
Towards a mathematical theory for
consistency training in diffusion models

Gen Li* Zhihan Huang* Yuting Wei
The Chinese University of Hong Kong University of Pennsylvania University of Pennsylvania

Abstract

Consistency models, which were proposed to
mitigate the high computational overhead dur-
ing the sampling phase of diffusion models,
facilitate single-step sampling while attaining
state-of-the-art empirical performance. When
integrated into the training phase, consistency
models attempt to train a sequence of consis-
tency functions capable of mapping any point
at any time step of the diffusion process to its
starting point. Despite the empirical success,
a comprehensive theoretical understanding of
consistency training remains elusive. This pa-
per takes a first step towards establishing the-
oretical underpinnings for consistency models.
We demonstrate that, in order to generate
samples within ε proximity to the target in
distribution (measured by some Wasserstein
metric), it suffices for the number of steps in
consistency learning to exceed the order of
d5/2/ε, with d the data dimension. Our theory
offers rigorous insights into the validity and
efficacy of consistency models, illuminating
their utility in downstream inference tasks.

1 Introduction

Diffusion models (Sohl-Dickstein et al. (2015); Song
and Ermon (2019); Ho et al. (2020)) have garnered
growing interest in recent years due to their impressive
capabilities in a wide swath of generative modeling
tasks, such as image synthesis, video generation, and
audio synthesis (Dhariwal and Nichol (2021); Ramesh
et al. (2022); Rombach et al. (2022); Kong et al. (2020);
Ho et al. (2022); Popov et al. (2021)). In comparison

*The first two authors contributed equally. Proceedings
of the 28th International Conference on Artificial Intelli-
gence and Statistics (AISTATS) 2025, Mai Khao, Thailand.
PMLR: Volume 258. Copyright 2025 by the author(s).

with other deep generative models, such as Generative
Adversarial Networks, which oftentimes suffer from
training instability and mode collapse, diffusion models
are capable of generating high-fidelity samples based on
learning the gradient of the log-density function or the
score function. On a high level, diffusion models concen-
trate on two processes: a forward Markov process that
gradually degrades data into noise, and a reverse-time
stochastic or deterministic process that starts from
pure noise, performs iterative denoising to generate
new data that resemble true data samples in distribu-
tion. Interestingly, while the forward process is often
straightforwardly designed by progressively injecting
more noise into the data samples, it is feasible to revert
the process and ensure (almost) matching marginals as
the forward process, as long as faithful score function
estimates are obtainable (Anderson (1982); Haussmann
and Pardoux (1986)).

Nevertheless, given that diffusion models generate new
data by implementing a sequence of steps in the reverse
process (with each step computing the score function
by evaluating a large neural network), they often in-
cur substantially higher computational cost compared
to other single-step generative modeling algorithms,
thereby limiting their sampling efficiency in real-time
applications. To remedy this issue, there has been an
explosion of efforts in developing acceleration proce-
dures to speed up the sampling process in diffusion
generative modeling (e.g. Song and Ermon (2020); Lu
et al. (2022a,b); Zhao et al. (2023); Zhang and Chen
(2022); Xue et al. (2023); Luhman and Luhman (2021);
Salimans and Ho (2022); Song et al. (2023); Li et al.
(2024)). Among these efforts, training-based methods,
exemplified by progressive distillation and consistency
models hold great promises in producing samplers that
are computationally efficient and ready for real-time
implementation without sacrificing sampling fidelity
(Salimans and Ho (2022); Meng et al. (2023); Sun et al.
(2023); Song et al. (2023)).

In this paper, our focal point is the consistency model,
which was originally proposed by Song et al. (2023)
and claims the state-of-the-art performance. In a nut-

Mathematical theory for consistency training

shell, the consistency model seeks to learn a function
that is able to map any point at any time step of the
diffusion process to the process’ starting point (the
end corresponding to the data distribution). In the
sampling phase, the consistency model enables sample
generation with only a single evaluation of the neural
network. The surprising efficacy of consistency models
has been demonstrated in various image datasets, in-
cluding CIFAR-10, ImageNet 64× 64, LSUN 256× 256,
and also video generation (Song et al. (2023); Wang
et al. (2023)), to name just a few. This approach has
received considerable recent attention, covering vari-
ous extensions (e.g. Song and Dhariwal (2023); Kim
et al. (2023)) as well as applications beyond genera-
tive models (e.g. reinforcement learning Ding and Jin
(2023)).

Despite the aforementioned mind-blowing empirical
successes, however, a theoretical understanding of con-
sistency models remains elusive even in the most basic
setting. In light of the flexibility and versatility of the
consistency model idea (which only requires enforcing
some self-consistency conditions), establishing theoreti-
cal underpinnings for these models not only provides
rigorous justifications for their validity, but also yields
practical implications in downstream inference tasks
by providing theoretical benchmarks to compare dif-
ferent training strategies. However, the challenge in
establishing theoretical performance guarantees lies in
understanding the role of consistency enforcement in
preserving the sampling fidelity.

An overview of our contributions. In this paper,
we take a first step towards establishing theoretical
support for consistency models, focusing on consistency
training (namely, applying the consistency model idea
from the training stage). More specifically, we consider
a consistency training paradigm that recursively learns
a sequence of functions {ft}1≤t≤T , in the hope that the
ultimate sampling process can be readily completed
by evaluating fT (XT) with XT ∼ N (0, Id). Our theory
reveals that: it is sufficient for consistency training to
take a number of steps exceeding the order of

d5/2

ε
(1)

up to some logarithmic factor in order to generate
samples that are 2ε close in distribution to the target
data distribution (measured by the Wasserstein metric).
Here, d denotes the dimension of the target distribution,
and we omit the logarithm factors and dependence on
other universal constants. In other words, it tells us
how many steps need to be included in the training
stage in order to enable one-shot sampling that achieves
the desirable sampling fidelity.

Notation. We introduce a couple of notation to be
used throughout this paper. Given two probability
measures µ and ν on Rd, we denote by C(µ, ν) the set
of all couplings of µ and ν (i.e., all joint distributions
γ(x, y) whose marginals coincide with µ and ν, respec-
tively). The Wasserstein distance of order q between
these two distributions is defined as

Wq(µ, ν) :=

(
inf

γ∈C(µ,ν)
E

(x,y)∼γ

[
‖x− y‖q2

])1/q

, (2)

and we often employ Wq(X,Y) for random variables X
and Y to denote the Wasserstein distance between dis-
tributions of X and Y. In addition, given any two func-
tions f(d, T) and g(d, T), we write f(d, T) . g(d, T)
or f(d, T) = O(g(d, T)) (resp. f(d, T) & g(d, T)) if
there exists some universal constant C1 > 0 such that
f(d, T) ≤ C1g(d, T) (resp. f(d, T) ≥ C1g(d, T)) for all
d and T . Furthermore, the notation Õ(·) is defined
analogously to O(·) except that the logarithmic depen-
dency is hidden. Given a matrix M ∈ Rd×d, we denote
‖M‖ as the operator norm of M.

2 Preliminaries

In this section, we introduce the basics of diffusion gen-
erative modeling and consistency models. While the
consistency model was originally motivated to acceler-
ate the probability flow ODE sampler and distill infor-
mation from a pre-trained model, the idea of promoting
consistency along the trajectory can be incorporated
directly into the training stage, which we focus on in
this paper.

2.1 Diffusion-based generative models

Forward process. As briefly mentioned above, in
diffusion generative models, one starts from a forward
process and progressively perturbs the data into pure
noise, where the noise distribution is often chosen to
be Gaussian. The forward process is often modeled
as solution to an Itô stochastic differential equation
(SDE)

dXt = f(Xt, t)dt+ g(t)dWt (0 ≤ t ≤ T), (3)

where Wt corresponds to a standard Brownian motion,
f(·, t) : Rd → Rd is a vector-valued function that de-
termines the drift of this process, and g(·) : R→ R is a
function that adjusts the variance of the injected noise.
We shall adopt the notation qt := Law(Xt) through-
out to represent the distribution of Xt in this forward
process. In particular, q0 := Law(X0) is our target
distribution to generate samples from, and it is also
frequently denoted by pdata. A popular special case that
motivates DDPM and DDIM algorithms (Song et al.

Gen Li, Zhihan Huang, Yuting Wei

(2020); Ho et al. (2020); Nichol and Dhariwal (2021))
is to take f(Xt, t) = − 1

2β(t)Xt and g(t) =
√
β(t) for

some function β(·) (which can be interpreted as deter-
mining the learning rate schedule). The SDE defined
above then reduces to

X0 ∼ pdata,

dXt = −1

2
β(t)Xtdt+

√
β(t) dWt (4)

for any 0 ≤ t ≤ T .

Given the continuous-time nature of the above forward
process, it would oftentimes be helpful to look at the
discrete-time counterpart instead. More specifically,
consider the following discrete-time random process:

X0 ∼ pdata, (5a)

Xt =
√

1− βtXt−1 +
√
βtWt, 1 ≤ t ≤ T, (5b)

with T representing the total number of steps. Here,
we denote by {βt} ⊆ (0, 1) the prescribed learning rates
that control the strength of the noise injected at each
step, and {Wt}1≤t≤T a sequence of independent noise
vectors drawn from Wt

i.i.d.∼ N (0, Id). If we further
define αt and αt such that

αt = 1− βt, αt/αt−1 = αt, 1 ≤ t ≤ T, (6)

one can write

Xt =
√
αtX0 +

√
1− αtW t

for some W t ∼ N (0, Id). (7)

In practice, αT is oftentimes chosen to be vanishingly
small (as long as T is large enough), so as to make
sure that the distribution qT of XT is approximately
N (0, Id).

Reverse process. Reversing the above process in
time leads to a process that transforms noise into sam-
ples with distribution approximately equal to pdata,
which is how diffusion models generate data.

A popular sampler, called the Denoising Diffusion Im-
plicit Model (DDIM) Karras et al. (2022); Song et al.
(2020, 2021), leverages upon the so-called probability
flow ODE. More precisely, consider the following ODE
famliy

Y ode
0 ∼ qT ,

dY ode
t =

1

2
β(T − t)

(
Y ode
t +∇ log qT−t(Y

ode
t)

)
dt (8)

for all 0 ≤ t ≤ T , which again yields matching marginal
distributions for Xt as

Y ode
T−t

d
= Xt, 0 ≤ t ≤ T.

Evidently, to implement such a process, it requires
obtaining faithful estimates of the score function 1

st(X) := ∇X log qt(X). (9)

It is noteworthy that this deterministic ODE-based
approach is often faster than the SDE-based approach
(Song et al. (2021)), which has also been justified in
theory (Li et al. (2023)).

We note that the probability flow ODE considered here
in (8) is slightly different from the one in Song et al.
(2023), the latter of which takes the form

dYt = −t∇ log qt(Yt)dt (10)

and corresponds to the forward process dXt =
√

2tdWt.
In particular, if the covariance of X0 is equal to Id,
then qT is close to a Gaussian distribution N (0, T 2Id)
(so that the covariance explodes), whereas in the pro-
cess (7), the covariance for Xt is preserved and equals
Id throughout the trajectory.

Finally, we note that recent years have witnessed re-
markable theoretical advances towards understanding
the sampling performance of diffusion models. A highly
incomplete list includes Block et al. (2020); De Bortoli
et al. (2021); Liu et al. (2022); De Bortoli (2022); Lee
et al. (2023); Pidstrigach (2022); Chen et al. (2022b);
Tang (2023); Benton et al. (2023a); Chen et al. (2022a,
2023b); Tang and Zhao (2024); Li et al. (2023). In par-
ticular, the recent works Chen et al. (2022b,a); Benton
et al. (2023a); Chen et al. (2023b,a); Li et al. (2023)
have established the convergence rates of both the
DDPM and DDIM samplers, as well as their stability
against `2 score estimation errors.

2.2 Consistency training

While the probability flow ODE approach already
achieves much faster sampling compared to the DDPM
sampler, it still requires a large number of steps (or
equivalently, a large number of neural network evalua-
tions) and does not yet meet the demand for real-time
sample generation. This motivates the development
of the consistency model as a means to accomplish
sampling in one step (Song et al. (2023)).

Specifically, given a solution trajectory {xt}t∈[ε,T] of
the probability ODE in (8), a consistency function is a
parametrized function (parameterized by θ) designed
to achieve

fθ : (xt, t)
ideally−→ xε for all t ∈ [ε, T], (11)

1For notational convenience, we also adopt the short-
hand notation ∇ log qt(X) to denote the score function (by
suppressing the dependency on X).

Mathematical theory for consistency training

which maps a point xt at time t back to the desired
sample xε. Therefore, given a well-trained consistency
model fθ, in the sampling phase, instead of recursively
applying denoising function pθ(xt−1 | xt) as the reverse
diffusion process in diffusion model, it suffices to eval-
uate fθ(x̂T , T) once to produce an approximation of
x̂ε. By doing so, one forward pass through the consis-
tency model (or one evaluation of the neural network)
suffices to generate a sample that mimics the target
distribution.

When the consistency approach is integrated into the
training phase, it entails an iterative procedure to find
suitable parameterization θ. More specifically, the idea
put forward by Song et al. (2023) is to minimize a cer-
tain consistency training objective over the parameter
θ where

minimize
θ

Lθ−(θ)

:= E
[
λ(tn) · dist

(
fθ(X0 + tn+1Z, tn+1),

fθ−(X0 + tnZ, tn)
)]
, (12)

where the time horizon [ε, T] is discretized into N − 1
sub-intervals, with boundaries t1 = ε < t2 < . . . <
tN = T .2 Here, dist(·, ·) is some distance measure be-
tween two vectors in d dimension, λ(·) is some weighting
function, and θ− is some moving average of θ during
the course of training. The expectation is taken over
X0 ∼ pdata, Z ∼ N (0, Id) and n drawn uniformly from
{0, 1, . . . , N}.

