretical values (dashed line).
See Figure J.1 for linear-scale plots.

The results are summarized in Figure 3. Our LLC
estimator is able to accurately estimate the learning
coefficient in DLNs up to 100M parameters. Further
experimental details and results for this section are
detailed in Appendix J. Overall it is quite remarkable
that our LLC estimator, after the series of engineering
steps described in Section 4, maintains such high levels
of accuracy.

5.2 LLC for ResNet

Here, we empirically test whether implicit regulariza-
tion effectively induces a preference for simplicity as
manifested by a lower LLC. We examine the effects
of SGD learning rate, batch size, and momentum on
the LLC. Note that we do so in isolation, i.e., we do
not look at interactions between these factors. For
instance, when we vary the learning rate, we hold ev-
erything else constant.

We perform experiments on ResNet18 trained on CI-
FAR10 and show the results in Figure 1. We see that
the training loss reaches zero in most instances and
therefore on its own cannot distinguish between the
effect of the implicit regularization. In contrast, we

see that there is a consistent pattern of “stronger im-
plicit regularization = higher test accuracy = lower
LLC”. Specifically, higher learning rate, lower batch
size, higher momentum all apply stronger implicit reg-
ularization which is reflected in lower LLC. Full exper-
imental details can be found in Appendix K. Note that
in Figures 1 we employed SGD without momentum in
the top two rows. We repeat the experiments in these
top two rows for SGD with momentum; the associ-
ated results in Figure K.1 support very similar conclu-
sions. We also conducted some explicit regularization
experiments involving L2 regularization (Figure K.2 in
Appendix K) and again conclude that stronger regu-
larization is accompanied by lower LLC.

In contrast to the LLC estimates for DLN, the LLC
estimates for ResNet18 cannot be calibrated as we do
not know the true LLC values. With many models
in practice, we find value in the LLC estimates by
comparing their relative values between models with
shared context. For instance, when comparing LLC
values we might hold everything constant while vary-
ing one factor such as SGD batch size, learning rate,
or momentum as we have done in this section.

6 RELATED WORK

We briefly cover related work here; more detail may be
found in Appendix E. The primary reference for the
theoretical foundation of this work, known as SLT, is
Watanabe (2009). The global learning coefficient, first
introduced by (Watanabe, 2001), provides the asymp-
totic expansion of the free energy, which is equiva-
lent to the negative log Bayes marginal likelihood, an
all-important important quantity in Bayesian analysis.
Subsequent research has utilized algebraic-geometric
tools to calculate the learning coefficient for various
machine learning models (Yamazaki and Watanabe,
2005b; Aoyagi et al., 2005; Aoyagi, 2024; Yamazaki and
Watanabe, 2003, 2005a). SLT has also enhanced the
understanding of model selection criteria in Bayesian
statistics. Of particular relevance to this work is
Watanabe (2013), which introduced the WBIC estima-
tor of free energy. This estimator has been applied in
various practical settings (Endo et al., 2020; Fontanesi
et al., 2019; Hooten and Hobbs, 2015; Sharma, 2017;
Kafashan et al., 2021; Semenova et al., 2020).

The LLC can be seen as a singularity-aware version
of basin broadness measures, which attempt to con-
nect geometric “broadness” or “flatness” with model
complexity (Hochreiter and Schmidhuber, 1997; Jiang
et al., 2019). In particular, the LLC estimator bears
resemblance to PAC-Bayes inspired flatness/sharpness
measures (Neyshabur et al., 2017), but takes into ac-
count the non-Gaussian nature of the posterior distri-
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bution in singular models. This work also relates to
the study of complex loss landscapes using singular-
ity theory. As such, it relates to existing work such
as Fukumizu and Amari (2000); Simsek et al. (2021)
that studied the loss landscape of neural networks and
the effect of network hierarchical structure and sym-
metries on the geometry of critical points.

The LLC is set apart from classic model complexity
measures such as Rademacher complexity (Koltchin-
skii and Panchenko, 2000) and the VC dimension
(Vapnik and Chervonenkis, 1971) because it measures
the complexity of a specific model p(y|x,w) rather
than the complexity over the function class {f(x|w) :
w} where f is the neural network function. This makes
the LLC an appealing tool for understanding the in-
terplay between function class, data properties, and
training heuristics.

Concurrent work by (Chen et al., 2023a) proposes a
measure called the learning capacity, which can be
viewed as a finite-n version of the learning coefficient,
and investigates its behavior as a function of n.

7 OUTLOOK

An exciting direction for future research is to study
the role of the LLC in detecting phase transitions and
emergent abilities in deep learning models. A first step
in this direction was undertaken in (Chen et al., 2023b)
where the energy (training loss) and entropy (both es-
timated and theoretical LLC) were tracked as train-
ing progresses; it was observed that energy and en-
tropy proceed along staircases in opposing directions.
Further, Hoogland et al. (2024) showed how the es-
timated LLC can be used to detect phase transitions
in the formation of in-context learning in transformer
language models. It is natural to wonder if the LLC
could shed light on the hypothesis that SGD-trained
neural networks sequentially learn the target function
with a “saddle-to-saddle” dynamic. Previous theoret-
ical works had to devise complexity measures on a
case-by-case basis (Abbe et al., 2023; Berthier, 2023).
We posit that the free energy perspective could offer
a more unified and general approach to understanding
the intricate dynamics of learning in deep neural net-
works by accounting for competition between model
fit and model complexity during training.
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Berner, J., Elbrächter, D., and Grohs, P. (2019). How
degenerate is the parametrization of neural networks
with the ReLU activation function? In Neural In-
formation Processing Systems.

Berthier, R. (2023). Incremental learning in diagonal
linear networks. Journal of Machine Learning Re-
search, 24(171):1–26.

Bialek, W., Nemenman, I., and Tishby, N. (2001). Pre-
dictability, complexity, and learning. Neural compu-
tation, 13(11):2409–2463.

Blalock, D., Gonzalez Ortiz, J. J., Frankle, J., and
Guttag, J. (2020). What is the state of neural net-
work pruning? Proceedings of Machine Learning
and Systems, 2:129–146.

Chaudhari, P., Choromanska, A., Soatto, S., LeCun,
Y., Baldassi, C., Borgs, C., Chayes, J., Sagun,
L., and Zecchina, R. (2019). Entropy-SGD: Bi-
asing gradient descent into wide valleys. Journal
of Statistical Mechanics: Theory and Experiment,
2019(12):124018.



The Local Learning Coefficient: A Singularity-Aware Complexity Measure

Chen, D., Chang, W., and Chaudhari, P. (2023a).
Learning capacity: A measure of the effective di-
mensionality of a model.

Chen, Z., Lau, E., Mendel, J., Wei, S., and Murfet, D.
(2023b). Dynamical versus Bayesian phase transi-
tions in a toy model of superposition.

Deng, L. (2012). The MNIST database of handwritten
digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142.

Dherin, B., Munn, M., Rosca, M., and Barrett, D.
G. T. (2022). Why neural networks find simple so-
lutions: the many regularizers of geometric complex-
ity.

Dinh, L., Pascanu, R., Bengio, S., and Bengio, Y.
(2017). Sharp minima can generalize for deep nets.
In International Conference on Machine Learning,
pages 1019–1028. PMLR.

Endo, A., Abbott, S., Kucharski, A. J., Funk, S., et al.
(2020). Estimating the overdispersion in COVID-
19 transmission using outbreak sizes outside China.
Wellcome Open Research, 5.

Farrugia-Roberts, M. (2023). Functional equivalence
and path connectivity of reducible hyperbolic tan-
gent networks. In Thirty-seventh Conference on
Neural Information Processing Systems.

