
On the Consistent Recovery of Joint Distributions from Conditionals

Mahbod Majid* Rattana Pukdee* Vishwajeet Agrawal* Burak Varıcı Pradeep Ravikumar
Carnegie Mellon University

Abstract

Self-supervised learning methods that mask
parts of the input data and train models
to predict the missing components have led
to significant advances in machine learning.
These approaches learn conditional distribu-
tions p(xT | xS) simultaneously, where xS
and xT are subsets of the observed variables.
In this paper, we examine the core problem
of when all these conditional distributions
are consistent with some joint distribution,
and whether common models used in prac-
tice can learn consistent conditionals. We
explore this problem in two settings. First,
for the complementary conditioning sets
where S ∪ T is the complete set of variables,
we introduce the concept of path consistency,
a necessary condition for a consistent joint.
Second, we consider the case where we have
access to p(xT | xS) for all subsets S and T .
In this case, we propose the concepts of au-
toregressive and swap consistency, which we
show are necessary and sufficient conditions
for a consistent joint. For both settings, we
analyze when these consistency conditions
hold and show that standard discriminative
models may fail to satisfy them. Finally, we
corroborate via experiments that proposed
consistency measures can be used as proxies
for evaluating the consistency of conditionals
p(xT | xS), and common parameterizations
may find it hard to learn true conditionals.

1 INTRODUCTION

In recent years, self-supervised learning has emerged as
a powerful paradigm in machine learning, significantly
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advancing fields such as natural language processing
and computer vision. Models like BERT (Devlin
et al., 2019) in NLP and Masked Autoencoders (He
et al., 2022) in vision employ strategies where parts
of the input data are masked or removed, and the
model is trained to predict these missing components
from the remaining observed data. Furthermore, large
language models (LLMs) (Achiam et al., 2023; Jiang
et al., 2023; Dubey et al., 2024) have demonstrated
remarkable capabilities employing autoregressive
strategies, where the model predicts the next word
in a sequence given the preceding context. This
autoregressive formulation effectively conditions on a
subset of the input data to predict future tokens.

Formally, these self-supervised objectives effectively
give us access to conditional distributions p(xT | xS)
where xS is a subset of variables (e.g., unmasked) and
xT is another subset of the remaining variables (e.g.,
masked). If these conditionals are imperfectly learned,
e.g., due to spurious features or general overfitting,
they would fail an external consistency requirement:
they need not be close to ground truth conditionals.
One could say, they might nonetheless be learning
something useful about the ground truth distributions:
as Box has noted, all models are wrong, but some are
useful (Box, 1976). The problem arises when we have
not one but many conditional distribution models:
then we would get models and predictions that lack
internal consistency – even if they have some external
validity, they can contradict one another. Such incon-
sistencies can arise even under stringent parametric
assumptions, such as in conditional Poisson models,
where the Poisson parameter (as a function of the
conditioning variables) has to be negatively correlated
with sufficient statistics for these to be consistent
with each other (Inouye et al., 2017). Naturally, when
we have more flexible conditional distributions, the
conditions under which we can get inconsistencies can
get even more subtle (as we detail in the sequel).

In this paper, we thus address the following gen-
eral question: given a set of conditional distributions,
when are they consistent with some joint distribution?
And if so, how can we reconstruct this joint distribu-
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tion p(x) from these learned conditionals? Address-
ing these questions is crucial as extracting a consis-
tent joint distribution allows for probabilistic reason-
ing, uncertainty quantification, and the generation of
new data samples that faithfully represent the under-
lying data manifold.

We explore these questions in two settings. First, we
consider complementary conditioning sets, where we
only have access to p(xT |xS) where T ∪ S equals the
complete set of variables. We introduce the concept of
path consistency, a necessary condition for consistent
recovery of the joint distribution. Path consistency
involves reconstructing p(x) by navigating the paths
in a graphical model, ensuring that the conditional
probabilities are aligned along these paths. We investi-
gate which parameterizations lead to conditionals that
satisfy path consistency. Specifically, we show that
common discriminative models may not satisfy path
consistency if not parameterized properly, highlighting
limitations in their ability to reconstruct a consistent
joint distribution solely from conditional distributions.
Notably, we show that logistic regression models sat-
isfy path consistency if and only if formulated within
the degree-2 exponential family distributions. This un-
derlines the important role of the exponential family
in recovering a consistent joint distribution which was
previously studied for univariate conditional distribu-
tions (Yang et al., 2015).