3 A non-asymptotic convergence
theory for consistency training

3.1 Assumptions and setup

Before delving into our main results, let us intro-
duce several notation and terminologies. To sim-
plify the analysis, in the following maniscript, we use
αt = exp

(
−
∫ t
0
β(t)dt

)
to be the noise level in the

forawrd process at time t, where β(t) is coefficient in
SDE (4)(Ho et al., 2020). For any 0 < α < 1, we
denote

X(α) =
√
αX0 +

√
1− αZ, (13)

sα(x) = ∇x log pX(α)(x), (14)

to be primal variable and score function at noise level
α, where X0 ∼ pdata and Z ∼ N (0, Id). By this change
of variables, compared with Xt in SDE (4), we have

Xt
d
= X(αt), st(x) := sαt(x),

2The exact formulas for {ti}1≤i≤N can be found in Song
et al. (2023).

which enable us to use α as the index variable which
amounts to use t.

Also, we denote Φt→k(x) to be the trajectory of the
probability flow ODE (8) from time t to k with the
initial condition Xt = x. Thus, by the property of the
probability flow ODE, we have Φt→k(Xt)

d
= Xk. The

schedule of β(t) in (8) is to be determined. We refer
our readers to (25) for the specific schedule used in the
analysis.

With these definitions in mind, the probability flow
ODE can be written in the following equivalent form:

Φt→k(x) = gt(x, αk), (15)

where gt is defined as the solution to the following PDE

∂gt(x, α)

∂α
=

1

2α

(
gt(x, α) + sα(gt(x, α))

)
, (16)

and the boundary condition gt(x, αt) = x. In fact,
the relatioship (15) can be directly derived from αk =

exp
(
−
∫ k
0
β(t)dt

)
and change of varibles formula. Fur-

ther, property (16) holds true for the entire ODE tra-
jectory in the sense that for any 0 < α ≤ αt, we have
gt(Xt, α)

d
= X(α).

For notational simplicity, we shall denote

φt := Φt→t−1 and Φt := Φt→1, (17)

and it satisfies

Φt→k(x) = Φk+1→k ◦ · · ·Φt−1→t−2 ◦ Φt→t−1(x)

= φk+1(φk+2(· · ·φt(x) · · ·)).

The parameter θ are trained according to (12) without
a pre-trained backward process. Our main result is
established under the following two assumptions.
Assumption 3.1. Assume that for 1 ≤ k < t ≤ T ,
Φt→k is Lf -Lipschitz continuous such that∥∥Φt→k(x)− Φt→k(y)

∥∥
2
≤ Lf‖x− y‖2. (18)

Assumption 3.2. Suppose there exists ε :=
∑
t εt > 0

such that the parameter θ trained according to (12)3

converges to some θ̂ satisfying

E
[∥∥fθ̂(√αtX0 +

√
1− αtZ, t)

− f?
θ̂

(
√
αtX0 +

√
1− αtZ, t)

∥∥2
2

]
≤ ε2t , (19)

where

f?
θ̂

= arg min
f

E
[∥∥f(

√
αtX0 +

√
1− αtZ, t)

− fθ̂(
√
αt−1X0 +

√
1− αt−1Z, t− 1)

∥∥2
2

]
.

(20)
3Here, we consider the `2 distance and an equivalent

scaling regime, i.e., tn =
√
α−1
t − 1.

Gen Li, Zhihan Huang, Yuting Wei

In words, Assumption 3.1 requires the mappings from
Xt to Xk to be Lipschitz continuous for every k and t.
By the definition of Φt→k, this assumption also ensures
that the score function st remains Lipschitz continu-
ous throughout the forward process. Intuitively, this
Lipschitz condition helps to control how error propa-
gates with time as we learn the consistency functions.
Without this condition, a one-step sampler might fail
to generate high-quality samples. We can further re-
lax this assumption to be held in the averaged sense
instead of point-wisely. More specifically, if we replace
Assumption 3.1 with the following condition

E
[
‖∇Φt→k(x)‖3

]
≤ L3

f , (21)

and all the analysis in Appendix A still hold.

Assumption 3.2 is concerned with the estimation er-
ror of fθ̂ relative to f?

θ̂
. In the following, for ease of

presentation, we shall let

ft(
√
αtX0 +

√
1− αtZ) := fθ̂(

√
αtX0 +

√
1− αtZ, t).

Then the above assumption means that the functions
{ft}1≤t≤T satisfy

T∑
t=1

E
[∥∥ft(√αtX0 +

√
1− αtZ)

− f?t (
√
αtX0 +

√
1− αtZ)

∥∥
2

]
≤ ε,

where

f?t :=E
[
ft−1

(√
αt−1X0 +

√
1− αt−1Z

)∣∣∣∣
√
αtX0 +

√
1− αtZ

]
.

More generally, if one is only allowed to optimize over
a specific function class F , let the optimal solution
within that class as

fFt := arg min
f∈F

E
[∥∥f(

√
αtX0 +

√
1− αtZ)

− ft−1(
√
αt−1X0 +

√
1− αt−1Z)

∥∥2
2

]
. (22)

Assumption 3.2 can be further relaxed to asking

T∑
t=1

E
[∥∥ft(√αtX0 +

√
1− αtZ)

− fFt (
√
αtX0 +

√
1− αtZ)

∥∥
2

]
≤ ε,

T∑
t=1

E
[∥∥fFt (

√
αtX0 +

√
1− αtZ)

− f?t (
√
αtX0 +

√
1− αtZ)

∥∥
2

]
≤ εF ,

for quantities ε, εF ≥ 0. We will establish our main
results based on this more general assumption. When
εF = 0, our results reduces to the case when the origi-
nal form of Assumption 3.2 holds. In addition, it can
be seen that Assumption 3.2 involves two sources of
errors in the training process: (i) ε controls the esti-
mation error of the consistency functions {ft}1≤t≤T
we have obtained. As the training sample size n in-
creases, suitable optimization methods converge to the
best approximation in F , thus ε → 0; (ii) εF corre-
sponds to the approximation error of restricting the
consistency functions to lie within some fixed function
class F , where εF = 0 for function classes with large
capacity (or representation power) like neural networks.
We remark that the optimization step (12) for obtain-
ing {ft}1≤t≤T is typically accomplished through proper
training of large neural networks. Given the complex-
ity of developing an end-to-end theory, we adopt the
common divide-and-conquer strategy and decouple the
training phase with the sampling phase. In the sequel,
we shall focus our attention on quantifying the sam-
pling fidelity, assuming small estimation/optimization
errors in the training phase.

Target data distribution. To streamline our main
proof, we impose an additional constraint on the target
data distribution, namely,

P(‖X0‖2 ≤ T cR) = 1, (24)

where X0 ∼ pdata and cR > 0 is some arbitrarily large
constant. This assumption covers a broad family of
data distribution with polynomially large support size.
We remark that this constraint can be replaced by some
careful assumptions on the tail probability of the target
data distribution, and the resulting proof is expected
to be similar.

Learning rate schedule. Finally, let us specify the
choice of β(t) and corresponding learning rate schedule
{αt}1≤t≤T we would like to employ during consistency
training (12). We choose β(t) in SDE (4) and (8) such
that they satisfies for some large enough numerical
constants c0, c1 > 0,

α1 = α1 = 1− 1

T c0
; (25a)

αt = 1− c1 log T

T
min

{
β1

(
1+

c1 log T

T

)t
, 1

}
; (25b)

αt =

t∏
i=1

αi, t = 2, . . . , T. (25c)

Note that we only need to specify αt for t ∈ Z+ (since
the consistency function is trained on samples from
dicretized time points), and β(t) can be chosen to

Mathematical theory for consistency training

be any continuous function that satisfies the above
conditions.

Such scheduled learning rates have been employed in
the prior work Li et al. (2023) to achieve the desired
convergence guarantees and are similar to what is used
in practice, as suggested by Song et al. (2023). A couple
of other useful properties about these learning rates
are provided in Appendix A.

3.2 Main results

We are now positioned to state our main theoretical
guarantees for consistency training.
Theorem 3.3. Suppose the learning rates are selected
according to (6) and the target distribution satisfies
property (24). Under Assumptions 3.1 and 3.2, it
obeys

W1

(
fT (XT), X1) < C1

L3
fd

5/2 log5 T

T
+ ε+ εF (26)

for some universal constant C1 > 0.

In Theorem 3.3, we characterize the convergence of
backward process starting from XT , the noisy version
of the initial distribution, which corresponds to the mul-
tistep sampling procedure in Song et al. (2023). When
running the backward process from the pure noise, we
have the following result by similar analysis. Let Z
be a truncated Gaussian random noise in Rd, where
pZ(x) ∝ pZ(x)1(‖x‖2 ≤ T c) for Z ∼ N (0, Id) and some
constant c > 0 large enough. Notice that since c is
large enough, this truncation makes exponentially small
difference in the sampling process (By Gaussian tail
probability, we have P(‖Z‖2 > T c) ≤ exp(−Ω(T 2c))).
Based on our main theorem above, we have the follow-
ing result immediately:
Corollary 3.4. Under the same setting as Theo-
rem 3.3, the backward process starting from Z shares
the same convergence rate as in Theorem 3.3:

W1(fT (Z), X1) < C2

L3
fd

5/2 log5 T

T
+ ε+ εF . (27)

for some universal constant C2 > 0.

We note the high probability statement used here is
mainly from the analysis in Wasserstein metric, and can
be removed, i.e. replace Z by Z in the above corollary
by adopting more assumptions, e.g., the Lipchitzness
assumption in Theorem 1 in Song et al. (2023). To
illustrate our result, we demonstrate in Figure 1 the
convergence of the consistency model when the target
distribution is a 10-dimensional Gaussian distribution.4

4We estimate the W1 distance between our output and
the target distribution based on samples, as there is no
close-form formula to compute the W1 distance for high-
dimensional distributions.

20 40 60 80 100
T

1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7

W
1

W1 distance between output and target distribution
Finite Sample error
95% Confidence interval

Figure 1: The convergence of consistency models for
learning a 10-dimensional heterogeneous Gaussian dis-
tribution. The W1 distance between our output and
the target distribution is estimated by 2000 samples
from both distributions and the confidence intervals
are obtained from 200 repetitions. The red dash line
indicates that finite-sample error from consistency func-
tion training and W1 distance estimation.

To better understand this result, we provide some re-
marks below in order.

• In our results, we consider the convergence towards
X1 instead of X0 to avoid the explosion of the
score functions, which is a standard practice in the
theory and practical training of diffusion models
and appears across diffusion models literature (see,
e.g. Benton et al. (2023a); Li et al. (2023) among
others). Notice that since the step size is chosen
to be exponentially small, the distribution of X1

is exponentially close to X0. More specifically, it
can be easily shown that

W1(X1, X0) <
1

poly(T)
,

which implies the convergence towards target data
distribution X0 combining with the triangle in-
equality.

• Theorem 3.3 implies that, in order to achieve a
sampling error of 2(ε + εF)—in the sense that
W1

(
fT (XT), X1) ≤ 2(ε+ εF)—it is sufficient for

the number of steps in consistency training to
exceed

Õ
(L3

fd
5/2

ε+ εF

)
, (28)

where d denotes the dimension of the target dis-
tribution. In particular, if the function class F

Gen Li, Zhihan Huang, Yuting Wei

is rich enough and the approximation error εF
equals zero, then the number of steps required

is about the order of L3
fd

5/2

ε . This result offers
an explicit characterization of the dependence of
the Lipschitz constant as well as the dimension of
the problem in the worst case scenario. In real
applications, the target distribution often enjoys
some low-dimensional structures, which can lead
to a better performance than the worst-case guar-
antee (see, e.g. Li and Yan (2024); Huang et al.
(2024)). As far as we are aware, this is the first
result that theoretically measures the sampling
fidelity of consistency models, which serve as a
theoretical justification for consistency models as
a family of generative models. As alluded to pre-
viously, compared to the popular diffusion models,
consistency models bear the benefit of one-step
sampling, requiring only a single function evalua-
tion at the sampling stage instead of undergoing
recursive denoising. Consequently, our theoret-
ical result provides insights into when one-step
sampling is reliable.

• We remark that prior results concerning conver-
gence guarantees for diffusion models mostly con-
sider weaker metrics such as the TV distance or
KL divergence (e.g., Chen et al. (2022a); Benton
et al. (2023a)). In terms of the Wasserstein metric,
the existing results often encounter an exponential
dependence on the smoothness parameter of the
score function (e.g., Benton et al. (2023b); Tang
and Zhao (2024)). This is mainly due to a di-
rect use of Grönwall’s inequality, which provides
comparisons to the solution to the initial value
problem. Tackling this exponential dependence
is regarded as a challenging open problem. Our
result is, however, not directly comparable with
these results as the smoothness assumption is im-
posed instead on the mapping between random
variables along the forward trajectory.

• The learning schedule (cf. (6)) adopted in this pa-
per decays exponentially when T is close to 0 and
remains constant when T far from 0. This type of
schedule is commonly used in the training of diffu-
sion models, as seen in Li et al. (2023); Chen et al.
(2022a); Li et al. (2024), and plays an essential role
in deriving our convergence results. We note that
our analysis framework can accommodate other
decaying schedules as well, although alternative
schedules may lead to slower convergence guaran-
tees. The design of this learning schedule aims to
balance two key factors: the discretization error,
which depends crucially upon the quantity 1−αt

1−αt ,
and the initialization error, which depends on α1.
By managing this balance, this schedule ensures

that errors are minimized effectively throughout
the learning process.

Comparisons with consistency distillation. In
this work, we concentrate our attention on the consis-
tency training method as proposed in Song et al. (2023).
Unlike the consistency distillation method (see, Song
et al. (2023); Lyu et al. (2023)), consistency training
integrates the learning of consistency functions directly
in the training phase. Therefore, analyzing its perfor-
mance requires studying the joint distribution of Xt−1
and Xt, as well as investigating how training errors
propagate over time. In contrast, consistency distil-
lation constructs the consistency functions based on
a pre-trained score estimate. This pre-trained score
estimate serves as an effective initialization for esti-
mating consistency functions. Given an accurate score
estimate, our proof technique can be readily extended
to study the distillation-based approach by incorpo-
rating the error of the score estimation into our error
decomposition (see, eq. (29)).