Fefferman, C. (1994). Reconstructing a neural net
from its output. Revista Matemática Iberoameri-
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entirely determined by the computational ef-
ficiency of SGLD.
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code for experiments in the main text is pro-
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A Background on Singular Learning Theory

Most models in machine learning are singular: they contain parameters where the Fisher information matrix is
singular. While these parameters where the Fisher information is degenerate form a measure zero subset, their
effect is far from negligible. Singular Learning Theory (SLT) shows that the geometry in the neighbourhood of
these degenerate points determines the asymptotics of learning (Watanabe, 2009). The theory explains observable
effects of degeneracy in common machine learning models under practical settings (Watanabe, 2018) and has the
potential to account for important phenomena in deep learning (Wei et al., 2022). The central quantity of SLT
is the learning coefficient λ. Many notable SLT results are conveyed through the learning coefficient which can
be thought of as the complexity of the model class relative to the true distribution. In this section we carefully
define the (global) learning coefficient λ, which we then contrast with the local learning coefficient λ(w∗).

For notational simplicity, we consider here the unsupervised setting where we have the model p(x|w) param-
eterised by a compact parameter space W ⊂ Rd. We assume fundamental conditions I and II of (Watanabe,
2009, §6.1, §6.2). In particular W is defined by a finite set of real analytic inequalities, at every parameter
w ∈ W the distribution p(x|w) should have the same support as the true density q(x), and the prior density
φ(w) = φ1(w)φ2(w) is a product of a positive smooth function φ1(w) and non-negative real analytic φ2(w). We
refer to

(p(x|w), q(x), φ(w)) (15)

as the model-truth-prior triplet.

Let K(w) be the Kullback-Leibler divergence between the truth and the model

K(w) := KL
(
q(x) ∥ p(x|w)

)
=

∫
q(x) log

[
q(x)/p(x|w)

]
dx

and define the (average) negative log likelihood to be

L(w) := −
∫

q(x) log p(x|w)dx = K(w)− S

where S is the entropy of the true distribution. Set K0 = infw∈W K(w). Let

W0 := {w ∈W : K(w) = K0}

be the set of optimal parameters. We say the truth is realizable by the model if K0 = 0. We do not
assume that our models are regular or that the truth is realizable, but we do assume the model-truth-prior triplet
satisfies the more general condition of relative finite variance (Watanabe, 2013). We also assume that there
exists w∗

0 in the interior of W satisfying K(w∗
0) = K0.

Following Watanabe (2009) we define:

Definition 3. The zeta function of (15) is defined for Re(z) > 0 by

ζ(z) =

∫
W

(K(w)−K0)
z
φ(w)dw

and can be analytically continued to a meromorphic function on the complex plane with poles that are all real,
negative and rational (Watanabe, 2009, Theorem 6.6). Let −λ ∈ R be the largest pole of ζ and m its multiplicity.
Then, the learning coefficient and its multiplicity of the triple (15) are defined to be λ and m respectively.

When p(x|w) is a singular model, W0 is an analytic variety which is in general positive dimensional (not a
collection of isolated points). As long as φ > 0 on W0 the learning coefficient λ is equal to a birational invariant
of W0 known in algebraic geometry as the Real Log Canonical Threshold (RLCT). We will always assume
this is the case, and now recall how λ is described geometrically.

With Wϵ = {w ∈ W : K(w) −K0 ≤ ϵ} for sufficiently small ϵ, resolution of singularities (Hironaka, 1964)
gives us the existence of a birational proper map g : M →Wϵ from an analytic manifold M which monomializes
K(w)−K0 in the following sense, described precisely in (Watanabe, 2009, Theorem 6.5): there are local coordinate
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charts Mα covering g−1(W0) with coordinates u such that the reparameterisation w = g(u) puts K(w)−K0 and
φ(w)dw into normal crossing form

K(g(u))−K0 = u2k1
1 . . . u2kd

d (16)

|g′(u)| = b(u)uh1
1 . . . uhd

d (17)

φ(w)dw = φ(g(u))|g′(u)|du (18)

for some positive smooth function b(u). The RLCT of K − K0 is independent of the (non-unique) resolution
map g, and may be computed as (Watanabe, 2009, Definition 6.4)

λ = min
α

min
j=1...d

hj + 1

2kj
. (19)

The multiplicity is defined as
m = max

α
#{j : λj = λ}.

For P ∈ W0 there exist coordinate charts Mα∗ such that g(0) = P and (16), (17) hold. The RLCT of K −K0

at P is then (Watanabe, 2009, Definition 2.7)

λ(P ) = min
α∗

min
j=1...d

hj + 1

2kj
. (20)

We then have the RLCT λ = infP∈W0
λ(P ). In regular models, all λ(P ) are d/2 and hence the RLCT λ = d/2

and m = 1, see (Watanabe, 2009, Remark 1.15).

A.1 Background assumptions in SLT

There are a few technical assumptions throughout SLT that we shall collect in this section. We should note that
these are only sufficient but not necessary conditions for many of the results in SLT. Most of the assumptions
can be relaxed on a case by case basis without invalidating the main conclusions of SLT. For in depth discussion
see Watanabe (2009, 2010, 2018).

With the same hypotheses as above, the log likelihood ratio

r(x,w) := log
p(x|w0)

p(x|w)
is assumed to be an Ls(q(x))-valued analytic function of w with s ≥ 2 that can be extended to a complex analytic
function on WC ⊂ Cd. A more conceptually significant assumption is the condition relatively finite variance,
which consists of the following two requirements:

1. For any optimal parameters w1, w2 ∈W0, we have p(x|w1) = p(x|w2) almost everywhere. This is also known
as essential uniqueness.

2. There exists c > 0 such that for all w ∈W , we have

Eq(x) [r(x,w)] ≥ cEq(x)

[
r(x,w)2

]
.

Note that if the true density q(x) is realizable by the model, i.e. there exist w∗ ∈ W such that q(x) = p(x|w∗)
almost everywhere, then these conditions are automatically satisfied. This includes settings for which the training
labels are synthetically generated by passing inputs through a target model (in which case realizability is satisfied
by construction), such as our experiments involving DLNs and some of the experiments involving MLPs. For
experiments involving real data, it is unclear how reasonable it is to assume that relative finite variance holds.

B Well-definedness of the theoretical LLC

Here we remark on how we adapt the (global) learning coefficient of Definition 3 to define the local learning
coefficient in terms of the poles of a zeta function, and how this relates to the asymptotic volume formula in
Definition 1 of the main text.
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In addition to the setup described above, now suppose we have a local minimum w∗ of the negative log likelihood
L(w) and as in Section 3.1 we assume B(w∗) to be a closed ball centered on w∗ such that L(w∗) is the minimum
value of L on the ball. We define

V := Vol(B(w∗)) =

∫
B(w∗)

φ(w)dw ,

φ̄(w) = 1
V φ(w)

then we can form the local triplet (p, q, φ̄) with parameter space B(w∗). Note that W is cut out by a finite
number of inequalities between analytic functions, and hence so is B(w∗).

Provided φ(w∗) > 0 the prior does not contribute to the leading terms of the asymptotic expansions considered,
and in particular does not appear in the asymptotic formula for the volume in Definition 1, and so we disregard
it in the main text for simplicity.

Assuming relative finite variance of the local triplet, we can apply the discussion of Section A. In particular, we
can define the LLC λ(w∗) and the local multiplicity m(w∗) in terms of the poles of the “local” zeta function

ζ(z, w∗) =

∫
B(w∗)

(K(w)−K(w∗))
z
φ̄(w)dw

Note that L(w)− L(w∗) = K(w)−K(w∗) since K,L differ by S which does not depend on w.

In order for the LLC to be a learning coefficient in its own right, it must be related, asymptotically, to the local
free energy in the manner stipulated in (8) in the main text. We verify this next. To derive the asymptotic
expansion of the local free energy Fn(B(w∗)), we assume in addition that λ(w∗) ≤ λ(P ) if P ∈ B(w∗) and
L(P ) = L(w∗). That is, w∗ is at least as degenerate as any nearby minimiser. Note that the KL divergence
for this triplet is just the restriction of K : W → R to B(w∗), but the local triplet has its own set of optimal
parameters

W0(w
∗) = {w ∈ B(w∗) : L(w) = L(w∗)} . (21)

Borrowing the proof in Watanabe (2009, §3), we can show that

Fn(B(w∗)) = nLn(w
∗) + λ(w∗) log n− (m(w∗)− 1) log log n+OP (1) (22)

where the difference between φ and φ̄ contributes a summand log V to the constant term. Note that the condition
of relative finite variance is used to establish (22). This explains why we can consider λ(w∗) as a local learning
coefficient, following the ideas sketched in (Watanabe, 2009, Section 7.6). The presentation of the LLC in terms
of volume scaling given in the main text now follows from (Watanabe, 2009, Theorem 7.1).