Second, we extend our investigation to a more general
setting where T ∪ S can be a subset of the complete
set of variables. Here, we propose an autoregressive
path consistency condition based on the observation
that we can reconstruct a joint distribution with an
autoregressive path, which we prove to be both suffi-
cient and necessary for consistency. Furthermore, we
introduce the concept of swap consistency, which fo-
cuses on the interchangeability of variables within the
conditionals that provide an equivalent but easier-to-
verify condition. However, satisfying these conditions
can be challenging; we show that a composition of a
linear function and a set-invariant context featurizer
does not have enough representational power to en-
sure consistency (except for a very restricted class of
distributions).

In our experiments, we find that both path and swap
consistency have a strong correlation with autoregres-
sive consistency, thus providing us with a practical
metric to test for consistency without having access
to all possible conditionals. Furthermore, we inves-
tigate the parameterization of conditionals via more
complex neural networks, e.g., multi-layer perceptrons
(MLPs). Interestingly, we do not observe a signifi-
cant improvement over simple logistic parameteriza-
tion. This finding exposes a significant gap in current

modeling approaches, so we pose an open question:
How can we parameterize models of conditional dis-
tributions consistently that enable us to model rich
real-world distributions?

Related Work. Identifying joint distributions from
conditionals has been extensively studied in statistics.
For discrete conditionals p(x|y) and p(y|x), compati-
bility conditions based on ratio matrices have been es-
tablished (Arnold and Press, 1989; Arnold et al., 2004;
Song et al., 2010). In probabilistic graphical models,
the Hammersley-Clifford theorem (Hammersley and
Clifford, 1971; Besag, 1974) shows that conditionals
consistent with a Markov random field yield a consis-
tent joint distribution. Yang et al. (2015) later extends
this result to conditionals where they have shown that
if the univariate conditionals are specified by an expo-
nential family then there exists a unique joint distri-
bution that is consistent with the conditionals and it is
also specified by an exponential family (Theorem 2).
Our work complements this by showing that logistic
univariate conditionals are path consistent only when
specified by an exponential family, though we later
demonstrate that this may be insufficient for general
conditioning settings (Theorem 4.9).

Prior work by Besag (1974); Tierney (1994) noted the
possibility of recovering joint distributions by vary-
ing one variable at a time, similar to our observa-
tions in equations (3) and (4). Hobert and Casella
(1998); Wang and Ip (2008); Chen (2010) established
that when conditionals correspond to a consistent
joint distribution, the recovered joint must be path-
independent, which aligns with our Proposition 3.3.
We build on these results by providing the necessary
and sufficient conditions for path consistency (Theo-
rem 3.4, Definition 3.2). We further provide an ex-
ample of this condition for a general class of discrim-
inative models (Theorem 3.5). While previous work
focuses on univariate conditionals, we generalize our
result to multivariate conditionals in the complemen-
tary conditional setting (Section 3.2) and the general
conditional setting (Section 4) with a new notion of
autoregressive and swap consistency (Definitions 4.3
and 4.5) where we derived the necessary and sufficient
conditions (Theorem 4.6).

Our work also applies to measuring the compatibility
between autoencoders p(x|z) and q(z|x), which repre-
sents a special case with two conditionals fxS |xT

, fxT |xs

where xS = x, xT = z. Our path consistency result
implies condition iv) in the compatibility criterion of
Liu et al. (2021) (Theorem 2.3). Our path consistency
metric (Equation (25)) can effectively measure con-
sistency levels in this context, with only two possible
paths (x→ z and z → x) simplifying the calculation.
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2 PRELIMINARIES

Let X ⊆ Rd be an instance space and let P be a
distribution over X with the probability density (or
mass) function p(x). For each x ∈ X , we write
x = (x1, . . . , xd) where xi is the ith coordinate of x.
We use uppercase letters (e.g., X) to represent ran-
dom variables and lowercase letters (e.g., x) for their
realizations. We also denote a set {1, . . . , d} by [d].
For any set S ⊆ [d], we refer xS to a tuple (xi)i∈S .