A brief proof outline. Before concluding, let us
take a moment to provide a brief proof outline for
this result; the full technical details are postponed to
Appendix A and C. In order to prove Theorem 3.3,
we find it helpful to study how the error ‖ft(Xt) −
Φt(Xt)‖2 propagates along the probability flow ODE
path. Specifically, we establish the following recursive
relation for each t, where

E
[
‖ft(Xt)−Φt(Xt)‖2

]
−E
[
‖ft−1(Xt−1)−Φt−1(Xt−1)‖2

]
≤ E

[
‖ft(Xt)− fFt (Xt)‖2

]
+ E

[
‖fFt (Xt)− f?t (Xt)‖2

]
+ E

[∥∥∂Φt−1
∂x

(
φt(Xt)

)(
E
[
Xt−1 |Xt

]
− φt(Xt)

)∥∥
2

]
+ E

[∫ 1

0

(
∂Φt−1
∂x

(Xt−1(γ))− ∂Φt−1
∂x

(
φt(Xt)

))
(
Xt−1 − φt(Xt)

)
dγ
]
.

(29)

Here, we denote Xt−1(γ) := γXt−1 + (1− γ)φt(Xt). If
the right-hand side of (29) can be properly controlled,
then Theorem 3.3 can be easily established by applying
this relation recursively. Consequently, it boils down to
bounding each term on the right-hand side separately.
Towards this, the first two terms are concerned with the
optimization error and approximation error in training
the consistency function, which can be controlled in
view of Assumption 3.2.

When it comes to the last two terms, in view of the
Taylor expansion, we make the following observation

E
∥∥∥∥∂ΦT−1

∂x

(
φT (XT)

)(
E
[
XT−1 |XT

]
− φT (XT)

)∥∥∥∥
2

Mathematical theory for consistency training

+ E
[∥∥∥∥ ∫ 1

0

(
∂ΦT−1
∂x

(XT−1(γ))− ∂ΦT−1
∂x

(
φT (XT)

))
(
XT−1 − φT (XT)

)
dγ

∥∥∥∥
2

]
≤LfE

[∥∥E[Xt−1 |Xt

]
− φt(Xt)

∥∥
2

]
+ sup

γ
E
[∥∥∥∥∂Φt−1

∂x
(Xt−1(γ))− ∂Φt−1

∂x

(
φt(Xt)

)∥∥∥∥∥∥Xt−1 − φt(Xt)
∥∥
2

]
.

(30)

While the Lipschitz property of Φt→k allows us to con-
trol terms involving derivatives, the main difficulty
lies in controlling E[Xt−1 |Xt] − φt(Xt) as well as
Xt−1 − φt(Xt). Accomplishing this requires a careful
study of the probability flow ODE in (16). We would
also like to point out that the analyses of the probabil-
ity flow ODE are inspired by the framework established
in Li et al. (2023). The two terms resulting from the
decomposition in (30) are then controlled separately.

Regarding the first term, the main challenge is to track
the dynamics of φt(Xt). It is equivalent to studying the
ODE flow, for which the evolution of the score function
plays a crucial role. We characterize the properties
of the score function by means of the following two
lemmas, which will be proven in Appendix C.

Lemma 3.5. For Xt ∼
√
αtX0 +

√
1− αtZ, where

X0 ∼ pdata and Z ∼ N (0, Id), the second moment of
the score function satisfies

E
[
‖st(Xt)‖22

]
≤ d

1− αt
.

Lemma 3.6. Let Xt be defined in the same way as in
Lemma 3.5. For the pre-selected {αi}1≤i≤t and then
corresponding αt, αt−1, we can deduce, as T grows,
that

E
[∥∥∥ ∫ αt−1

αt

√
αt

α3

(
sα(gt(Xt, α))− st(Xt)

)
dα
∥∥∥2
2

]
.

(1− αt)4d3 log3 T

(1− αt)3
.

In words, Lemma 3.5 provides a bound on the second
moment of the score function during the forward pro-
cess. By virtue of the definition of the ODE flow in
(16), this lemma ensures that the backward process will
not change too fast. In addition, Lemma 3.6 is a key
technical result that allows us to estimate the ODE
flow reliably. It tells us that, for the step size schedule
we select, the score function only moves a little bit
from its original value during one step, which implies
that we can discretize the continuously varying score

function with a small cost. With these useful proper-
ties at hand, we can readily describe the conditional
expectation via the score functions, and cope with the
remaining term E[Xt−1 |Xt] in the similar spirit. The
two parts of analyses, taken collectively, lead to the
following desired result:

E
[∥∥E[Xt−1 |Xt

]∥∥
2
− φt(Xt)

]
.
d3/2 log7/2 T

T 2
,

when T →∞.

When it comes to the second term, the primary task is
to tackle the following quantity:∥∥∥∥∂Φt−1

∂x
(Xt−1(γ))− ∂Φt−1

∂x

(
φt(Xt)

)∥∥∥∥2.
Notably, this is not easy to estimate since it involves
Φt−1, which represents a long backward trajectory from
t−1 to 1. To cope with this issue, we once again invoke
the discretization strategy: attempting to estimate the
effect in a single step, and accumulating the effect along
the trajectory in a careful manner. The one-step effect
is controlled by means of the lemma below.
Lemma 3.7. For 2 ≤ k < t ≤ T , Xt and Xt−1(γ) :=
γXt−1 + (1− γ)φt(Xt), when T →∞, it holds that

E
∥∥∥∥∂φk∂x (Φt−1→k(Xt−1(γ))

)
− ∂φk
∂x

(
Φt→k(Xt)

)∥∥∥∥2
.

(1− αk)2(1− αt)2L2
fd

4 log4 T

(1− αk)2(1− αt)
+

(1− αt)4d4 log4 T

(1− αt)2
.

The proof of Lemma 3.7 and the detailed derivations
for the accumulated error are provided in Appendix C.
The core of the proof lies in studying the stability of
the backward ODE flow (16). We aim to show that,
with high probability, the trajectory of the backward
ODE flow is stable when the starting point xt moves
a little bit towards some directions. Therefore, the
derivative function (e.g. ∂φt/∂x) can also be proven
to be stable with high probability. With stability of
Φt→k resulting from Assumption 3.1, this deduction
eventually leads to our proof of Lemma 3.7. Applying
the Cauchy-Schwartz inequality would then result in

E
[∥∥∥∥∂Φt−1

∂x
(Xt−1(γ))− ∂Φt−1

∂x

(
φt(Xt)

)∥∥∥∥∥∥Xt−1−φt(Xt)
∥∥
2

]
.
L3
fd

5/2 log5 T

T 2

when T →∞.

It is worth noting that the complete proofs of the re-
sults mentioned above are carried out in a more delicate
way. We truncate these expectations based on some
pre-selected typical events, and obtain high-probability

Gen Li, Zhihan Huang, Yuting Wei

bounds. Then, we attempt to analyze samples outside
the event directly with sufficient knowledge of pdata.
Future research could consider how different kinds of
“knowledge”, such as different forms of tail probabil-
ity, affect out analysis and convergence rates. See
Appendix A for more details.

4 Discussion

In this work, we have developed a rigorous mathemat-
ical framework for analyzing consistency training in
diffusion models. Given a set of consistency functions
with sufficiently small training error, we have pinned
down the finite-sample performance for the consistency
model in terms of the Wasserstein metric, with explicit
dependencies on the problem parameters. The analysis
framework laid out in the current paper might poten-
tially be applicable to other generative and distillation
models, such as the progressive training procedure in
Salimans and Ho (2022).

Moving forward, we highlight several possible directions
worthy of future investigation. For instance, it remains
unclear whether our theory offers optimal dependen-
cies on the Lipschitz constant of the Φt→k mappings
and the ambient dimension d. Can we further refine
our theory in order to obtain tighter dependencies or
establish matching lower bounds? In addition, our
theory decouples the training phase from the sampling
phase by assuming a small optimization/estimation
error. It would be of great interest to consider whether
one can establish end-to-end results that combine these
two phases. Moving beyond consistency models, it
would also be interesting to compare our theory—in
terms of sampling efficiency—with other generative
sampling methods, such as accelerated ODE and SDE
methods (Song and Ermon (2020); Lu et al. (2022a)).

5 Acknowledgements

Gen Li is supported in part by the Chinese University
of Hong Kong Direct Grant for Research and the Hong
Kong Research Grants Council ECS 2191363. Y. Wei
is supported in part by the NSF grants CCF-2106778,
CCF-2418156 and CAREER award DMS-2143215.

References

Anderson, B. D. (1982). Reverse-time diffusion equa-
tion models. Stochastic Processes and their Applica-
tions, 12(3):313–326.

Benton, J., De Bortoli, V., Doucet, A., and Deligian-
nidis, G. (2023a). Linear convergence bounds for
diffusion models via stochastic localization. arXiv
preprint arXiv:2308.03686.

Benton, J., Deligiannidis, G., and Doucet, A. (2023b).
Error bounds for flow matching methods. arXiv
preprint arXiv:2305.16860.

Block, A., Mroueh, Y., and Rakhlin, A. (2020).
Generative modeling with denoising auto-
encoders and Langevin sampling. arXiv preprint
arXiv:2002.00107.

Chen, H., Lee, H., and Lu, J. (2022a). Improved
analysis of score-based generative modeling: User-
friendly bounds under minimal smoothness assump-
tions. arXiv preprint arXiv:2211.01916.

Chen, S., Chewi, S., Lee, H., Li, Y., Lu, J., and Salim,
A. (2023a). The probability flow ode is provably fast.
arXiv preprint arXiv:2305.11798.

Chen, S., Chewi, S., Li, J., Li, Y., Salim, A., and Zhang,
A. R. (2022b). Sampling is as easy as learning the
score: theory for diffusion models with minimal data
assumptions. arXiv preprint arXiv:2209.11215.

Chen, S., Daras, G., and Dimakis, A. G. (2023b).
Restoration-degradation beyond linear diffusions: A
non-asymptotic analysis for DDIM-type samplers.
arXiv preprint arXiv:2303.03384.

De Bortoli, V. (2022). Convergence of denoising diffu-
sion models under the manifold hypothesis. arXiv
preprint arXiv:2208.05314.

De Bortoli, V., Thornton, J., Heng, J., and Doucet, A.
(2021). Diffusion Schrödinger bridge with applica-
tions to score-based generative modeling. Advances
in Neural Information Processing Systems, 34:17695–
17709.

Dhariwal, P. and Nichol, A. (2021). Diffusion models
beat gans on image synthesis. Advances in neural
information processing systems, 34:8780–8794.

Ding, Z. and Jin, C. (2023). Consistency models as
a rich and efficient policy class for reinforcement
learning. arXiv preprint arXiv:2309.16984.

Haussmann, U. G. and Pardoux, E. (1986). Time
reversal of diffusions. The Annals of Probability,
pages 1188–1205.

Ho, J., Chan, W., Saharia, C., Whang, J., Gao, R.,
Gritsenko, A., Kingma, D. P., Poole, B., Norouzi,
M., Fleet, D. J., et al. (2022). Imagen video: High
definition video generation with diffusion models.
arXiv preprint arXiv:2210.02303.

Ho, J., Jain, A., and Abbeel, P. (2020). Denoising
diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33:6840–6851.

Huang, Z., Wei, Y., and Chen, Y. (2024). Denoising
diffusion probabilistic models are optimally adap-
tive to unknown low dimensionality. arXiv preprint
arXiv:2410.18784.

Mathematical theory for consistency training

Hyvärinen, A. (2005). Estimation of non-normalized
statistical models by score matching. Journal of
Machine Learning Research, 6(4).

Karras, T., Aittala, M., Aila, T., and Laine, S. (2022).
Elucidating the design space of diffusion-based gen-
erative models. In Advances in Neural Information
Processing Systems, volume 35, pages 26565–26577.

Kim, D., Lai, C.-H., Liao, W.-H., Murata, N., Takida,
Y., Uesaka, T., He, Y., Mitsufuji, Y., and Ermon,
S. (2023). Consistency trajectory models: Learning
probability flow ode trajectory of diffusion. arXiv
preprint arXiv:2310.02279.

Kong, Z., Ping, W., Huang, J., Zhao, K., and Catan-
zaro, B. (2020). Diffwave: A versatile diffusion model
for audio synthesis. arXiv preprint arXiv:2009.09761.

Lee, H., Lu, J., and Tan, Y. (2023). Convergence
of score-based generative modeling for general data
distributions. In International Conference on Algo-
rithmic Learning Theory, pages 946–985.

Li, G., Huang, Y., Efimov, T., Wei, Y., Chi, Y., and
Chen, Y. (2024). Accelerating convergence of score-
based diffusion models, provably. arXiv preprint
arXiv:2403.03852.

Li, G., Wei, Y., Chen, Y., and Chi, Y. (2023).
Towards faster non-asymptotic convergence for
diffusion-based generative models. arXiv preprint
arXiv:2306.09251.

Li, G. and Yan, Y. (2024). Adapting to unknown
low-dimensional structures in score-based diffusion
models. arXiv preprint arXiv:2405.14861.

Liu, X., Wu, L., Ye, M., and Liu, Q. (2022). Let us
build bridges: Understanding and extending diffusion
generative models. arXiv preprint arXiv:2208.14699.

Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., and Zhu,
J. (2022a). DPM-Solver: A fast ODE solver for
diffusion probabilistic model sampling in around 10
steps. Advances in Neural Information Processing
Systems, 35:5775–5787.

Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., and Zhu,
J. (2022b). DPM-Solver++: Fast solver for guided
sampling of diffusion probabilistic models. arXiv
preprint arXiv:2211.01095.

Luhman, E. and Luhman, T. (2021). Knowledge dis-
tillation in iterative generative models for improved
sampling speed. arXiv preprint arXiv:2101.02388.

Lyu, J., Chen, Z., and Feng, S. (2023). Convergence
guarantee for consistency models. arXiv preprint
arXiv:2308.11449.

Meng, C., Rombach, R., Gao, R., Kingma, D., Ermon,
S., Ho, J., and Salimans, T. (2023). On distillation
of guided diffusion models. In Proceedings of the

IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 14297–14306.

Nichol, A. Q. and Dhariwal, P. (2021). Improved denois-
ing diffusion probabilistic models. In International
Conference on Machine Learning, pages 8162–8171.

Pidstrigach, J. (2022). Score-based generative models
detect manifolds. arXiv preprint arXiv:2206.01018.