C Reparameterization invariance of the LLC

The LLC is invariant to local diffeomorphism of the parameter space - roughly a locally smooth and invertible
change of variables.

Note that this automatically implies several weaker notions of invariance, such as rescaling invariance in feedfor-
ward neural networks; other e.g. Hessian-based complexity measures have been undermined by their failure to
stay invariant to this symmetry (Dinh et al., 2017). We now show how the LLC is invariant to local diffeomor-
phism. The fact that the LLC is an asymptotic quantity is crucial; this property would not hold for the volume
V (ϵ) itself, for any value of ϵ.

Let U ⊂W and Ũ ⊂ W̃ be open subsets of parameter spaces W and W̃ . A local diffeomorphism is an invertible
map ϕ : U → Ũ , such that both ϕ and ϕ−1 are infinitely differentiable. We further require that ϕ respect the loss
function: that is, if L : U → R and L̃ : Ũ → R are loss functions on each space, we insist that L(u) = L̃(ϕ(u))
for all u ∈ U .

Supposing such a ϕ exists, the statement to be proved is that the LLC at u∗ ∈ U under L(u) is equal to the LLC

at ũ∗ = ϕ(u∗) ∈ Ũ under L̃(ũ). Define

V (ϵ) =

∫
L(u)−L(u∗)<ϵ

du, Ṽ (ϵ) =

∫
L̃(ũ)−L̃(ũ∗)<ϵ

dũ
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Now note that by the change of variables formula for diffeomorphisms, we have

Ṽ (ϵ) =

∫
L(u)−L(u∗)<ϵ

|detDϕ(u)|du

where detDϕ(u) is the Jacobian determinant of ϕ at u.

The fact that ϕ is a local diffeomorphism implies that there exists constants c1, c2 such that c1 ≤ |detDϕ(u)| ≤ c2
for all u ∈ U . This means that

c1V (ϵ) ≤ Ṽ (ϵ) ≤ c2V (ϵ)

Finally, applying the definition of the LLC λ and its multiplicity m, and leveraging the fact that this definition
is asymptotic as ϵ→ 0, we can conclude that

V (ϵ) ∝ Ṽ (ϵ) ∝ ϵλ(− log(ϵ))m−1

which demonstrates that the LLC is preserved by the local diffeomorphism ϕ.

D Consistency of local WBIC

In the main text, we introduced (12) as an estimator of Fn(w
∗, γ). Our motivation for this estimator comes

directly from the well-known widely applicable Bayesian information criterion (WBIC) (Watanabe, 2013). In
this section, we refer to (12) as the local WBIC and denote it WBIC(w∗)

It is a direct extension of the proofs in Watanabe (2013) to show that the first two terms in the asymptotic
expansion of the local WBIC match those of Fn(w

∗, γ). By this we mean that it can be shown that

Fn(w
∗, γ) = nLn(w

∗) + λ̃(w∗) log n− (m− 1) log log n+Rn

and

WBIC(w∗) = nLn(w
∗) + λ̃(w∗) log n+ Un

√
λ̃(w∗) log n/2 +OP (1). (23)

This firmly establishes that (12) is a good estimator of Fn(w
∗, γ). However, it is important to understand that

we cannot immediately conclude that it is a good estimator of Fn(Bγ(w
∗)).

We conjecture that λ̃(w∗) is equal to the LLC λ(w∗) given certain conditions on γ. So far, all our empirical
findings suggest this. Detailed proof of this conjecture, in particular ascertaining the exact conditions on γ, will
be left as future theoretical work.

E Related work

We review both the singular learning theory literature directly involving the learning coefficient, as well as
research from other areas of machine learning that may be relevant. This is an expanded version of the discussion
in Section 6.

Singular learning theory. Our work builds upon the singular learning theory (SLT) of Bayesian statistics:
good references are Watanabe (2009, 2018). The global learning coefficient, first introduced by (Watanabe, 2001),
provides the asymptotic expansion of the free energy, which is equivalent to the negative log Bayes marginal
likelihood, an all-important important quantity in Bayesian analysis. Later work used algebro-geometric tools
to bound or exactly calculate the learning coefficient for a wide range of machine learning models, including
Boltzmann machines Yamazaki and Watanabe (2005b), single-hidden-layer neural networks Aoyagi et al. (2005),
DLNs Aoyagi (2024), Gaussian mixture models Yamazaki and Watanabe (2003), and hidden Markov models
Yamazaki and Watanabe (2005a).

SLT has also enhanced the understanding of model selection criteria in Bayesian statistics. Of particular relevance
to this work is Watanabe (2013), which introduced the WBIC estimator of free energy. This estimator has been
applied in various practical settings (e.g. Endo et al., 2020; Fontanesi et al., 2019; Hooten and Hobbs, 2015;
Sharma, 2017; Kafashan et al., 2021; Semenova et al., 2020). Some of the estimation methodology in this
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paper can be seen as a localized extension of the WBIC. Several other papers have explored improvements or
alternatives to this estimator Iriguchi and Watanabe (2007); Imai (2019a,b).

Basin broadness. The learning coefficient can be seen as a Bayesian version of basin broadness measures, which
typically attempt to empirically connect notions of geometric “broadness” or “flatness” with model complexity
Hochreiter and Schmidhuber (1997); Jiang et al. (2019). However, the evidence supporting the (global) learning
coefficient (in the Bayesian setting) is significantly stronger: the learning coefficient provably determines the
Bayesian free energy to leading order Watanabe (2009). We expect the utility of the learning coefficient as a
geometric measure to apply beyond the Bayesian setting, but whether the connection with generalization will
continue to hold is unknown.

Neural network identifiability. A core observation leading to singular learning theory is that the map
w 7→ p(x|w) from parameters w to statistical models p(x|w) may not be one-to-one (in which case, the model
is singular). This observation has been made in parallel by researchers studying neural network identifiability
Sussmann (1992); Fefferman (1994); Kůrková and Kainen (1994); Phuong and Lampert (2020). Recent work4

has shown that the degree to which a network is identifiable (or inverse stable) is not uniform across parameter
space Berner et al. (2019); Petersen et al. (2020); Farrugia-Roberts (2023). From this perspective, the LLC can
be viewed as a quantitative measure of “how identifiable” the network is near a particular parameter.

Statistical mechanics of the loss landscape. A handful of papers have explored related ideas from a
statistical mechanics perspective. Jules et al. (2023) use Langevin dynamics to probe the geometry of the
loss landscape. Zhang et al. (2018) show how a bias towards “wide minima” may be explained by free energy
minimization. These observations may be formalized using singular learning theory LaMont and Wiggins (2019).
In particular, the learning coefficient may be viewed as a heat capacity LaMont and Wiggins (2019), and learning
coefficient estimation corresponds to measuring the heat capacity by molecular dynamics sampling.

Other model complexity measures. The LLC is set apart from a number of classic model complexity
measures such as Rademacher complexity (Koltchinskii and Panchenko, 2000), the VC dimension (Vapnik and
Chervonenkis, 1971) because the latter measures act on an entire class of functions while the LLC measures
the complexity of a specific individual function within the context of the function class carved out by the model
(e.g. via DNN architecture). This affords the LLC a better position for unraveling the theoretical mysteries of
deep learning, which cannot be disentangled from the way in which DNNs are trained or the data that they are
trained on.

In the context studied here, our proposed LLC measures the complexity of a trained neural network rather than
complexity over the entire function class of neural networks. It is also sensitive to the data distribution, making
it ideal for understanding the intricate dance between function class, data properties, and implicit biases baked
into different training heuristics.

Similarity to PAC-Bayes. We have just described how the theoretical LLC is the sought-after notion of model
complexity coming from earlier works who adopt the energy-entropy competition perspective. Interestingly, the
actual LLC estimator also has connections to another familiar notion of model complexity. Among the diverse
cast of complexity measures, see e.g., Jiang et al. (2019) for a comprehensive overview of over forty complexity
measures in modern deep learning, the LLC estimator bears the most resemblance to PAC-Bayes inspired
flatness/sharpness measures (Neyshabur et al., 2017). Indeed, it may be immediately obvious that, other than

the scaling of nβ∗, λ̂(w∗) can be viewed as a PAC-Bayes flatness measure which utilises a very specific posterior
distribution localised to w∗. Recall the canonical PAC-Bayes flatness measure is based on

λPAC−bayes(w
∗) = Eq(w|w∗)ℓn(w)− ℓn(w

∗), (24)

where ℓn is a general empirical loss function (which in our case is the sample negative log likelihood) and the
“posterior” distribution q is often taken to be Gaussian, i.e., q(w|w∗) = N (w∗, σ2I). A simple derivation shows
us that the quantity in (24), if we use a Gaussian q around w∗, reduces approximately to 1

2σ
2Tr(H(w∗)), where

H is the Hessian of the loss, i.e., H(w∗) = ∇2
wℓn(w)|w∗ . However, for singular models, the posterior distribution

around w∗, e.g., (11), is decidedly not Gaussian. This calls into question the standard choice of the Gaussian
posterior in (24).

Learning capacity. Finally, we briefly discuss concurrent work that measures a quantity related to the learning

4Within the context of singular learning theory, this fact was known at least as early as Fukumizu (1996).



Edmund Lau, Zach Furman, George Wang, Daniel Murfet, Susan Wei

coefficient. In Chen et al. (2023a), a measure called the learning capacity is proposed to estimate the complexity
of a hypothesis class. The learning capacity can be viewed as a finite-n version of the learning coefficient; the
latter only appears in the n → ∞ limit. Chen et al. (2023a) is largely interested in the learning capacity as a
function of training size n. They discover the learning capacity saturates at very small and large n with a sharp
transition in between.

Applications. Recently, the LLC estimation method we introduce here has been used to empirically detect
“phase transitions” in toy ReLU networks Chen et al. (2023a), and the development of in-context learning in
transformers Hoogland et al. (2024).

F Model complexity vs model-independent complexity

In this paper, we have described the LLC as a measure of “model complexity.” It is worth clarifying what we
mean here — or rather, what we do not mean. This clarification is in part a response to Skalse (2023).

We distinguish measures of “model complexity,” such as those traditionally found in statistical learning theory,
from measures of “model-independent complexity,” such as those found in algorithmic information theory. Mea-
sures of model complexity, like the parameter count, describe the expressivity or degrees of freedom available
to a particular model. Measures of model-independent complexity, like Kolmogorov complexity, describe the
complexity inherent to the task itself.

In particular, we emphasize that — a priori — the LLC is a measure of model complexity, not model-independent
complexity. It can be seen as the amount of information required to nudge a model towards w∗ and away from
other parameters. Parameters with higher LLC are more complex for that particular model to implement.

Alternatively, the model is inductively biased5 towards parameters with lower LLC — but a different model
could have different inductive biases, and thus different LLC for the same task. This is why it is not sensible to
conclude that a bias towards low LLC, would, on its own, explain observed “simplicity bias” in neural networks
Valle-Perez et al. (2018) — this is tautological, as Skalse (2023) noted.

To highlight this distinction, we construct a statistical model where these two notions of complexity diverge. Let
f1(x) be a Kolmogorov-simple function, like the identity function. Let f2(x) be a Kolmogorov-complex function,
like a random lookup table. Then consider the following regression model with a single parameter w ∈ [0, 1]:

f(x,w) = w8f1(x) + (1− w8)f2(x)

For this model, f1(x) has a learning coefficient of λ = 1
2 , whereas f2(x) has a learning coefficient of λ = 1

16 .
Therefore, despite f1(x) being more Kolmogorov-simple, it is more complex for f(x,w) to implement — the
model is biased towards f2(x) instead of f1(x), and so f1(x) requires relatively more information to learn.

Yet, this example feels contrived: in realistic deep learning settings, the parameters w do not merely interpolate
between handpicked possible algorithms, but themselves define an internal algorithm based on their values. That
is, it seems intuitively like the parameters play a role closer to “source code” than “tuning constants.”

Thus, while in general LLC is not a model-independent complexity measure, it seems distinctly possible that for
neural networks (perhaps even models in some broader “universality class”), the LLC could be model-independent
in some way. This would theoretically establish the inductive biases of neural networks. We believe this to be
an intriguing direction for future work.

G SGLD-based LLC estimator: minibatch version pseudocode

5The role of the LLC in inductive biases is only rigorously established for Bayesian learning, but we suspect it also
applies for learning with SGD.
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Algorithm 1 computing λ̂(w∗)

Input:

• initialization point: w∗

• scale: γ

• step size: ϵ

• number of iterations: SGLD iters

• batch size: m

• dataset of size n: Dn = {(xi, yi)}i=1,...,n

• averaged log-likelihood function for w ∈ Rd and arbitrary subset D of data:

logL(D,w) =
1

|D|
∑

(xi,yi)∈D

log p(yi|xi, w)

Output: λ̂(w∗)

1: β∗ ← 1
logn {Optimal sampling temperature.}

2: w ← w∗ {Initialize at the given parameter}
3: arrayLogL← [ ]
4: for t = 1 . . . SGLD iters do
5: B ← random minibatch of size m
6: append logL(B,w) to arrayLogL
7: η ∼ N(0, ϵ) {d-dimensional Gaussian, variance ϵ}
8: ∆w ← ϵ

2 [γ(w
∗ − w) + nβ∗∇wlogL(B,w)] + η

9: w ← w +∆w
10: end for
11: ŴBIC← −n ·Mean(arrayLogL)
12: nLn(w

∗)← −n · logL(Dn, w
∗)

13: λ̂(w∗)← ŴBIC−nLn(w
∗)

logn

14: return λ̂(w∗)
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H Recommendations for accurate LLC estimation and troubleshooting

In this section, we collect several recommendations for estimating the LLC accurately in practice. Note that
these recommendations are largely based on our experience with LLC estimation for DLN (see Section 5.1) as it
is the only realistic model (it being wide and deep) where the theoretical learning coefficient is available.

H.1 Step size

From experience, the most important hyperparameter to the performance and accuracy of the method is the
step size ϵ. If the step size is too low, the sampler may not equilibriate, leading to underestimation. If the step
size is too high, the sampler can become numerically unstable, causing overestimation or even “blowing up” to
NaN values.

Manual tuning of the step size is possible. However we strongly recommend a particular diagnostic based on
the acceptance criterion for Metropolis-adjusted Langevin dynamics (MALA). This is used to correct numerical
errors in traditional MCMC, but here we use it only to detect them.

In traditional (full-gradient) MCMC, numerical errors caused by the step size are completely corrected by a
secondary step in the algorithm, the acceptance check or Metropolis correction, which accepts or rejects steps
with some probability roughly6 based on the likelihood of numerical error. The proportion of steps accepted
additionally becomes an important diagnostic as to the health of the algorithm: a low acceptance ratio indicates
that the acceptance check is having to compensate for high levels of numerical error.

The acceptance probability between step Xk and proposed step Xk+1 is calculated as:

min

(
1,

π(Xk) q(Xk|Xk+1)

π(Xk+1) q(Xk+1|Xk)

)
where π(x) is the probability density at x (in our case, log π(x) = βnLn(x)), and q(x′|x) is the probability of
our sampler transitioning from x to x′.