Popov, V., Vovk, I., Gogoryan, V., Sadekova, T., and
Kudinov, M. (2021). Grad-tts: A diffusion proba-
bilistic model for text-to-speech. In International
Conference on Machine Learning, pages 8599–8608.
PMLR.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and
Chen, M. (2022). Hierarchical text-conditional im-
age generation with CLIP latents. arXiv preprint
arXiv:2204.06125.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. (2022). High-resolution image synthesis
with latent diffusion models. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
pages 10684–10695.

Salimans, T. and Ho, J. (2022). Progressive distillation
for fast sampling of diffusion models. arXiv preprint
arXiv:2202.00512.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N.,
and Ganguli, S. (2015). Deep unsupervised learn-
ing using nonequilibrium thermodynamics. In In-
ternational Conference on Machine Learning, pages
2256–2265.

Song, J., Meng, C., and Ermon, S. (2020). De-
noising diffusion implicit models. arXiv preprint
arXiv:2010.02502.

Song, Y. and Dhariwal, P. (2023). Improved techniques
for training consistency models. arXiv preprint
arXiv:2310.14189.

Song, Y., Dhariwal, P., Chen, M., and Sutskever,
I. (2023). Consistency models. arXiv preprint
arXiv:2303.01469.

Song, Y. and Ermon, S. (2019). Generative model-
ing by estimating gradients of the data distribution.
Advances in neural information processing systems,
32.

Song, Y. and Ermon, S. (2020). Improved techniques
for training score-based generative models. Advances
in neural information processing systems, 33:12438–
12448.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar,
A., Ermon, S., and Poole, B. (2021). Score-based
generative modeling through stochastic differential
equations. International Conference on Learning
Representations.

Gen Li, Zhihan Huang, Yuting Wei

Sun, W., Chen, D., Wang, C., Ye, D., Feng, Y., and
Chen, C. (2023). Accelerating diffusion sampling
with classifier-based feature distillation. In 2023
IEEE International Conference on Multimedia and
Expo (ICME), pages 810–815. IEEE.

Tang, W. (2023). Diffusion probabilistic models.
preprint.

Tang, W. and Zhao, H. (2024). Contractive
diffusion probabilistic models. arXiv preprint
arXiv:2401.13115.

Vincent, P. (2011). A connection between score match-
ing and denoising autoencoders. Neural computation,
23(7):1661–1674.

Wang, X., Zhang, S., Zhang, H., Liu, Y., Zhang, Y.,
Gao, C., and Sang, N. (2023). Videolcm: Video latent
consistency model. arXiv preprint arXiv:2312.09109.

Xue, S., Yi, M., Luo, W., Zhang, S., Sun, J., Li, Z.,
and Ma, Z.-M. (2023). SA-Solver: Stochastic Adams
solver for fast sampling of diffusion models. arXiv
preprint arXiv:2309.05019.

Zhang, Q. and Chen, Y. (2022). Fast sampling of
diffusion models with exponential integrator. arXiv
preprint arXiv:2204.13902.

Zhao, W., Bai, L., Rao, Y., Zhou, J., and Lu, J. (2023).
UniPC: A unified predictor-corrector framework for
fast sampling of diffusion models. arXiv preprint
arXiv:2302.04867.

Checklist

The checklist follows the references. For each question,
choose your answer from the three possible options: Yes,
No, Not Applicable. You are encouraged to include
a justification to your answer, either by referencing
the appropriate section of your paper or providing a
brief inline description (1-2 sentences). Please do not
modify the questions. Note that the Checklist section
does not count towards the page limit. Not including
the checklist in the first submission won’t result in
desk rejection, although in such case we will ask you
to upload it during the author response period and
include it in camera ready (if accepted).

In your paper, please delete this instructions
block and only keep the Checklist section head-
ing above along with the questions/answers be-
low.

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Not Applicable]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
[Not Applicable]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Not
Applicable]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Not Applicable]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Not Applicable]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. [Not Applicable]

(b) The license information of the assets, if appli-
cable. [Not Applicable]

(c) New assets either in the supplemental material
or as a URL, if applicable. [Not Applicable]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Not Applicable]

Mathematical theory for consistency training

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Not Applicable]

Gen Li, Zhihan Huang, Yuting Wei

A Proof of Theorem 3.3

A.1 Preliminary properties

Before diving into our main analysis, we collect several auxiliary facts and properties that shall be used frequently
throughout this proof.

Properties of learning rates. First, we enumerate some of useful properties about the learning rates as
specified by {αt} in (6).

αt ≥ 1− c1 log T

T
≥ 1

2
, 1 ≤ t ≤ T (31a)

1

2

1− αt
1− αt

≤ 1

2

1− αt
αt − αt

≤ 1− αt
1− αt−1

≤ 4c1 log T

T
, 2 ≤ t ≤ T (31b)

1 ≤ 1− αt
1− αt−1

≤ 1 +
4c1 log T

T
, 2 ≤ t ≤ T (31c)

αT ≤
1

T c2
. (31d)

In the last line, c2 ≥ 1000 is some large numerical constant. All the properties hold provided that T is large
enough. The proof of these properties can be found in (Li et al., 2023, Appendix A.2)

Truncation on typical events. Next, let us introduce the following event:

Et :=

{
(xt, xt−1) ∈ Rd × Rd

∣∣∣− log pXt(xt) ≤ c3d log T,

‖xt−1 − xt/
√
αt‖2 ≤ c4

√
d(1− αt) log T

}
, (32)

where c3 and c4 are some numerical constants to be specified later. Generally speaking, E encompasses a typical
range of the values of (Xt, Xt−1), and some part of our analysis proceed by seperately considering the points in E
and those outside E . While truncated on E , there are some nice continuity properties on the trajectories, and for
(xt, xt−1) ∈ Ec, we have

P
(
(Xt, Xt−1) /∈ E

)
=

∫
(xt,xt−1)/∈E

pXt−1(xt−1)pXt |Xt−1
(xt |xt−1)dxt−1dxt

=

∫
(xt,xt−1)/∈E

pXt−1(xt−1)
1(

2π(1− αt)
)d/2

exp

(
−
‖xt −

√
αtxt−1‖22

2(1− αt)

)
dxt−1dxt

≤ exp
(
− c4d log T

)
, (33)

which can be a high order term in T when c4 is large enough.

On the typical event E , the score and density functions behave regularly, which are clarified by the following two
lemmas from Li et al. (2023).
Lemma A.1 (Li et al. (2023), Lemma 1). Consider any xt ∈ Rd satisfying − log pXt(xt) ≤ c3d log T for some
large enough constant c3. Then it holds that

E
[∥∥√αtX0 − xt

∥∥
2

∣∣Xt = xt
]
.
√
d(1− αt) log T , (34a)

E
[∥∥√αtX0 − xt

∥∥2
2

∣∣Xt = xt

]
. d(1− αt) log T, (34b)

E
[∥∥√αtX0 − xt

∥∥3
2

∣∣Xt = xt

]
.
(
d(1− αt) log T

)3/2
. (34c)

Lemma A.1 implies that ifXt taking on a “typical” value, then condition on it, the vector
√
αtX0−Xt =

√
1− αtW t

might still follow a sub-Gaussian tail, whose expected norm remains on the same order of that of an unconditional
Gaussian vector N (0, (1− αt)Id).

Mathematical theory for consistency training

Lemma A.2 (Li et al. (2023), Lemma 2). Consider any two points xt, xt−1 ∈ Rd obeying

− log pXt(xt) ≤
1

2
c3d log T, and

∥∥∥∥xt−1 − xt√
αt

∥∥∥∥
2

≤ c4
√
d(1− αt) log T (35)

for some large constants c3, c4 > 0. Then we have

pXt−1
(x) =

(
1 +O

(√d(1− αt) log T

1− αt

))
pXt(x),

and for all γ ∈ [0, 1],

− log pXt−1

(
xt(γ)

)
≤ c6d log T. (36)

In other words, Lemma A.2 ensures that if xt falls within a typical set of Xt and the point xt−1 is not too far away
from xt/

√
αt, then xt−1 is also a typical value of Xt−1. Lemma A.2 here is in a slightly different form from the

original version in Li et al. (2023) due to a different definition of xt−1(γ). Notice that using the inequality (59),
the proof of Lemma 2 in Li et al. (2023) remains valid with the new definition of xt−1(γ), so we keep the original
statement of this lemma.

A.2 Main analysis

Throughout this proof, we shall use capital letters to denote random vectors, and lower case letters to denote their
corresponding realizations, i.e. for some specific point in the sample space ω ∈ Ω, we could write xt := Xt(ω) and
xt−1 := Xt−1(ω).

First, notice that X1
d
= ΦT (XT), which gives

W1

(
fT (XT), X1) =W1

(
fT (XT),ΦT (XT)

)
≤ E

[
‖fT (XT)− ΦT (XT)‖2

]
.

To control the right hand side above, let us introduce a piece of notation

ξt(x) := ft(x)− Φt(x), (37)

and we claim that ξt satisfies the following recursive relation with ξ1 = 0:

ξt(xt) = E
[
ξt−1(Xt−1) |Xt = xt

]
+
(
ft(xt)− fFt (xt)

)
+
(
fFt (xt)− f?t (xt)

)
+
∂Φt−1
∂x

(
φt(xt)

)(
E
[
Xt−1 |Xt = xt

]
− φt(xt)

)
+ E

[∫ 1

0

(
∂Φt−1
∂x

(Xt−1(γ))− ∂Φt−1
∂x

(
φt(xt)

))(
Xt−1 − φt(xt)

)
dγ
∣∣∣Xt = xt

]
, (38)

where we let

xt−1(γ) := γxt−1 + (1− γ)φt(xt) (39)

for γ ∈ [0, 1]. We leave its derivation to Section C.1. In addition, let us denote Xt−1(γ) = γXt−1 + (1− γ)φt(Xt),
and the above relation implies that

E
[∥∥ξT (XT)

∥∥
2

]
≤ E

[∥∥ξT−1(XT−1)
∥∥
2

]
+ E

[∥∥fT (XT)− fFT (XT)
∥∥
2

]
+ E

[∥∥fFT (XT)− f?T (XT)
∥∥
2

]
+ E

{∥∥∥∥∂ΦT−1
∂x

(
φT (XT)

)(
E
[
XT−1 |XT

]
− φT (XT)

)∥∥∥∥
2

+ E
[∥∥∥∥ ∫ 1

0

(
∂ΦT−1
∂x

(XT−1(γ))− ∂ΦT−1
∂x

(
φT (XT)

))
(
XT−1 − φT (XT)

)
dγ

∥∥∥∥
2

]}
(40)

Gen Li, Zhihan Huang, Yuting Wei

(i)
≤

T∑
t=1

E
[∥∥ft(Xt)− fFt (Xt)

∥∥
2

]
+ E

[∥∥fFt (Xt)− f?t (Xt)
∥∥
2

]
+

T∑
t=2

{
∂Φt−1
∂x

(
φt(Xt)

)
E
[∥∥E[Xt−1 |Xt

]
− φt(Xt)

∥∥
2

]
+

∫ 1

0

E
[∥∥∥∥∂Φt−1

∂x
(Xt−1(γ))− ∂Φt−1

∂x

(
φt(Xt)

)∥∥∥∥∥∥Xt−1 − φt(Xt)
∥∥
2
dλ

]}
(ii)
≤ ε+ εF +

T∑
t=2

{
LfE

[∥∥E[Xt−1 |Xt

]
− φt(Xt)

∥∥
2

]
+ sup

γ
E
[∥∥∥∥∂Φt−1

∂x
(Xt−1(γ))− ∂Φt−1

∂x

(
φt(Xt)

)∥∥∥∥∥∥Xt−1 − φt(Xt)
∥∥
2

]}
,

= ε+ εF + T1 + T2, (41)

where relation (i) applies inequality (40) recursively and relation (ii) invokes the triangle inequality and Assump-
tion 3.1. In the following, we proceed to bound the latter two terms separately.

Control quantity T1. Let us start with the term T1, where the goal is to control each quantity in the summation,
which is E

[∥∥E[Xt−1 |Xt

]
− φt(Xt)

∥∥2
2

]
. Recalling the backward ODE flow (16) that Φt→k(x) := gt(x, αk) and

∂gt(x, α)

∂α
=

1

2α

(
gt(x, α) + sα(gt(x, α))

)
, and gt(x, αt) = x,

it is easy to check that

∂
(

1√
α
gt(x, α)

)
∂α

=
1

2α
3
2

sα(gt(x, α)). (42)

As a result, we can track the backward process with the score function as:
√
αtφt(Xt) = Xt + (

√
αtΦt→t−1(Xt)− Φt→t(Xt))

= Xt +
√
αt

∫ αt−1

αt

1

2α3/2
sα(gt(Xt, α))dα

= Xt + (1−
√
αt)st(Xt) +

1

2

∫ αt−1

αt

√
αt

α3

(
sα(gt(Xt, α))− st(Xt)

)
dα. (43)

For the remaining term, we first apply the definition of the forward process:

√
αtE

[
Xt−1 |Xt

]
=
√
αtE

[√
αt−1X0 +

√
1− αt−1Z |Xt =

√
αtX0 +

√
1− αtZ

]
= Xt + E

[(√
αt − αt −

√
1− αt

)
Z |Xt =

√
αtX0 +

√
1− αtZ

]
. (44)

The previous work on score matching admits a minimum mean square error (MMSE) form for the score function
(e.g. Hyvärinen (2005); Vincent (2011); Chen et al. (2022b)):

sα := arg min
s:Rd→Rd

E
[∥∥∥∥s(√αX0 +

√
1− αZ) +

1√
1− α

Z
∥∥∥2
2

]
,

which leads to an alternative expression by the change of variables:

sα(x) = E
[
− 1√

1− α
Z
∣∣∣ √αX0 +

√
1− αZ = x

]
. (45)

Mathematical theory for consistency training

Plugging equation (45) into (44), we obtain
√
αtE

[
Xt−1 |Xt

]
= Xt +

(
1− αt −

√
(1− αt)(αt − αt)

)
st(Xt), (46)

which when combined with (44) yields
√
αtφt(Xt)−

√
αtE

[
Xt−1 |Xt

]
=
(

(1−
√
αt)− (1− αt) +

√
(1− αt)(αt − αt)

)
st(Xt)

+
1

2

∫ αt−1

αt

√
αt

α3

(
sα(gt(Xt, α))− st(Xt)

)
dα. (47)

With equations (43) and (46) in place, we arrive at

E
[∥∥φt(Xt)− E

[
Xt−1 |Xt

]∥∥2
2

]
=

1

αt
E
[∥∥√αtφt(Xt)−

√
αtE

[
Xt−1 |Xt

]∥∥2
2

]
=

1

αt
E

[∥∥∥(− (1− αt) +
√

(1− αt)(αt − αt) + (1−
√
αt)
)
st(Xt)

+
1

2

∫ αt−1

αt

√
αt

α3

(
sα(gt(Xt, α))− st(Xt)

)
dα
∥∥∥2
2

]

≤ 2

αt

(
−
√

1− αt
(√

1− αt −
√
αt − αt

)
+ (1−

√
αt)
)2

E
[
‖st(Xt)‖22

]
+

1

2αt
E
[∥∥∥ ∫ αt−1

αt

√
αt

α3

(
sα(gt(Xt, α))− st(Xt)

)
dα
∥∥∥2
2

]
.

In view of the Taylor expansion, we can further control the right hand side above as

E
[∥∥φt(Xt)− E

[
Xt−1 |Xt

]∥∥2
2

]
≤ 2

αt

(
−
(1− αt

2
− (1− αt)2

8(1− αt)

)
+
(1− αt

2
+

(1− αt)2

8

))2

E
[
‖st(Xt)‖22

]
+O

((1− αt)5

αt(1− αt)5/2
)
E
[
‖st(Xt)‖22

]
+

1

2αt
E
[∥∥∥ ∫ αt−1

αt

√
αt

α3

(
sα(gt(Xt, α))− st(Xt)

)
dα
∥∥∥2
2

]
.

(1− αt)4

(1− αt)2
E
[
‖st(Xt)‖22

]
+ E

[∥∥∥ ∫ αt−1

αt

√
αt

α3

(
sα(gt(Xt, α))− st(Xt)

)
dα
∥∥∥2
2

]
. (48)

To further control the right hand side of expression (48), we introduce the following Lemma A.3 and Lemma A.4,
which provide upper bounds for the two expectations in (48) respectively. The proofs of these lemmas can be
found in Sections C.2 and C.3 respectively.
Lemma A.3. For Xt ∼

√
αtX0 +

√
1− αt Z, where X0 ∼ pdata and Z ∼ N (0, Id), the second moment of the

score function satisfies

E
[
‖st(Xt)‖22

]
≤ d

1− αt
.

Moreover, for any 0 < α < 1, the lemma still holds when replace αt with α.
Lemma A.4. For Xt defined the same as in Lemma A.3, pre-selected {αi}1≤i≤t and corresponding αt, αt−1, we
deduce that

E
[∥∥∥ ∫ αt−1

αt

√
αt

α3

(
sα(gt(Xt, α))− st(Xt)

)
dα
∥∥∥2
2

]
.

(1− αt)4d3 log3 T

(1− αt)3
.

Gen Li, Zhihan Huang, Yuting Wei

In view of Lemma A.3 and Lemma A.4, the right hand side of (48) is further controlled as

E
[∥∥φt(Xt)− E

[
Xt−1 |Xt

]∥∥2
2

]
.

(1− αt)4d
(1− αt)3

+
(1− αt)4d3 log3 T

(1− αt)3

.
(1− αt)4d3 log3 T

(1− αt)3
. (49)

Now by properties of the step sizes mentioned in (31b), this upper bound can be simplified as

E
[∥∥φt(Xt)− E

[
Xt−1 |Xt

]∥∥
2

]
≤ C2d

3/2 log7/2 T

T 2
, (50)

where C2 denotes some universal constant.

Control quantity T2. Now, let us turn our attention to control the term T2. We first decompose this term by
the Cauchy-Schwartz inequality:

E
[∥∥∥∥∂Φt−1

∂x
(Xt−1(γ))− ∂Φt−1

∂x

(
φt(Xt)

)∥∥∥∥∥∥Xt−1 − φt(Xt)
∥∥
2

]
≤1

2
E
∥∥Xt−1 − φt(Xt)

∥∥2
2

+
1

2
E
∥∥∥∥∂Φt−1

∂x
(Xt−1(γ))− ∂Φt−1

∂x

(
φt(Xt)

)∥∥∥∥2, (51)

and we aim to handle the two components respectively.

• Towards bounding the first term in (51), in view of relation (43), we make the observation that

E
∥∥Xt−1 − φt(Xt)

∥∥2
2

=
1

αt
E
∥∥(
√
αtXt−1 −Xt)− (

√
αtφt(Xt)−Xt)

∥∥2
2

=
1

αt
E
∥∥∥(√αt − αt −√1− αt

)
Z + (1−

√
αt)st(Xt)

+
1

2

∫ αt−1

αt

√
αt

α3

(
sα(gt(Xt, α))− st(Xt)

)
dα
∥∥∥2
2

≤ 3

αt
E
[∥∥(√αt − αt −√1− αt

)
Z
∥∥2
2

+
∥∥(1−

√
αt)st(Xt)

∥∥2
2

+
1

4

∥∥∥∫ αt−1

αt

√
αt

α3

(
sα(gt(Xt, α))− st(Xt)

)
dα
∥∥∥2
2

]
.

(1− αt)2

1− αt
+

(1− αt)2d
1− αt

+
(1− αt)4d3 log3 T

(1− αt)3

.
d log2 T

T 2
. (52)

Here, we recall the properties of the learning rates as in (31a) and (31b).

• When it comes to the second term in (51) , we claim that for any (xt, xt−1) pair, it can be decomposed as∥∥∥∥∂Φt−1
∂x

(xt−1(γ))− ∂Φt−1
∂x

(
φt(xt)

)∥∥∥∥
≤ L2

f

t∑
k=1

∥∥∥∥∂φk∂x (Φt−1→k(xt−1(γ))
)
− ∂φk

∂x

(
Φt→k(xt)

)∥∥∥∥. (53)

The proof of claim (53) is provided in our Section C.5. We proceed to control the right hand side above with
the aid of the following lemma.

Mathematical theory for consistency training

Lemma A.5. For 2 ≤ k < t ≤ T , Xt and Xt−1(γ) defined as above, it holds that

E
∥∥∥∥∂φk∂x (Φt−1→k(Xt−1(γ))

)
− ∂φk

∂x

(
Φt→k(Xt)

)∥∥∥∥2
.

(1− αk)2(1− αt)2L2
fd

4 log3 T

(1− αk)2(1− αt)2
+

(1− αt)4d4 log4 T

(1− αt)4
. (54)

We defer the proof of this result to Section C.5. With Lemma A.5 in place, we can further derive that

E
∥∥∥∥∂Φt−1

∂x
(xt−1(γ))− ∂Φt−1

∂x

(
φt(xt)

)∥∥∥∥2
. L4

fT
2

(
(1− αk)2(1− αt)2L2

fd
4 log3 T

(1− αk)2(1− αt)2
+

(1− αt)4d4 log4 T

(1− αt)4

)
.
L6
fd

4 log8 T

T 2
. (55)

Here, again we use the properties of step size in (31b).

Putting expressions (52) and (55) together leads to

E
[∥∥∥∥∂Φt−1

∂x
(Xt−1(γ))− ∂Φt−1

∂x

(
φt(Xt)

)∥∥∥∥∥∥Xt−1 − φt(Xt)
∥∥
2

]
≤
C1L

3
fd

5/2 log5 T

T 2
. (56)

In conclusion, taking relations (50) and (56) collectively with relation (41), we arrive at

W1

(
fT (XT), X1) ≤ E

[∥∥fT (XT)− ΦT (XT)
∥∥
2

]
≤ C2d

3/2 log7/2 T

T 2
· T +

C1L
3
fd

5/2 log5 T

T 2
· T + ε+ εF

≤
C1L

3
fd

5/2 log5 T

T
+ ε+ εF .

This thus completes the proof of our advertised result.

B Proof of Corollary 3.4

For the sampling process starting from Z, one can easily write

W1(fT (Z), X1) ≤ E
[
‖fT (Z)− ΦT (XT)‖2

]
≤ E

[
‖fT (Z)− ΦT (Z)‖2

]
+ E

[
‖ΦT (Z)− ΦT (XT)‖2

]
.

In view of the Lipschitz property, one has

E
[
‖ΦT (Z)− ΦT (XT)‖2

]
≤ LfE

[
‖Z −XT ‖2

]
≤ Lf

T
.

In addition, for the first term, we have

E[‖fT (Z)− ΦT (Z)‖2] .
∫
‖x‖2≤T c

pZ(x)‖fT (x)− ΦT (x)‖2dx

.
∫
‖x‖2≤T c

pXT (x)‖fT (x)− ΦT (x)‖2dx

. E[‖fT (XT)− ΦT (XT)‖2],

where the second line holds since for ‖x‖2 ≤ T c,

pXT (x) =

∫
x0

pX0(x0)(2π(1− αT))−d/2 exp
(
− ‖x−

√
αTx0‖22

2(1− αT)

)
dx0

Gen Li, Zhihan Huang, Yuting Wei

≥ inf
x0∈supp(X0)

(2π(1− αT))−d/2 exp
(
− ‖x−

√
αTx0‖22

2(1− αT)

)
≥ (2π)−d/2 exp

(
− ‖x‖

2
2

2

)
(1− αT)−d/2 exp

(
inf

x0∈supp(X0)

[‖x‖22
2
− ‖x−

√
αTx0‖22

2(1− αT)

])
& pZ(x).

Here, the last line holds since

inf
x0∈supp(X0)

[‖x‖22
2
− ‖x−

√
αTx0‖22

2(1− αT)

]
≥ −2

√
αT ‖x‖2‖x0‖2 + αT ‖x0‖22

2(1− αT)

≥ −2
√
T−c2T cT cR + T−c2T 2cR

2(1− T−c2)
≥ −1,

where the second line comes from the relations ‖x‖2 ≤ T c (the threshold of Z), Eq. (26) for ‖x0‖2 and Eq. (32d)
for αT , provided that c2 > 2c + 2cR + 1. (This is where

√
αT ‖x‖2 sup ‖X0‖2 . 1 is used previously.) Putting

everything together leads to our desired result.

C Proof of auxiliary results

C.1 Proof of the recursion (38)

Recalling the definitions of ft(x) and f?t (x) yields

ft(xt) = E
[
Φt−1(Xt−1) |Xt = xt

]
+ E

[
ξt−1(Xt−1) |Xt = xt

]
+
(
ft(xt)− fFt (xt)

)
+
(
fFt (xt)− f?t (xt)

)
= Φt(xt) + E

[
Φt−1(Xt−1)− Φt−1

(
φt(xt)

)
|Xt = xt

]
+ E

[
ξt−1(xt−1) |Xt = xt

]
+
(
ft(xt)− fFt (xt)

)
+
(
fFt (xt)− f?t (xt)

)
.

Invoking the Taylor expansion to obtain

Φt−1(xt−1)− Φt−1
(
φt(xt)

)
=

∫
γ

∂Φt−1
∂x

(x(γ))
(
xt−1 − φt(xt)

)
dγ

=
∂Φt−1
∂x

(
φt(xt)

)(
xt−1 − φt(xt)

)
+

∫
γ

(
∂Φt−1
∂x

(xt−1(γ))− ∂Φt−1
∂x

(
φt(xt)

))(
xt−1 − φt(xt)

)
dγ,

further leads to

ft(xt) = Φt(xt) + E
[
ξt−1(Xt−1) |Xt = xt

]
+
(
ft(xt)− fFt (xt)

)
+
(
fFt (xt)− f?t (xt)

)
+
∂Φt−1
∂x

(
φt(xt)

)(
E
[
Xt−1 |Xt = xt

]
− φt(xt)

)
+ E

[∫ 1

0

(
∂Φt−1
∂x

(Xt−1(γ))− ∂Φt−1
∂x

(
φt(xt)

))(
Xt−1 − φt(xt)

)
dγ
∣∣∣Xt = xt

]
. (57)

This thus establishes relation (38).

C.2 Proof of Lemma A.3

We first recall the definition of st(x), which is the score function of Xt =
√
αtX0 +

√
1− αtZ. If we let P√αt be

the probability measure of
√
αtX0, and p√1−αtZ be the density of

√
1− αtZ, by definition of the score function,

we can write

st(x) = −
∇x
∫
x0
p√1−αtZ(x−

√
αtx0)dP√αtX0

(
√
αtx0)∫

x0
p√1−αtZ(x−

√
αtx0)dP√αtX0

(
√
αtx0)

Mathematical theory for consistency training

= −

∫
x0

√
αtx0−x
1−αt exp

(
− ‖x−

√
αtx0‖2

2(1−αt)

)
dP√αtX0

(
√
αtx0)∫

x0
exp

(
− ‖x−

√
αtx0‖2

2(1−αt)

)
dP√αtX0

(
√
αtx0)

= EX0 |Xt=x

[√αtX0 − x
1− αt

]
. (58)

The second moment of score function thus can be written as

E‖st(Xt)‖2 = EXt
∥∥∥EX0 |Xt

[√αtX0 −Xt

1− αt

]∥∥∥2
2

≤ EXt
[
EX0 |Xt

∥∥∥√αtX0 −Xt

1− αt

∥∥∥2
2

]
= EXt

[1

(1− αt)2
EX0 |Xt‖

√
αtX0 −Xt‖22

]
=

d

1− αt
,

where the last line makes use of the expression (7).

C.3 Proof of Lemma A.4

Throughout this proof, we adopt the truncation strategy onto the typical event Et (defined in expression (32)).
The targeted expectation is then calculated by considering the typical event and its complement separately.

On the typical event Et. Let us first consider the case when (xt, xt−1) ∈ Et. We claim that

‖sα(gt(xt, α))‖22 ≤ c5
d log T

1− αt
and

∥∥∥gt(xt, α)−
√
α

αt
xt

∥∥∥
2
≤ c6

√
d(1− αt) log T (59)

hold for all αt ≤ α ≤ αt−1. This claim essentially means that every (xt, xt−1) ∈ Et induces a trajectory on which
all the points share similar properties as the definition of Et. In the following proof, we shall use α̃ as the variable
of integration to differentiate from α, which serves as an argument.