In the case of MALA, q(x′|x) ̸= q(x|x′) and so we must explicitly calculate this term. For MALA, it is:

q(x′|x) ∝ exp(− 1

4ϵ
||x′ − x− ϵ∇ log π(x)||2)

We choose to use MALA’s formula because we are using SGLD, and both MALA and SGLD propose steps using
Langevin dynamics. MALA’s formula is the correct one to use when attempting to apply Metropolis correction
to Langevin dynamics.

For various reasons, directly implementing such an acceptance check for stochastic-gradient MCMC (while possi-
ble) is typically either ineffective or inefficient. Instead we use the acceptance probability merely as a diagnostic.

We recommend tuning the step size such that the average acceptance probability is in the range of 0.9-0.95.
Below this range, increase step size to avoid numerical error. Above this range, consider decreasing step size for
computational efficiency (to save on the number of steps required). For efficiency, we recommend calculating the
acceptance probability for only a fraction of steps — say, one out of every twenty.

Note that since we are not actually using an acceptance check, these acceptance “probabilities” are not really
probabilities, but merely diagnostic values.

H.2 Step count and burn-in

The step count for sampling should be chosen such that the sampler has time to equilibriate or “burn in”.
Insufficient step count may lead to underestimating the LLC. Excessive step count will not degrade accuracy,
but is unnecessarily time-consuming.

6Technically, the acceptance probability is based on maintaining detailed balance, not necessarily numerical error, as
can be seen in the case of e.g. Metropolis-Hastings. But this is a fine intuition for gradient-based algorithms like MALA
or HMC.
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We recommend increasing the number of steps until the loss, Lm(wt), stops increasing after some period of time.
This can be done with manual inspection of the loss trace. See Figure H.1 for some examples of loss traces and
MALA acceptance probabilities over SGLD trajectories for DLN models at different scales.

It is worth noting that the loss trace should truly be flat — a slow upwards slope can still be indicative of
significant underestimation.

We also recommend that samples during this burn-in period are discarded. That is, loss values should only be
tallied once they have flattened out. This avoids underestimation.

H.3 Other issues and troubleshooting

We note some miscellaneous other issues and some troubleshooting recommendations:

• Negative LLC estimates: This can happen when w∗ fails to be near a local minimum of L(w). However
even when w∗ is a local minimum, we still might get negative LLC estimates if we are not careful. This
can happen when the SGLD trajectory wanders to an area with lower loss than the initialization, causing
the numerator in (13) to be negative. This could be alleviated by smaller step size or shorter chain length.
This, however, risks under-exploration. This can also be alleviated by having larger restoring force γ. This
risks the issue discussed below.

• Large γ: An overly concentrated localizing prior (γ too large) can overwhelm the gradient signal coming
from the log-likelihood. This can result in samples that are different from the posterior, destroying SGLD’s
sensitivity to the local geometry.

To sum up, in pathological cases like the SGLD trajectory falling to lower loss regions or blowing up beyond
floating point limits, we recommend keeping γ small (1.0 to 10.0), gradually lowering the step-size ϵ while
lengthening the sampling chain so that the loss trace still equilibrates.
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Figure H.1: Sample loss trace (blue, left axis) and MALA acceptance probability (red, right axis) over DLN
training trajectories at different model sizes.
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I Learning coefficient of DLN (Aoyagi, 2024)

A DLN is a feedforward neural network without nonlinear activation. Specifically, a biasless DLN with M hidden
layers, layer sizes H1, H2, . . . ,HM and input dimension H0 is given by:

y = f(x,w) = WM . . .W2W1x (25)

where x ∈ RH0 is the input vector and the model parameter w consist of the weight matrices Wj of shape
Hj × Hj−1 for j = 1, . . . ,M . Given a DLN, f(x,w), (c.f. Equation 25) with M hidden layers, layer sizes
H1, H2, . . . ,HM and input dimension H0, the associated regression model with additive Gaussian noise is given
by

p(x, y|w) = q(x)
√
2πσ2

HM
e−

1
2σ2 ∥y−WM ...W2W1x∥2

(26)

where q(x) is some distribution on the input x ∈ RH0 , w = (W1, . . . ,WM ) is the parameter consisting of the
weight matrices Wj of shape Hj ×Hj−1 for j = 1, . . . ,M and σ2 is the variance of the additive Gaussian noise.
Let q(x, y) be the density of the true data generating process and w∗ = (W ∗

1 , . . . ,W
∗
M ) be an optimal parameter

that minimizes the KL-divergence between q(x, y) and p(x, y|w).
Here we shall pause and emphasize that this result gives us the (global) learning coefficient, which is conceptually
distinct from the LLC. They are related: the learning coefficient is the minimum of the LLCs of the global minima
of the population loss. In our experiments, we will be measuring the LLC at a randomly chosen global minimum
of the population loss. While we don’t expect LLCs to differ much among global minima for DLN, we do not
know that for certain and it is of independent interest that the estimated LLC can tell us about the learning
coefficient.

Theorem 1 (DLN learning coefficient, Aoyagi, 2024). Let r := rank (W ∗
M . . .W ∗

2W
∗
1 ) be the rank of the linear

transformation implemented by the true DLN, f(x,w) and set ∆j := Hj − r, for j = 0, . . . ,M . There exist a
subset Σ ⊂ {0, 1, . . . ,M} of indices, Σ = {σ1, . . . , σℓ+1} with cardinality ℓ+1 that satisfy the following conditions:

max{∆σ | σ ∈ Σ} < min{∆k | k ̸∈ Σ}∑
σ∈Σ

∆σ ≥ ℓ ·max{∆σ | σ ∈ Σ}∑
σ∈Σ

∆σ < ℓ ·min{∆σ | σ ̸∈ Σ}.

Assuming that the DLN truth-model pair (q(x, y), p(x, y|w)) satisfies the relatively finite variance condition (Ap-
pendix A.1), their learning coefficient is then given by

λ =
−r2 + r(H0 +HL)

2
+

a(ℓ− a)

4ℓ
− ℓ(ℓ− 1)

4

1

ℓ

ℓ+1∑
j=1

∆σj

2

+
1

2

∑
1≤i<j≤ℓ+1

∆σi
∆σj

.

As we mention in the introduction, trained neural networks are less complex than they seem. It is natural
to expect that this, if true, is reflected in deep networks having more degenerate (good parameters has higher
volume) loss landscape. With the theorem above, we are given a window into the volume scaling behaviour in
the case of DLNs, allowing us to investigate an aspect of this hypothesis.

Figure I.1 shows the the true learning coefficient, λ, and the multiplicity, m, of many randomly drawn DLNs
with different numbers of hidden layers. Observe that λ decreases with network depth.

This plot is generated by creating networks with 2-800 hidden layers, with width randomly drawn from 100-2000
including the input dimension. The overall rank of the DLN is randomly drawn from the range of zero to the
maximum allowed rank, which is the minimum of the layer widths. See also Figure 1 in Aoyagi (2024) for more
theoretical examples of this phenomenon.
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Figure I.1: The top graph shows λ decreasing as the DLN becomes deeper, even though model parameter count
increases with number of layers. The bottom graph shows the true multiplicities, m. Since regular models can
only have m = 1, the graph shows that most of these randomly generated DLNs are singular.
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J Experiment: DLN

We compare the estimated λ̂(w∗) against theoretical λ (with w∗ being a randomly generated true parameter),
by randomly generating many DLNs with different architectures and model sizes that span several orders of
magnitude (OOM). Each DLN is constructed randomly, as follows. Draw an integer M ∼ U(Mlow, . . . ,Mhigh)
as the number of hidden layers, where U(a, . . . , b) denotes the discrete uniform distribution on the finite set
{a, a + 1, . . . , b}. Then, draw layer size Hj ∼ U(Hlow, . . . ,Hhigh) for each j = 0, . . . ,M where H0 denotes the
input dimension. The weight matrix Wj for layer j is then a Hj × Hj−1 matrix with each matrix element
independently sampled from N(0, 1) (random initialization). To obtain a more realistic true parameter, with
probability 0.5, each matrix W ∗

j is modified to have a random rank of r ∼ U(0, . . . ,min(Hj−1, Hj)). For each
DLN generated, a corresponding synthetic training dataset of size n is generated to be used in SGLD sampling.

The configuration values Mlow,Mhigh, Hlow, Hhigh are chosen differently for separate set of experiments with
model size targeting DLN size of different order of magnitude. See Table 1 for the values used in the experiments.
SGLD hyperparameters ϵ, γ, and number of steps are chosen to suit each set of experiments according to our
recommendations outlined in Appendix H. The exact hyperparameter values are given in the following section.

We emphasize that hyperparameters must be tuned independently for different model sizes. In particular, the
required step size for numerical stability tends to decrease for larger models, forcing a compensatory increase in
the step count. See Table 1 for an example of this tuning with scale.

Future work using e.g. µ-parameterization Yang et al. (2022) may be able to alleviate this issue.

J.1 Hyperparameters and further details

As described in the prior section, the experiments shown in Figure 3 consist of randomly constructed DLNs. For
each target order of magnitude of DLN parameter count, we randomly sample the number of layers and their
widths from a different range. We also use a different set of SGLD hyperparameters chosen according to the
recommendation made in Section H. Configuration values that vary across OOM are shown in Table 1 and other
configurations are as follows:

• Batch size used in SGLD is 500.

• The amount of burn-in steps used for SGLD samples is set to 90% of total SGLD chain length, i.e. only the
last 10% of SGLD samples are used in estimating the LLC.

• The parameter γ is set to 1.0.

• For each DLN, f(x,w∗) with a chosen true parameter w∗, a synthetic dataset, {(xi, yi)}i=1,...,n is generated
by randomly sampling each element of the input vector x uniformly from the interval [−10, 10] and by setting
the output as y = f(x,w∗), which effectively means we are setting a very small noise variance σ2.

• For LLC estimation done at a trained parameter instead of the true parameter (shown in Fig J.3), the
network is first trained using SGD with learning rate 0.01 and momentum 0.9 for 50000 steps.

For each target OOM, a number of different experiments are run with different random seeds. The number
of such experiments is determined by our compute resources and is reported in Table 1 with some experiment
failing due to SGLD chains “blowing up” (See discussion in Appendix H) for the SGLD hyperparameters used.
Figure J.4 shows that there is a left tail to the mean MALA acceptance rate distribution that hints at instability
in SGLD chains encountered in some λ̂(w∗) estimation runs.

J.2 Additional plots for DLN experiments

• Figure J.1 is a linear scale version of Figure 3 in the main text. This shows the estimated LLC against the
true learning coefficients for experiments at different model size range without log-scale distortion.

• Figure J.2 shows the relative error (λ− λ̂(w∗))/λ across multiple orders of magnitude of DLN model size.

• Figure J.3 shows the results of an additional experiment, where the network is trained with SGD instead of
initialized at a global minimum.
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OOM Num lay-
ers, Mlow-
Mhigh

Widths,
Hlow-Hhigh

ϵ Num SGLD steps n Num experiments

1k 2-5 5-50 5× 10−7 10k 105 99
10k 2-10 5-100 5× 10−7 10k 105 100
100k 2-10 50-500 1× 10−7 50k 106 100
1M 5-20 100-1000 5× 10−8 50k 106 99
10M 2-20 500-2000 2× 10−8 50k 106 93
100M 2-40 500-3000 2× 10−8 50k 106 54

Table 1: Table of experimental configuration for each batch of experiment at different order of magnitudes
(OOM) in DLN model size. n denotes the training dataset size and ϵ denotes SGLD step size.
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Figure J.1: Supplementary plot to Figure 3. Each plot shows a single batch of DLN experiments with model
size at different orders of magnitude. The SGLD hyperparameter is tuned once for each batch. Their values are
listed in Table 1 In contrast to Figure 3 which is in log scale, all plots here are in linear scale.
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Figure J.2: Relative error of estimated LLC compared to the theoretical learning coefficient, for DLNs across
different orders of magnitude of model size.
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the results of Figure 3, and note that performance is similar.



Edmund Lau, Zach Furman, George Wang, Daniel Murfet, Susan Wei

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Mean MALA Acceptance Probability

0

50

100

150

200

C
ou

nt

Figure J.4: Mean MALA acceptance probability over the entire SGLD trajectory for every DLN experiment.
Model size is not the only factor affecting the correct scale for SGLD step size. Local geometry varies significantly
among different models, and among different neighbourhoods in the parameter space. Without tuning SGLD
hyperparameters individually for each experiment, we get a spread of (mean) MALA acceptance probability over

all experiments. Those with low acceptance probability may indicate poor λ̂(w∗) estimation quality.
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K Experiment: LLC for ResNet

This section provides details for the experiments where we aimed to investigate how LLC vary over neural
network training with different training configuration. These experiments parallel those performed in Dherin
et al. (2022) who propose the geometric complexity measure.

We train ResNet18 (He et al., 2016) on the CIFAR10 dataset (Krizhevsky, 2009) using SGD with cross-entropy
loss. We vary SGD hyperparameters such as learning rate, batch size, momentum and L2-regularization rate
and track the resulting LLC estimates over evenly spaced checkpoints of SGD iterations.

For the LLC estimates to be comparable, we need to ensure that the SGLD hyperparameters used in the LLC
algorithm is the same. To this end, for every set of experiments where we vary a single optimizer hyperparameter,
we first perform a calibration run to select SGLD hyperparameters according to the recommendation out lined
in Appendix H. Once selected, this set of SGLD hyperparameter is then used for all LLC estimation within
the set of experiments. That include the LLC estimation for every checkpoint of every ResNet18 training run
for different optimizer configuration. Also following the same recommendation, we also burn away 90% of the
sample trajectory and only use last 10% of samples. We also note that, since the SGLD hyperparameters are not
tuned for all experiments within a single set, there is a possibility of negative LLC estimates or divergent SGLD
chains. See Appendix H.3 for discussion on such cases and how to troubleshoot them. We manually remove
these cases. They are rare enough that they do not change the LLC curves, just widen the error bars (confidence
intervals) due to having less repeated experiments.

Each experiment is repeated with 5 different random seeds. While the model architecture and dataset (including
the train-test split) is fixed, other factors like the network initialization, training trajectories and SGLD samples
are randomized. In each plot, the error bars show the 95% confidence intervals over 5 repeated experiments of
the statistics plotted. The error bars were calculated using the inbuilt error bar function to Python Seaborn
library (Waskom, 2021) plotting function, seaborn.lineplot(..., errorbar=("ci", 95), ...).

K.1 Details for main text Figures 1

For experiments that vary the learning rate in Figure 1 (top), for each learning rate value in
[0.005, 0.05, 0.01, 0.1, 0.2] we run SGD without momentum with a fixed batch size of 512 for 30000 iterations. LLC
estimations were performed every 1000 iterations with SGLD hyperparameters as follows: step size ϵ = 2×10−7,
chain length of 3000 iterations, batch size of 2048 and γ = 1.0.

For experiments that vary the batch size in Figure 1 (middle), for each batch size value in
[16, 32, 64, 128, 256, 512, 1024] we run SGD without momentum with a fixed learning rate of 0.01 for 100000
iterations. LLC estimations were performed every 2500 iterations with SGLD hyperparameters as follows: step
size ϵ = 2× 10−7, chain length of 2500 iterations, batch size of 2048 and γ = 1.0.

For experiments that vary the SGD momentum in Figure 1 (bottom), for each momentum value in
[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] we run SGD with momentum with a fixed learning rate of 0.05 and
a fixed batch size of 512 for 20000 iterations. LLC estimations were performed every 1000 iterations with SGLD
hyperparameters as follows: step size ϵ = 2×10−7, chain length of 3000 iterations, batch size of 2048 and γ = 1.0.