Before proceeding, we isolate some properties obtained with the help of this claim. In particular, if relation (59)
holds, then dynamic (42) implies that

gt(xt, α) =
√
α
(xt√

αt
+

1

2

∫ α

αt

√
1

α̃3

(
sα̃(gt(xt, α̃))− st(xt)

)
dα̃
)

=
√
α
(xt√

αt
+

1

2

∫ α

αt

√
1

α̃3
dα̃ ·O

(
sup

αt<α̃<α
‖sα̃(gt(xt, α̃))− st(xt)‖2

))
≤
√
α

αt
xt +O

(√
αt−1

(1√
αt
− 1

αt−1

)
sup

αt<α̃<α
‖sα̃(gt(xt, α̃))‖2

)
=

√
α

αt
xt +O

(
(1− αt) sup

αt<α̃<α
‖sα̃(gt(xt, α̃))‖2

)

=

√
α

αt
xt +O

(√
d(1− αt)2 log T

1− αt

)
, (60)

where the last line holds using the bound (59). In addition, given the claim (59), according to (161c) in (Li et al.,
2023, Appendix C.1), the following inequality holds:

‖sα(gt(xt, α))− st(xt)‖2 . (1− αt)
(
d log T

1− αt

)3/2

. (61)

Gen Li, Zhihan Huang, Yuting Wei

Proof of relation (59). We establish the relation (59) by contradiction. If the condition does not hold along
the trajectory, let us define

α̂ := min
{
α : ‖sα(gt(xt, α))‖22 >

c5d log T

1− αt
or ‖gt(xt, α)−

√
α/αtxt‖2 > c6

√
d(1− αt) log T

}
.

The contradiction appears if we show both scenarios in the definition of α̂ cannot happen. By virtue of this
definition, it satisfies that for αt ≤ α̂ < α, inequalities (60) and (61) still hold true.

• If for the defined α̂, we have ‖gt(xt, α) −
√
α/αtxt‖2 > c6

√
d(1− αt) log T , Then, by calculations in

expression (60), gt(xt, α̂) can be written as

gt(xt, α̂) =
√
α̂
(xt√

αt
+

1

2

∫ α̂

αt

√
1

α̃3

(
sα̃(gt(xt, α̃))− st(xt)

)
dα̃
)

=

√
α̂

αt
xt +O

(√
d(1− αt)2 log T

1− αt

)

≤

√
α̂

αt
xt +O(

√
d(1− αt) log T).

which is contradicted with the assumption ‖gt(xt, α)−
√
α/αtxt‖2 > c5

√
d(1− αt) log T .

• Otherwise, consider the case that ‖sα̂(gt(xt, α̂))‖22 >
c5d log T
1−αt . For αt ≤ α̂ < α, by inequality (61), we directly

obtain

‖sα(gt(xt, α))‖2 ≤ O
(

(1− αt)
(
d log T

1− αt

)3/2)
+O

(
d log T

1− αt

)1/2

= O

(
d log T

1− αt

)1/2

,

where we use the fact that

‖st(xt)‖2 .
d log T

1− αt
, (62)

whose proof can be found as in (128b) of (Li et al., 2023, Appendix B.1.1). We can then make use of the
continuity of sα(x) and trajectory to obtain ‖sα̂(gt(xt, α̂))‖2 . (d log T1−αt)1/2. This result is also contradicted
with the definition of α̂.

Putting everything together, we conclude that α̂ ∈ [αt, αt−1] does not exist, which thus validates the claim (59).

On the complement of the typical event Ect . Let us now turn to the case when (xt, xt−1) ∈ Ect . Using the
upper bound in Lemma A.3, we integrate over the tail event of Xt and Xt−1 as inequality (33) to obtain

EXt,Xt−1

[
‖st(Xt)‖221

(
(Xt, Xt−1) ∈ Ect

)]
.
∫
Ect
‖st(Xt)‖22pXt−1,Xt(xt−1, xt)dxt−1dxt

.
∫
Ect
‖st(Xt)‖22pXt−1 |Xt(xt−1 |xt)pXt(xt)dxt−1dxt

.
d

1− αt

∫
xt−1:(xt,xt−1)∈Ect

pXt−1 |Xt(xt−1 |xt)dxt−1. (63)

It has been shown in (Li et al., 2023, Step 3, Appendix C.1) that∫
xt−1:(xt,xt−1)∈Ect

pXt−1 |Xt(xt−1 |xt)dxt−1 . exp(−c4d log T).

By virtue of this relation, we can conclude that

EXt,Xt−1

[
‖st(Xt)‖221

(
(Xt, Xt−1) ∈ Ect

)]
. exp(−c4d log T). (64)

Mathematical theory for consistency training

Here, similar to the proof of Lemma A.3, it holds that

EXt‖sα(gt(Xt, α))‖22 = EX(α)‖sα(X(α))‖22 ≤
d

1− α
,

where use the fact that gt(Xt, α)
d
= X(α). As a result, this inequality enables us to bound the expectation of the

truncation error in a similar way as in inequality (64):

EXt,Xt−1

[
‖sα(gt(Xt, α))‖221

(
(Xt, Xt−1) ∈ Ect

)]
.
∫
Ect
‖sα(gt(Xt, α))‖22pXt−1 |Xt(xt−1 |xt)pXt(xt)dxt−1dxt

.
d

1− αt

∫
xt−1:(xt,xt−1)∈Ect

pXt−1 |Xt(xt−1 |xt)dxt−1

. exp(−c4d log T).

In summary. Combining the two cases above, we conclude that

E
[∥∥∥ ∫ αt−1

αt

√
αt

α3

(
sα(gt(Xt, α))− st(Xt)

)
dα
∥∥∥2
2

]
≤
∫ αt−1

αt

√
αt

α3E
[
‖sα(gt(Xt, α))− st(Xt)‖22

]
dα

=

∫ αt−1

αt

√
αt

α3E
[
‖sα(gt(Xt, α))− st(Xt)‖22

(
1
(
(Xt, Xt−1) ∈ Et

)
+ 1
(
(Xt, Xt−1) ∈ Ect

))]
dα

.
(1− αt)4d3 log3 T

(1− αt)3
+ exp(−c4d log T)

.
(1− αt)4d3 log3 T

(1− αt)3
,

which thus validates the claimed result.

C.4 Proof of Claim (53)

Towards this, let us first make the observation that

∂Φt→k
∂x

(x) =
∂Φt−1→k

∂x

(
φt(x)

)∂φt
∂x

(x)

=
∂Φt−2→k

∂x

(
Φt→t−2(x)

)∂φt−1
∂x

(
Φt→t−1(x)

)∂φt
∂x

(x)

=
∂Φk′→k
∂x

(
Φt→k′(x)

) k′∏
i=k

∂φi
∂x

(
Φt→i(x)

)
=

t∏
i=k+1

∂φi
∂x

(
Φt→i(x)

)
,

where we recursively apply the definition of Φk′→k = φk′ ◦Φk′−1→k. In view of the relation above, by some direct
algebra, we deduce∥∥∥∥∂Φt

∂x
(x)− ∂Φt

∂x
(y)

∥∥∥∥
=

∥∥∥∥ t∏
i=2

∂φi
∂x

(
Φt→i(x)

)
−

t∏
i=2

∂φi
∂x

(
Φt→i(y)

)∥∥∥∥

Gen Li, Zhihan Huang, Yuting Wei

=

∥∥∥∥ t∑
k=3

(k−1∏
i=2

∂φi
∂x

(
Φt→i(x)

)(∂φk
∂x

(
Φt→k(x)

)
− ∂φk

∂x

(
Φt→k(y)

)) t∏
i=k+1

∂φi
∂x

(
Φt→i(y)

))∥∥∥∥
≤

t∑
k=2

∥∥∥∥ k−1∏
i=2

∂φi
∂x

(
Φt→i(x)

)∥∥∥∥∥∥∥∥∂φk∂x (Φt→k(x)
)
− ∂φk

∂x

(
Φt→k(y)

)∥∥∥∥∥∥∥∥ t∏
i=k+1

∂φi
∂x

(
Φt→i(y)

)∥∥∥∥
=

t∑
k=2

∥∥∥∥∂Φk−1
∂x

(
Φt→k−1(x)

)∥∥∥∥∥∥∥∥∂φk∂x (Φt→k(x)
)
− ∂φk

∂x

(
Φt→k(y)

)∥∥∥∥∥∥∥∥∂Φt→k
∂x

(y)

∥∥∥∥
≤ L2

f

t∑
k=2

∥∥∥∥∂φk∂x (Φt→k(x)
)
− ∂φk

∂x

(
Φt→k(y)

)∥∥∥∥.
where we denote

∏i−1
i (∂φi/∂x) := 1 for saimplicity, and the last invokes the Assumption 3.1 again.

C.5 Proof of Lemma A.5

To begin with, let us first provide a more succinct expression for quantity ∂φk(x)
∂x . Recall that φk(x) := gk(x, αk−1).

In view of relation (42), we can write

φk(x) =
√
αk−1

(
gk(x, αk)√

αk
+

∫ αk−1

αk

1

2α
3
2

sα(gk(x, α))dα

)

=
1
√
αk

(
x+

1

2

∫ αk−1

αk

√
αk

α3 sα(gk(x, α))dα

)
. (65)

By some direct calculations, we arrive at

∂φk(x)

∂x
=

1
√
αk

(
I +

1

2

∫ αk−1

αk

√
αk

α3∇sα(gk(x, α))
∂gk(x, α)

∂x
dα

)
(66)

where we write ∇sα(gk(x, α)) := ∇ysα(y)
∣∣
y=gk(x,α)

. We then proceed to control each term in the above expression.
To do so, let us introduce the following two lemmas whose proofs are provided in Section C.7 and C.8 respectively.

Lemma C.1. For 2 ≤ t ≤ T , αt ≤ α ≤ αt−1 and (xt, xt−1) ∈ Et, the derivative of the score function satisfies

∥∥∇sα(gt(xt, α))−∇st(xt)
∥∥
2
.
d2(1− αt) log2 T

(1− αt)2
.

Lemma C.2. For 2 ≤ t ≤ T and (xt, xt−1) ∈ Et, the stability of the backward ODE (42) starting at xt can be
bounded as follows: ∥∥∥∥∂gt(xt, α)

∂x
− I
∥∥∥∥ .

d(1− αt) log T

1− αt
.

Plugging in the bounds from Lemma C.1 and Lemma C.2 to equation (66), we obtain

∂φk(x)

∂x
=

1
√
αk

(
I +

1

2

∫ αk−1

αk

√
αk

α3

(∂sk(x)

∂x
+O

(d2(1− αk) log2 T

(1− αk)2

))
(
Id +O

(d(1− αk) log T

1− αt

))
dα

)
=

1
√
αk

(
I +

1

2

∫ αk−1

αk

√
αk

α3

∂sk(x)

∂x
dα

)
+O

(
d2(1− αk)2 log2 T

(1− αk)2

)
=

1
√
αk

(
I −

1−√αk
1− αk

Jk(x)

)
+O

(
d2(1− αk)2 log2 T

(1− αk)2

)
, (67)

Mathematical theory for consistency training

where we denote

Jk(x) := Id +
1

1− αk

{
E
[
Xk −

√
αkX0 | Xk = x

](
E
[
Xk −

√
αkX0 | Xk = x

])>
− E

[(
Xk −

√
αkX0

)(
Xk −

√
αkX0

)> | Xk = x
]}
. (68)

The details for deriving expression (67) are included in Section C.6.

In order to prove Lemma A.5 and cope with the difference ∂φk
∂x

(
Φt−1→k(Xt−1(γ))

)
− ∂φk

∂x

(
Φt→k(Xt)

)
, inequality (67)

suggests to study the Lipschitz property of function Jk. For this purpose, we introduce our final auxiliary result,
whose proof is provided in Section C.9.
Lemma C.3. For 2 ≤ t ≤ T and (xt, xt−1) ∈ Et, Jt(x) is locally Lipschitz continuous with respect to x:

‖Jt(xt−1)− Jt(φ(xt))‖ .
1√

1− αt
d3/2 log3/2 T‖xt−1 − φ(xt)‖2. (69a)

In addition, for 1 ≤ k ≤ t− 1, the Lipschitz constant along the backward trajectory satisfies∥∥∥Jk(Φt−1→k(xt−1(γ))
)
− Jk

(
Φt→k(xt)

)∥∥∥
.

1√
1− αt

d3/2 log3/2 T
∥∥∥Φt−1→k(xt−1(γ))− Φt→k(xt)

∥∥∥
2
. (69b)

To proceed, let us again decompose the quantity of interest as

E
[∥∥∥∥∂φk∂x (Φt−1→k(Xt−1(γ))

)
− ∂φk

∂x

(
Φt→k(Xt)

)∥∥∥∥2]
= E

[∥∥∥∥∂φk∂x (Φt−1→k(Xt−1(γ))
)
− ∂φk

∂x

(
Φt→k(Xt)

)∥∥∥∥21((Xt, Xt−1) ∈ Et
)]

+ E
[∥∥∥∥∂φk∂x (Φt−1→k(Xt−1(γ))

)
− ∂φk

∂x

(
Φt→k(Xt)

)∥∥∥∥21((Xt, Xt−1) ∈ Ect
)]
. (70)

We shall control each term respectively.

The first term. Taking Lemma C.3 collectively with expression (67), we obtain

E
[∥∥∥∥∂φk∂x (Φt−1→k(Xt−1(γ))

)
− ∂φk

∂x

(
Φt→k(Xt)

)∥∥∥∥21((Xt, Xt−1) ∈ Et
)]

(i)
.

(1− αk)2

(1− αk)2
E
[∥∥∥Jk(Φt−1→k(Xt−1(γ))

)
− Jk

(
Φt→k(Xt)

)∥∥∥21((Xt, Xt−1) ∈ Et
)]

+
d4(1− αk)4 log4 T

(1− αk)4

(ii)
.

(1− αk)2d3 log3 T

(1− αk)2(1− αt)
E
[∥∥∥Φt−1→k(Xt−1(γ))− Φt→k(Xt)

∥∥∥2
2
1
(
(Xt, Xt−1) ∈ Et

)]
+
d4(1− αk)4 log4 T

(1− αk)4

(iii)
.