K.2 Additional ResNet18 + CIFAR10 LLC experiments

Experiments using SGD with momentum We repeat the experiments varying learning rate and batch
size shown in Figure 1 (top and middle) in the main text, but this time we train ResNet18 on CIFAR10 using
SGD with momentum instead. The results are shown in Figure K.1 and the experimental details are as follows:

• For experiments that varies the learning rate (top), for each learning rate value in [0.005, 0.05, 0.01, 0.1, 0.2]
we run SGD with momentum of 0.9 with a fixed batch size of 512 for 30000 iterations. LLC estimations
were performed every 1000 iterations with SGLD hyperparameters as follows: step size ϵ = 2× 10−7, chain
length of 3000 iterations, batch size of 2048 and γ = 1.0.

• For experiments that varies the batch size (bottom), for each batch size value in [16, 32, 64, 128, 256, 512, 1024]
we run SGD with momentum of 0.9 with a fixed learning rate of 0.01 for 100000 iterations. LLC estimations
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were performed every 2500 iterations with SGLD hyperparameters as follows: step size ϵ = 2× 10−7, chain
length of 2500 iterations, batch size of 2048 and γ = 1.0.

Explicit L2-regularization We also run analogous experiments using explicit L2-regularization. We trained
ResNet18 on CIFAR10 dataset using SGD both with and without momentum using the usual cross-entropy
loss but with an added L2-regularization term, α∥w∥22 where w denotes the network weight vector and α is the
regularization rate hyperparameter that we vary in this set of experiments. Similar to other experiments in this
section, we track LLC estimates over evenly-spaced training checkpoints. However, it is worth noting that the
loss function used for SGLD sampling as part of the LLC estimation is the original cross-entropy loss function
without the added L2-regularization term.

The results are shown in Figure K.2 and the details are as follows:

• For the experiment with momentum (Figure K.2 top), for each regularization rate α ∈
[0.0, 0.01, 0.025, 0.05, 0.075, 0.1], we run SGD with momentum of 0.9 with a fixed learning rate of 0.0005
and batch size of 512 for 15000 iterations. LLC estimations were performed every 500 iterations with SGLD
hyperparameters as follows: step size ϵ = 5 × 10−8, chain length of 2000 iterations, batch size of 2048 and
γ = 1.0.

• For the experiment without momentum (Figure K.2 bottom), for each regularization rate α ∈
[0.0, 0.01, 0.025, 0.05, 0.075, 0.1], we run SGD without momentum with a fixed learning rate of 0.001 and
batch size of 512 for 50000 iterations. LLC estimations were performed every 1000 iterations with SGLD
hyperparameters as follows: step size ϵ = 5 × 10−8, chain length of 2000 iterations, batch size of 2048 and
γ = 1.0.
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Figure K.1: Impact of varying different training configuration believed to exert implicit regularization pressure
when training ResNet18 on CIFAR10 data using SGD with momentum (contrast with those without momentum
reported in Figure 1 in the main text). Top: varying learning rate. Bottom: varying batch size.



Edmund Lau, Zach Furman, George Wang, Daniel Murfet, Susan Wei

0 2500 5000 7500 10000 12500 15000
Iteration

0

2000

4000

6000

8000

L
L

C
E

st
im

at
e

0 2500 5000 7500 10000 12500 15000
Iteration

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Te
st

A
cc

ur
ac

y

0 2500 5000 7500 10000 12500 15000
Iteration

0

50

100

150

200

250

300

Tr
ai

n
L

os
s

L2-regularization
0.0
0.01
0.025
0.05
0.075
0.1

0 10000 20000 30000 40000 50000
Iteration

0

2000

4000

6000

8000

L
L

C
E

st
im

at
e

0 10000 20000 30000 40000 50000
Iteration

0.4

0.5

0.6

0.7

Te
st

A
cc

ur
ac

y

0 10000 20000 30000 40000 50000
Iteration

0

100

200

300

400

500

600
Tr

ai
n

L
os

s
L2-regularization

0.0
0.01
0.025
0.05
0.075
0.1

Figure K.2: Impact of varying explicit L2-regularization rate when training ResNet18 on CIFAR10 data using
SGD with (top) and without (bottom) momentum.
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L Additional Experiment: LLC for language model

The purpose of this experiment is simply to verify that the LLC can be consistently estimated for a transformer
trained on language data. In Figure L.1, we show the LLC estimates for ŵ∗

n at the end of training over a few
training runs. We see the LLC estimates are a small fraction of the 3.3m total parameters. We also notice
that the value of the LLC estimates are remarkably stable over multiple training runs. See Appendix L for
experimental details.

Figure L.1: SGLD-based LLC estimates for ŵ∗
n at the end of training an attention-only transformer on subset of

the Pile dataset. The distribution reports LLC estimates over 10 training repetitions. Again the LLC is a tiny
fraction of the 3.3m parameters in the transformer.

We trained a two-layer attention-only (no MLP layers) transformer architecture on a resampled subset of the
Pile dataset Gao et al. (2020); Xie et al. (2023) with a context length of 1024, a residual stream dimension of
dmodel = 256, and 8 attention heads per layer. The architecture also uses a learnable Shortformer embedding
Press et al. (2021) and includes layer norm layers. Additionally, we truncated the full GPT-2 tokenizer, which
has a vocabulary of around 50,000 tokens, down to the first 5,000 tokens in the vocabulary to reduce the size of
the model. The resulting model has a total parameter count of d = 3, 355, 016. We instantiated these models
using an implementation provided by TransformerLens Nanda and Bloom (2022).

We trained 10 different seeds over a single epoch of 50,000 steps with a minibatch size of 100, resulting in about
5 billion tokens used during training for each model. We used the AdamW optimizer with a weight decay value
of 0.05 and a learning rate of 0.001 with no scheduler.

We run SGLD-based LLC estimation once at the end of training for each seed at a temperature of β = 1/ log(100).
We set γ = 100 and ϵ = 0.001. We take samples over 20 SGLD chains with 200 draws per chain using a validation
set.
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M Additional Experiment: MALA versus SGLD

Here we verify empirically that our SGLD-based LLC estimator (Algorithm 1) does not suffer from using mini-
batch loss for both SGLD sampling and LLC calculation. Specifically, we compare to LLC estimation via Equa-
tion 13 and the Metropolis-adjusted Langevin Algorithm (MALA), a standard gradient-based MCMC algorithm
Roberts and Rosenthal (1998). Notice that this comparison rather stacks the odds against the minibatch-version
SGLD-based LLC estimator in Algorithm 1 so that it is all the more surprising we see such good results below.

We test with a two-hidden-layer ReLU network with ten inputs, ten outputs, and twenty neurons per hidden layer.
Denote the inputs by x, the parameters by w, and the output of this network f(x,w). The data are generated to
create a “realizable” data generating process, with “true parameter” w∗: inputs X are generated from a uniform
distribution, and labels Y are (noiselessly) generated based on the true network, so that Yi = f(Xi, w

∗).

Hyperparameters and experimental details are as follows. We sweep dataset size from 100 to 100000, and compare
our LLC estimator and the MALA-based one. For all dataset sizes, SGLD batch size was set to 32 and γ = 1.0,
and MALA and SGLD shared the same true parameter w∗ (set at random according to a normal distribution).
Both MALA and SGLD used a step size of 1e-5 and the asymptotically optimal inverse temperature β∗ = 1/ log n.
Experiments were run on CPU.
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Figure M.1: We compare LLC estimation using SGLD with LLC estimation using MALA. They make similar
estimates (top) but the SGLD-based method is significantly faster (bottom), especially for large dataset sizes.

The results are summarized in Figure M.1. We find that across all dataset sizes, the SGLD and MALA estimates
of the LLC agree (Figure M.1, top), but the SGLD-based estimate has far lower computational cost, especially
as the dataset size grows (Figure M.1, bottom).
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N Additional Experiment: SGD versus eSGD

We fit a two hidden-layer feedforward ReLU network with 1.9m parameters to MNIST using two stochastic
optimizers: SGD and entropy-SGD (Chaudhari et al., 2019). We choose entropy-SGD because its objective is to

minimize Fn(w
∗, γ) over w∗, so we expect that the local minima found by entropy-SGD will have lower λ̂(w∗).

Figure N.1 shows the LLC estimates λ̂(ŵ∗
n) for ŵ∗

n at the end of training, optimized by either entropy-SGD or
standard SGD. Notice the LLC estimates, for both stochastic optimizers, are on the order of 1000, much lower
than the 1.9m parameters in the ReLU network.

Figure N.1: LLC estimates for ŵ∗
n at the end of training a feedforward ReLU network on MNIST. The distribution

reports λ̂(ŵ∗
n) over 80 training repetitions where the training data remains fixed in this repetition, only the

randomness in the stochastic optimizer is being modded out. We compare two stochastic optimizers – SGD and
entropy-SGD. Note all λ̂(ŵ∗

n) are on the order of 1000 while the parameter count in the ReLU network is 1.9m.

Figure N.1 confirms our expectation that entropy-SGD finds local minima with lower LLC, i.e., entropy-SGD
is attracted to more degenerate (simpler) critical points than SGD. Interestingly Figure N.1 also reveals that
the LLC estimate has remarkably low variance over the randomness of the stochastic optimizer. Finally it is
noteworthy that the LLC estimate of a learned NN model for both stochastic optimizers is, on average, a tiny
percentage of the total number of weights in the NN model: λ̂(w∗) ≈ 1000.

In this experiment, we trained a feedforward ReLU network on the MNIST dataset Deng (2012). The dataset
consists of 60000 training samples and 10000 testing samples. The network is designed with 2 hidden layers
having sizes [1024, 1024], and it contains a total of 1863690 parameters.

For training, we employed two different optimizers, SGD and entropy-SGD, minimizing cross-entropy loss. Both
optimizers are set to have learning rate of 0.01, momentum parameter at 0.9 and batch size of 512. SGD is
trained with Nesterov look-ahead gradient estimator. The number of samples L used by entropy-SGD for local
free energy estimation is set to 5. The network is trained for 200 epochs. The number of epochs is chosen so
that the classification error rate on the training set falls below 10−4.

The hyperparameters used for SGLD are as follows: ϵ is set to 10−5, chain length to 400 and the minibatch size
512, and γ = 100. We repeat each SGLD chain 4 times to compute the variance of estimated quantities and also
as a diagnostic tool, a proxy for estimation stability.
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O Additional Experiment: scaling invariance

In Appendix C, we show theoretically that the theoretical LLC is invariant to local diffeomorphism. Here we
empirically verify that our LLC estimator (with preconditioning) is capable of satisfying this property in a
specific easy-to-test case (though we do not test it in general).

The function implemented by a feedforward ReLU networks is invariant to a type of reparameterization known
as rescaling symmetry. Invariance of other measures to this symmetry is not trivial or automatic, and other
geometric measures like Hessian-based basin broadness have been undermined by their failure to stay invariant
to these symmetries Dinh et al. (2017).

For simplicity, suppose we have a two-layer ReLU network, with weights W1,W2 and biases b1, b2. Then rescaling
symmetry is captured by the following fact, for some arbitrary scalar α:

W2ReLU(W1x+ b1) + b2 = αW2ReLU
(
1
αW1x+ 1

αb1
)
+ b2

That is, we may choose new parameters W ′
1 = 1

αW1, b
′
1 = 1

αb1,W
′
2 = αW2, b

′
2 = b2 without affecting the input-

output behavior of the network in any way. This symmetry generalizes to any two adjacent layers in ReLU
networks of arbitrary depth.

Given that these symmetries do not affect the function implemented by the network, and are present globally
throughout all of parameter space, it seems like these degrees of freedom are “superfluous”, and should ideally
not affect our tools. Importantly, this is the case for the LLC.

We verify empirically that this property also appears to hold for our LLC estimator, when proper preconditioning
is used.

O.1 Preconditioned SGLD

We must slightly modify our SGLD sampler to perform this experiment tractably. This is because applying
rescaling symmetry makes the loss landscape significantly anisotropic, forcing prohibitively small step sizes with
the original algorithm.

Thus we add preconditioning to the SGLD sampler from Section 4.5, with the only modification being a fixed
preconditioning matrix A:

∆wt = A
ϵ

2

β∗n

m

∑
(x,y)∈Bt

∇ log p(y|x,wt) + γ(w∗ − wt)

+N(0, ϵ) (27)

In the experiment to follow, this preconditioning matrix is hardcoded for convenience, but if this algorithm is to
be used in practice, the preconditioning matrix must be learned adaptively using standard methods for adaptive
preconditioning (Haario et al., 1999).

O.2 Experiment

We take a small feedforward ReLU network, and rescale two adjacent layers in the network by α in the fashion
described above. We vary the value of α across eight orders of magnitude and measure the estimated LLC using
Eq 27 for SGLD sampling and Eq 13 for calculating LLC from samples.7

Crucially, we must use preconditioning here so as to avoid prohibitively small step size requirements. In this
case, the preconditioning matrix A is set manually, to be a diagonal matrix with entries α2 for parameters
corresponding to W1 and b1, entries

1
α2 for W2, and entries 1 otherwise.8

7Note that this means that we are not using Algorithm 1 here, both because of preconditioned SGLD and because we
are calculating LLC using full-batch loss instead of mini-batch loss.

8In practical situations, the preconditioning matrix cannot be set manually, and must be learned adaptively. Standard
methods for adaptive preconditioning exist in the MCMC literature Haario et al. (2001, 1999).
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Figure O.1: LLC estimation is invariant to rescaling symmetries in ReLU networks. As the rescaling parameter
α is varied over eight orders of magnitude, the estimated value of the LLC remains invariant (up to statistical
error). The small error bar across multiple SGLD runs illustrates the stability of the estimation method. Model
layer sizes, including input dimension is shown in the legend.

The results can be found in Figure O.1. We conclude that LLC estimation appears invariant to ReLU network
rescaling symmetries.
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P Compute resources disclosure

Specific details about each type of experiment we carried out are listed below. Additional compute resources
were required for finding suitable SGLD hyperparameters for LLC estimation, but they did not significantly
impact the overall resource requirement.

ResNet18 + CIFAR10 experiments. Each experiment, i.e. training a ResNet18 for the reported number
of iteration and performing LLC estimation for the stated number of checkpoints, is run on a node with either a
single V100 or A100 NVIDIA GPU depending on availability hosted on internal HPC cluster with 2 CPU cores
and 16GB memory allocated. No significant storage required. Each experiment took between a few minutes to
3 hours depending on the configuration (mean: 87.6 minutes, median: 76.7 minutes).

Estimated total compute is 287 GPU hours spread across 208 experiments.

DLN experiments. Each experiment, either estimating LLC at the true parameter or at a trained SGD
parameter (thus require training), is run on a single A100 NVIDIA GPU node hosted on internal HPC cluster
with 2 CPU cores and no more than 8GB memory allocated. No significant storage required. Each experiment
took less than 15 minutes.

Estimated total compute is 150 GPU hours: 600 experiments (including failed ones) each around 15 GPU
minutes.

MNIST experiments. Each repetition of training a feedforward ReLU network using SGD or eSGD optimizer
on MNIST data and estimating the LLC at the end of training is run on a single A100 NVIDIA GPU node hosted
on internal HPC cluster with 8 CPU cores and no more than 16GB memory allocated. No significant storage
required. Each experiment took less than 10 minutes.

Estimated total compute is 27 GPU hours: 2 sets of 80 repetitions, 10 GPU minutes each.

Language model experiments. Training the language model and estimating its LLC at the last checkpoint
took around 30 minutes on Google Colab on a single A100 NVIDIA GPU with 84GB memory and 1 CPU
allocated. The storage space used for the training data is around 27GB.

Estimated total compute is 5 GPU hours: 10 repetitions of 30 GPU minutes each.