(1− αk)2d3 log3 T

(1− αk)2(1− αt)
E
[
L2
f

∥∥Xt−1(γ)− φ(Xt)
∥∥2
2
1
(
(Xt, Xt−1) ∈ Et

)]
+
d4(1− αk)4 log4 T

(1− αk)4
. (71)

Note that, to ensure inequalities (i) and (ii), one invokes Lemma C.3 which requires (xk, xk−1) ∈ Ek. We shall
verify this relation momentarily. In (ii) we invoke the Lipschitz continuity of Φt−1→k and Φt→k and the property
that Φt→k(Xt)

d
= Xt−1. To further control the right hand side above, recall that we have established the inequality

(52) when (xt, xt−1) in Et. As a result, we conclude that

E
[∥∥∥∥∂φk∂x (Φt−1→k(Xt−1(γ))

)
− ∂φk

∂x

(
Φt→k(Xt)

)∥∥∥∥21((Xt, Xt−1) ∈ Et
)]

Gen Li, Zhihan Huang, Yuting Wei

.
(1− αk)2(1− αt)2L2

fd
4 log3 T

(1− αk)2(1− αt)2
+

(1− αk)4d4 log4 T

(1− αk)4
. (72)

It is therefore only left for us to show that (xk, xk−1) in Ek, which holds true owing to the Lipschitz property of
Φt−1→k(x) and Φt→k(x). Specifically, for every (xt, xt−1) in Et, by definition, it holds for large enough constant
c4 that

‖xt−1 − xt/
√
αt‖2 ≤ c4

√
d(1− αt) log T .

The Lipschitz continuity of Φt→k also implies that − log pXk(xk) ≤ c3d log T as Xk
d
= Φt→k(Xt). As a result, if

we define

E ′k :=

{
(xk, xk−1) ∈ Rd × Rd

∣∣∣− log pXk(xk) ≤ c3d log T,

‖xk−1 − xk/
√
αk‖2 ≤ c4Lf

√
d(1− αt) log T

}
,

then one can check that (Φt−1→k(xt−1),Φt→k(xt)) ∈ E ′k. Notice that Ek and E ′k share the same form for every
2 ≤ k < t ≤ T , only with a different constant in the second condition, we conclude that Lemma C.1, C.2 and C.3
still hold true with slight different constants. Therefore, we have validated the relation (72).

The second term. When (xt, xt−1) ∈ Ec holds true, it is sufficient to consider a crude upper bound for∥∥∥∥∂φk∂x (Φt−1→k(xt−1(γ))
)
− ∂φk

∂x

(
Φt→k(xt)

)∥∥∥∥21((xt, xt−1) ∈ Ect
)
.

Owing to the Lipschitz condition in Assumption 3.1, we know that ∂
∂xΦt→k(x) ≤ Lf . Simply choosing k = t− 1

gives us ∂
∂xφt(x) ≤ Lf , which in turn leads to

E
[∥∥∥∥∂φk∂x (Φt−1→k(Xt−1(γ))

)
− ∂φk

∂x

(
Φt→k(Xt)

)∥∥∥∥21((Xt, Xt−1) ∈ Ect
)]

≤4L2
fP
(
(Xt, Xt−1) ∈ Ect

)
.L2

f exp(−c4d log T). (73)

Putting relations (72) and (73) together verifies the target result in Lemma A.5.

C.6 Proof of Claim (67)

To establish this relation, we first find it useful to write the score function as

st(x) = E
[
− 1√

1− αt
Z
∣∣∣ √αtX0 +

√
1− αtZ = x

]
= − 1

1− αt
E
[
x−
√
αtX0

∣∣∣ √αtx0 +
√

1− αtz = x

]
= − 1

1− αt

∫
x0

(x−
√
αtx0)pX0 |Xt(x0 |x)dx0. (74)

As a result, the partial derivative is calculated as

∂[st(x)]i
∂xj

= − 1

1− αt
∂

∂xj

[∫
x0

(xi −
√
αtx0,i)pX0 |Xt(x0 |x)dx0

]
= − 1

1− αt

[
1{i=j} +

∫
x0

(xi −
√
αtx0,i)

∂

∂xj
pX0 |Xt(x0 |x)

]
dx0

= − 1

1− αt

[
1{i=j} +

∫
x0

(xi −
√
αtx0,i)

∂

∂xj

pX0
(x0)pXt |X0

(x |x0)

pXt(x)

]
dx0. (75)

Mathematical theory for consistency training

By noticing the fact that

∂

∂xj
pXt |X0

(x |x0) = pXt |X0
(x |x0) · xj −

√
αtx0,j

1− αt
, (76)

we can thus rewrite equation (75) as

∂[st(x)]i
∂xj

=− 1

1− αt

[
1{i=j} +

1

1− αt

[∫
x0

(xi −
√
αtx0,i)pX0 |Xt(x0 |x)dx0·∫

x0

(xj −
√
αtx0,j)pX0 |Xt(x0 |x)dx0

−
∫
x0

(xi −
√
αtx0,i)(xj −

√
αtx0,j)pX0 |Xt(x0 |x)dx0

]]
(77)

= − 1

1− αt
[Jt(x)]ij , (78)

which leads to equation (67).

C.7 Proof of Lemma C.1

The proof of Claim (67) provides an explicit expression of ∂st(x)∂x via Jt(x) as in expression (77). Organizing terms
of expression (77) gives us

∇st(xt) +
1

1− αt
Id

=− 1

(1− αt)2
[∫
x0

(xt −
√
αtx0)pX0 |Xt(x0 |xt)dx0

(∫
x0

(xt −
√
αtx0)pX0 |Xt(x0 |xt)dx0

)>
︸ ︷︷ ︸

=:At

−
∫
x0

(xt −
√
αtx0)(xt −

√
αtx0)>pX0 |Xt(x0 |xt)dx0︸ ︷︷ ︸

=:Bt

]

and similarly, it holds that

∇sα(gt(xt, α)) +
1

1− α
Id

=− 1

(1− α)2

[∫
x0

(gt(xt, α)−
√
αx0)pX0 |Xα(x0 | gt(xt, α))dx0

(∫
x0

(gt(xt, α)−
√
αx0)pX0 |Xα(x0 | gt(xt, α))dx0

)>
︸ ︷︷ ︸

=:Aα

−
∫
x0

(gt(xt, α)−
√
αx0)(gt(xt, α)−

√
αx0)>pX0 |Xα(x0 | gt(xt, α))dx0︸ ︷︷ ︸

=:Bα

]
.

In view of these two decompositions, we can bound∥∥∥∥∇sα(gt(xt, α))−∇st(xt)
∥∥∥∥ ≤ ∥∥∥ 1

(1− α)2
Aα −

1

(1− αt)2
At

∥∥∥+
∥∥∥ 1

(1− α)2
Bα −

1

(1− αt)2
Bt

∥∥∥. (79)

We shall proceed by controlling each term on the right respectively.

Controlling the first term. Let us start by bounding the first term. By noticing the basic algebra fact that
for vectors z1, z2 ∈ Rd,

‖z1z>1 − z2z>2 ‖2 ≤ ‖z1 − z2‖2 ·max{‖z1‖2, ‖z2‖2},

Gen Li, Zhihan Huang, Yuting Wei

we find ∥∥∥ 1

(1− αt)2
At −

1

(1− α)2
Aα

∥∥∥
.
∥∥∥ 1

1− αt

∫
x0

(xt −
√
αtx0)pX0 |Xt(x0 |xt)dx0

− 1

1− α

∫
x0

(gt(xt, α)−
√
αx0)pX0 |Xα(x0 | gt(x, α))dx0

∥∥∥
2
·(

max{‖sα(gt(x, α))‖2, ‖st(xt)‖2}
)
. (80)

By virtue of the bound (62), we can directly derive

max{‖sα(gt(x, α))‖22, ‖st(xt)‖22} . max
{d log T

1− α
,
d log T

1− αt

}
=
d log T

1− αt
. (81)

It is then sufficient to control the first term on the right hand side of inequality (80), which shall be done as
follows. To this end, let us define a set of interest by

E0 :=
{
x : ‖xt −

√
αtx‖2 ≤ c6

√
d(1− αt) log T

}
.

We first consider the the following term∥∥∥∫
x0

(xt −
√
αtx0)pX0 |Xt(x0 |xt)dx0 −

∫
x0

(xt −
√
αtx0)pX0 |Xα(x0 | gt(x, α))dx0

∥∥∥
2

≤
∫
x0∈E0

∣∣pX0 |Xα(x0 | gt(xt, α))− pX0 |Xt(x0 |xt)
∣∣ · ∥∥xt −√αtx0∥∥2dx0

+

∫
x0∈Ec0

∣∣pX0 |Xα(x0 | gt(xt, α))− pX0 |Xt(x0 |xt)
∣∣ · ∥∥xt −√αtx0∥∥2dx0

=

∫
x0∈E0

∣∣∣∣pX0 |Xα(x0 | gt(xt, α))

pX0 |Xt(x0 |xt)
− 1

∣∣∣∣ · pX0 |Xt(x0 |xt) ·
∥∥xt −√αtx0∥∥2dx0∫

x0∈Ec0

∣∣∣∣pX0 |Xα(x0 | gt(xt, α))

pX0 |Xt(x0 |xt)
− 1

∣∣∣∣ · pX0 |Xt(x0 |xt) ·
∥∥xt −√αtx0∥∥2dx0. (82)

Next, we bound the right hand side above. Towards this, first recall that in Claim 2 in (Li et al., 2023, Appendix
C.1), it has been shown by direct calculations that

pX0 |Xα(x0 | gt(xt, α))

pX0 |Xt(x0 |xt)
= 1 +O

(
d(1− αt) log T

1− αt−1

)
, if x0 ∈ E0, (83)

pX0 |Xα(x0 | gt(xt, α))

pX0 |Xt(x0 |xt)
≤ exp

(
16c1

∥∥xt −√αtx0∥∥22 log T

(1− αt)T

)
, if x0 /∈ E0. (84)

Here, we remark that we replace
√
α/αt xt in Li et al. (2023) by gt(xt, α). This is valid since for (xt, xt−1) ∈ Et,

inequality (60) ensures ∥∥∥√ α

αt
xt − gt(xt, α)

∥∥∥
2

= O

(
d1/2(1− αt) log1/2 T

(1− αt)1/2

)
.

This approximation only leads to a lower order term in our final result.

Plugging the relations (83) and (84) into the right hand side of (82) and following the proof of (161c) in the proof
in (Li et al., 2023, Appendix C.1), we can obtain∥∥∥∫

x0

(xt −
√
αtx0)pX0 |Xt(x0 |x)dx0 −

∫
x0

(xt −
√
αtx0)pX0 |Xα(x0 | gt(x, α))dx0

∥∥∥
2

.
d(1− αt) log T

1− αt−1
· E
[∥∥√αtX0 − xt

∥∥
2

∣∣Xt = xt
]

Mathematical theory for consistency training

.
d3/2(1− αt) log3/2 T

(1− αt)1/2
, (85)

where we apply Lemma A.1 to deduce the last inequality. With the same calculations, we can similarly find∥∥∥∫
x0

(xt −
√
αtx0)(xt −

√
αtx0)>pX0 |Xt(x0 |xt)dx0

−
∫
x0

(xt −
√
αtx0)(xt −

√
αtx0)>pX0 |Xα(x0 | gt(x, α))dx0

∥∥∥
.
d(1− αt) log T

1− αt−1
· E
[∥∥√αtX0 − xt

∥∥2
2

∣∣Xt = xt

]
.
d2(1− αt)(1− αt) log2 T

(1− αt−1)
. d2(1− αt) log2 T. (86)

With these properties in place, we are ready to prove Lemma C.2 by studying the first term in (80). First, notice
that ∥∥∥ 1

1− αt

∫
x0

(xt −
√
αtx0)pX0 |Xt(x0 |xt)dx0

− 1

1− α

∫
x0

(gt(xt, α)−
√
αx0)pX0 |Xα(x0 | gt(xt, α))dx0

∥∥∥
2

≤
√
α√

αt(1− α)

∥∥∥∥∫
x0

pX0 |Xα(x0 | gt(xt, α))(xt −
√
αtx0)dx0

−
∫
x0

pX0 |Xt(x0 |xt)(xt −
√
αtx0)dx0

∥∥∥∥
2

+

∥∥∥∥(√
α√

αt(1− α)
− 1

1− αt

)∫
x0

pX0 |Xt(x0 |xt)(xt −
√
αtx0)dx0

∥∥∥∥
2

+
1

1− α

∥∥∥∥∫
x0

pX0 |Xt(x0 |xt)
(
gt(xt, α)−

√
α

αt
xt

)
dx0

∥∥∥∥
2

≤ 1
√
αt(1− αt−1)

∥∥∥∥∫
x0

pX0 |Xα(x0 | gt(xt, α))(xt −
√
αtx0)dx0

−
∫
x0

pX0 |Xt(x0 |xt)(xt −
√
αtx0)dx0

∥∥∥∥
2

+
(1
√
αt(1− αt−1)

− 1

1− αt

)∫
x0

pX0 |Xt(x0 |xt)‖xt −
√
αtx0‖2dx0

+
1

1− αt−1

∫
x0

pX0 |Xt(x0 |xt)
∥∥∥∥gt(xt, α)−

√
α

αt
xt

∥∥∥∥
2

dx0.

Now applying the inequality (85), Lemma A.1, and (60) on each term above separately, we achieve∥∥∥ 1

1− αt

∫
x0

(xt −
√
αtx0)pX0 |Xt(x0 |xt)dx0

− 1

1− α

∫
x0

(gt(xt, α)−
√
αx0)pX0 |Xα(x0 | gt(xt, α))dx0

∥∥∥
2

.
1

1− αt
· d

3/2(1− αt) log3/2 T

(1− αt)1/2
+

(1− αt)√
αt(1− αt)2

E
[∥∥√αtX0 − xt

∥∥
2

∣∣Xt = xt
]

+
1

1− αt
sup

αt<α<αt−1

∥∥∥√ α

αt
xt − gt(xt, α)

∥∥∥
2

.
d3/2(1− αt) log3/2 T

(1− αt)3/2
+
d1/2(1− αt) log1/2 T

(1− αt)3/2
+
d1/2(1− αt) log1/2 T

(1− αt)3/2

Gen Li, Zhihan Huang, Yuting Wei

.
d3/2(1− αt) log3/2 T

(1− αt)3/2
. (87)

Finally, plugging inequalities (81) and (87) into expression (80) leads to∥∥∥ 1

(1− α)2
Aα −

1

(1− αt)2
At

∥∥∥ .
d3/2(1− αt) log3/2 T

(1− αt)3/2
· d

1/2 log1/2 T

(1− αt)1/2

.
d2(1− αt) log2 T

(1− αt)2
. (88)

Controlling the second term. With expression (86), we can further control the quantity ‖ 1
(1−α)2Bα −

1
(1−αt)2Bt‖. By similar analysis, we can obtain∥∥∥ 1

(1− α)2
Bα −

1

(1− αt)2
Bt

∥∥∥
.

1

αt(1− αt)2
∥∥∥∫

x0

(xt −
√
αtx0)(xt −

√
αtx0)>pX0 |Xt(x0 |xt)dx0

−
∫
x0

(xt −
√
αtx0)(xt −

√
αtx0)>pX0 |Xα(x0 | gt(x, α))dx0

∥∥∥
+
d(1− αt) log T

(1− αt)2

.
d2(1− αt) log2 T

(1− αt)2
. (89)

In summary, taking the relations (88) and (89) collectively with inequality (79), we obtain the following bound∥∥∥∥∇sα(gt(xt, α))−∇st(xt)
∥∥∥∥ ≤ ∥∥∥ 1

(1− α)2
Aα −

1

(1− αt)2
At

∥∥∥+
∥∥∥ 1

(1− α)2
Bα −

1

(1− αt)2
Bt

∥∥∥
.
d2(1− αt) log2 T

(1− αt)2
,

which leads to the final result.

C.8 Proof of Lemma C.2

The proof of this lemma is similar to that of Lemma A.4. In particular, we shall prove this result by contradiction.
Specifically, suppose that there exists α ∈ [αt, αt−1] such that Lemma C.2 does not hold. Then, one can define

α̂ := min
{
α ∈ [αt, αt−1] :

∥∥∥∂gt(xt, α)

∂x
− I
∥∥∥ &

d(1− αt) log T

1− αt

}
.

With this definition of α̂, it holds that for all αt−1 ≥ α > α̂, one has∥∥∥∂gt(xt, α)

∂x

∥∥∥ = 1 +O(d(1− αt) log T). (90)

Now consider the partial derivative of gt(x, α̂) at α̂ where

∂gt(x, α̂)

∂x
− Id =

(1
√
αt
− 1
)
Id +

1

2
√
αt

∫ α̂

αt

√
αt

α3∇sα(gt(xt, α))
∂gt(xt, α)

∂x
dα.

The proof in Lemma A.4 ensures that∥∥∥gt(xt, α)−
√
α

αt
xt

∥∥∥ ≤ c5√d(1− αt) log T

Mathematical theory for consistency training

for (xt, xt−1) ∈ Et. Thus, the analysis in the proof of (161a) in (Li et al., 2023, Appendix C.1) guarantees that∥∥(1− α)∇sα(gt(xt, α))− Id
∥∥ . d log T, (91)

which directly implies that ∥∥∇sα(gt(xt, α))
∥∥ .

d log T

1− αt
,

Combining these results together, we obtain∥∥∥∂gt(x, α̂)

∂x
− I
∥∥∥ ≤ ∣∣∣ 1√

αt
− 1
∣∣∣+

1

2
√
αt

∫ α̂

αt

√
αt

α3

∥∥∇sα(gt(xt, α))
∥∥∥∥∥∂gt(xt, α)

∂x

∥∥∥dα

≤
∣∣∣ 1√
αt
− 1
∣∣∣+
∥∥∥ d log T

2
√
αt(1− αt)

∫ αt−1

αt

√
αt

α3 dα
∥∥∥

.
d(1− αt) log T

1− αt
,

which contradicts the definition of α̂.

C.9 Proof of Lemma C.3

Define S := {u ∈ Rd : ‖u‖2 = 1}. We first prove that for any u ∈ Sd−1 and any (xt, xt−1) ∈ Et,∥∥∇xu>Jt(xt)u∥∥2 .
1√

1− αt
d3/2 log3/2 T, (92)

where ∇xu>Jt(xt)u := ∇xu>Jt(x)u
∣∣
x=xt

.

Proof of relation (92). Recall that in Section C.6, we have shown that

st(x) = − 1

1− αt

∫
x0

(x−
√
αtx0)pX0 |Xt(x0 |x)dx0,

Jt(x) = −(1− αt)
∂st(x)

∂x
.

In view of these two relations and the definition of Jt, we can write u>Jt(xt)u as

u>Jt(xt)u = 1 +
1

1− αt

{(
E
[
(Xt −

√
αtX0)>u | Xt = xt

])2
− E

[[(
Xt −

√
αtX0

)>
u
]2
2
| Xt = xt

]}
.

To further control ∇xu>Jt(xt)u, let us consider the two terms on the right hand side separately.

• For the first term, one has ∥∥∥∇xt(E[(Xt −
√
αtX0)>u | Xt = xt

])2∥∥∥
2

=
∥∥∥∇xt(∫

x0

[
(xt −

√
αtx0)>u

]
pX0 |Xt(x0 |xt)dx0

)2∥∥∥
2

=
∥∥∥2(1− αt)(st(xt)>u) · (1− αt)

∂st(xt)

∂x

∥∥∥
2

.(1− αt)‖st(xt)‖2 ·
∥∥∥(1− αt)

∂st(xt)

∂x

∥∥∥. (93)

Gen Li, Zhihan Huang, Yuting Wei

By equation (77), we can compute that∥∥∥(1− αt)
∂st(xt)

∂x

∥∥∥
≤ 1 +

1

1− αt

∥∥∥∫
x0

(xt −
√
αtx0)pX0 |Xt(x0 |xt)dx0(∫

x0

(xt −
√
αtx0)pX0 |Xt(x0 |xt)dx0

)>
−
∫
x0

(xt −
√
αtx0)(xt −

√
αtx0)>pX0 |Xt(x0 |xt)dx0

∥∥∥
. 1 +

1

1− αt

∥∥∥∫
x0

(xt −
√
αx0)pX0 |Xt(x0 |xt)dx0

∥∥∥2
2

≤ 1 +
1

1− αt
EX0

[∥∥√αtX0 − xt
∥∥2
2

∣∣Xt = xt

]
. d log T. (94)

Here, in the second inequality, we use the fact that for a column vector Z ∈ Rd, we have∥∥E[ZZ>]− E[Z]E[Z]>
∥∥ =

∥∥∥E[(Z − E[Z]
)(
Z − E[Z]

)>]∥∥∥ ≤ ∥∥E[ZZ>]∥∥
≤ E

[∥∥ZZ>∥∥] = E
[
‖Z‖22

]
,

and the last line invokes Lemma A.1. Now plugging the bounds in inequality (62) and (94) into inequality (93),
we obtain ∥∥∥∇xt(E[(Xt −

√
αtX0)>u | Xt = xt

])2∥∥∥
2
.(1− αt)

1
2 d3/2 log3/2 T. (95)

• When it comes to the second term, some direct calculations give∥∥∥∇xtE[[(Xt −
√
αtX0

)>
u
]2
2
| Xt = xt

]∥∥∥
2

=
∥∥∥∇xt ∫

x0

[
(xt −

√
αtx0)>u

]2
pX0 |Xt(x0 |xt)dx0

∥∥∥
2

≤
∥∥∥2

∫
x0

[
(xt −

√
αtx0)>u

]
u · pX0 |Xt(x0 |xt)dx0

∥∥∥
2

+
∥∥∥∫

x0

[
(xt −

√
αtx0)>u

]2 ∂

∂xt
pX0 |Xt(x0 |xt)dx0

∥∥∥
2

≤2

∫
x0

‖(xt −
√
αtx0)‖2 · pX0 |Xt(x0 |xt)dx0

+
∥∥∥∫

x0

[
(xt −

√
αtx0)>u

]2 ∂

∂xt
pX0 |Xt(x0 |xt)dx0

∥∥∥
2

.(1− αt)
1
3 d1/2 log1/2 T +

∥∥∥ ∫
x0

[
(xt −

√
αtx0)>u

]2 ∂

∂xt
pX0 |Xt(x0 |xt)dx0

∥∥∥
2
, (96)

where we use Lemma A.1 to obtain the last inequality. To further bound the second term in inequality (96),
we repeat the calculations for equations (75) and (76) and deduce that∥∥∥∫

x0

[
(xt −

√
αtx0)>u

]2 ∂

∂xt
pX0 |Xt(x0 |xt)dx0

∥∥∥
2

≤
∥∥∥ 1

1− αt

∫
x0

[
(xt −

√
αtx0)>u

]2
(xt −

√
αtx0)pX0 |Xt(x0 |xt)dx0

∥∥∥
2

+
∥∥∥ 1

1− αt

∫
x0

[
(xt −

√
αtx0)>u

]2
pX0 |Xt(x0 |xt)dx0·∫

x0

(xt −
√
αtx0)pX0 |Xt(x0 |xt)dx0

∥∥∥
2

.
∣∣∣ 1

1− αt
E
[
‖xt −

√
αtx0‖32 |Xt = xt

]∣∣∣+
∥∥∥st(xt)E[‖xt −√αtx0‖22 |Xt = xt

]∥∥∥
2
. (97)

Mathematical theory for consistency training

Taking colelctively the inequalities (96) and (97), we arrive at

∇xtE
[[(

Xt −
√
αtX0

)>
u
]2
2
| Xt = xt

]
. (1− αt)

1
3 d1/2 log1/2 T +

∣∣∣ 1

1− αt
E
[
‖xt −

√
αtx0‖32 |Xt = xt

]∣∣∣
+
∥∥∥st(xt)E[‖xt −√αtx0‖22 |Xt = xt

]∥∥∥
2

. (1− αt)
1
2 d3/2 log3/2 T. (98)

where last inequality is a direct consequence of Lemma A.1. Therefore, combining the two relations (95) and (98)
yields the claimed relation (92).

Next, we shall proceed to show that similar to the relation (92), one also has∥∥∇xu>Jt(xt−1(γ))u
∥∥
2
.

1√
1− αt

d3/2 log3/2 T, (99)

which holds for every 0 ≤ γ ≤ 1.

Proof of inequality (99). We make the observation that the derivations above to prove relation (92) only
involves Xt = xt which satisfies the first condition in the definition of Et, namely, − log pXt(xt) ≤ c3d log T . Now,
let us prove that − log pXt(xt−1(γ)) ≤ 2c3d log T for xt−1(γ). Similar as in deriving inequality (52), we can deduce

‖xt−1 − φt(xt)‖2 .
∥∥∥xt−1 − xt√

αt

∥∥∥
2

+
∥∥∥(1√

αt
− 1
)
st(xt)

∥∥∥
2

+
∥∥∥ 1

2
√
αt

∫ αt−1

αt

√
αt

α3

(
sα(gt(xt, α))− st(xt)

)
dα
∥∥∥
2

.
√
d(1− αt) log T +

√
d(1− αt)2 log T

+
1

2
√
αt

∫ αt−1

αt

√
αt

α3 dα
(

sup
αt<α<αt−1

‖sα̃(gt(xt, α̃))− st(xt)‖2
)

.
√
d(1− αt) log T +

√
d(1− αt)2 log T + (1− αt)2

(
d log T

1− αt

)3/2

.
√
d(1− αt) log T , (100)

where we use inequality (61) in the third line. Since xt−1(γ) := γxt−1 + (1− γ)φt(xt) and inequality (100), we
can directly recognize that

‖xt−1(γ)− φt(xt)‖2 .
√
d(1− αt) log T . (101)

Putting these two relations above together, it is easily seen that∥∥xt−1 − xt−1(γ)/
√
αt
∥∥ ≤ c4√d(1− αt) log T . (102)

In addition, in view of Lemma A.2, we know that for (xt, xt−1) ∈ Et and any γ ∈ [0, 1], it holds that

− log pXt−1
(xt−1(γ)) ≤ 2c3d log T and pXt−1

(x) =

(
1 +O

(√d(1− αt) log T

1− αt

))
pXt(x). (103)

From properties (102) and (103), we conclude (xt−1(γ), xt−1) ∈ Et. It thus enables us to apply the same analysis
as above on Jt(xt−1(γ)), and draw the conclusion that∥∥∇xu>Jt(xt−1(γ))u

∥∥
2
.

1√
1− αt

d3/2 log3/2 T

for 0 ≤ γ ≤ 1. We complete the proof of the inequality (99).

Gen Li, Zhihan Huang, Yuting Wei

In Summary. Based on expression (92), some direct calculations yield

‖Jt(xt−1)− Jt(φ(xt))‖

≤ sup
u∈Sd−1

∣∣∣u>(Jt(xt−1)− Jt
(
φ(xt)

))
u
∣∣∣

.
1√

1− αt
d3/2 log3/2 T‖xt−1 − φ(xt)‖2, (104)

which concludes the proof of inequality (69a). In addition, as discussed after the inequality (72), the Lipschitz
condition of Φt−1→k(x) allows us to prove (xk, xk−1) ∈ Ek. Repeating the analysis above, we can conclude that∥∥∥Jk(Φt−1→k(xt−1(γ))

)
− Jk

(
Φt→k(xt)

)∥∥∥
.

1√
1− αt

d3/2 log3/2 T
∥∥∥Φt−1→k(xt−1(γ))− Φt→k(xt)

∥∥∥
2
,

which thus completes the proof of inequality (69b).

	Introduction
	Preliminaries
	Diffusion-based generative models
	Consistency training

	A non-asymptotic convergence theory for consistency training
	Assumptions and setup
	Main results

	Discussion
	Acknowledgements
	Proof of Theorem 3.3
	Preliminary properties
	Main analysis

	Proof of Corollary 3.4
	Proof of auxiliary results
	Proof of the recursion (38)
	Proof of Lemma A.3
	Proof of Lemma A.4
	Proof of Claim (53)
	Proof of Lemma A.5
	Proof of Claim (67)
	Proof of Lemma C.1
	Proof of Lemma C.2
	Proof of Lemma C.3