In self-supervised learning, a popular training objec-
tive is to mask part of the input and train a model
to predict the missing component from the remaining.
Formally, for each sample x, and some set S ⊆ [d],
T ⊆ [d] \ S, we are training a model to recover xT
from xS . This objective is equivalent to learning the
conditional p(xT | xS). We can think of this learning
process as projecting the true conditional distribution
onto some other parametric space of conditional distri-
butions, such as those parameterized by deep neural
networks, so that we learn estimates fT |S(xT , xS) of
p(xT | xS). For different pairs of {S, T}, we can learn
fT |S functions separately or can have shared compo-
nents among them to enhance efficiency. With the true
conditional p(xT | xS), there always exists a joint dis-
tribution p(x) which is consistent with all of p(xT | xS)
by definition. However, the existence of a joint dis-
tribution consistent with these estimates fT |S is not
guaranteed. This might depend in subtle ways (as
we show in the sequel) on the parametric space and
the learning algorithm used to learn these conditional
distributions. Formally, we define a consistent joint
distribution as follows:

Definition 2.1 (Consistent joint distribution). Let
A = {(T, S) | S, T ⊆ [d], S ∩ T = ∅} be a
set of conditioning pairs. Conditional distributions
{q(xT ;xS)}(T,S)∈A correspond to a consistent joint
distribution when there exists a joint distribution q∗

such that
q∗(xT | xS) = q(xT ;xS) , (1)

for all x ∈ X and (T, S) ∈ A.

We use the notation q(xT ;xS) to refer to a distribution
of xT given xS . Our goal is to examine the conditions
under which {fT |S(xT , xS)}(T,S)∈A corresponds to a
consistent joint distribution and investigate how to re-
cover that consistent joint distribution.

3 COMPLEMENTARY
CONDITIONING SETS

We start with the setting of complementary condition-
ing sets where our set of conditioning sets A contains
only pairs (T, S) such that T ∪ S = [d] and |S| can be
of any size. In particular, we first consider the setting

when |S| = d − 1, where we learn to predict only one
variable from the rest, Au := {(i, [d] \ {i}) | i ∈ [d]}.
We define x−i := x[d]\{i} and also write fi|−i for
f{i}|[d]\{i}. In this special case, previous work has
shown that if the conditionals

Fu := {fi|−i(xi, x−i) | ∀i ∈ [d]} (2)

correspond to a univariate conditional exponential
family, then there exists a consistent joint if and only
if the univariate conditional distributions have a spe-
cific form and share specific sub-functions with each
other (Yang et al., 2015). We aim to generalize this
result to arbitrary conditional distributions. Although
this turns out to be difficult to characterize at such
a high level of generality, we are nonetheless able to
identify conditions for a slightly more relaxed notion,
which we term path consistency.

Before defining this notion, we start by providing a
strategy to recover a joint distribution from condition-
als and investigate a general necessary condition for
the functions Fu to be consistent. The proofs of all
the results in this section are given in Appendix A.

Our key observation is that given conditional distribu-
tions q(xi | x−i) for all i ∈ [d], we can always recover
the joint distribution q(x) up to a constant factor via a
product of the conditional distributions. For example,
if d = 2, then for any x1, x2 and x̄1, x̄2, we observe
that

q(x1, x2)

q(x̄1, x2)
=
q(x1 |x2)
q(x̄1 |x2)

, and
q(x̄1, x2)

q(x̄1, x̄2)
=
q(x2 | x̄1)
q(x̄2 | x̄1)

.

(3)
Multiplying these two equations, we get

q(x1, x2)

q(x̄1, x̄2)
=
q(x1 | x2)
q(x̄1 | x2)

· q(x2 | x̄1)
q(x̄2 | x̄1)

. (4)

Since this holds for any x1, x2, x̄1, x̄2, by fixing x̄1, x̄2,
we can recover the joint distribution q(x1, x2) up to
a constant factor. The strategy here is to go from
(x1, x2) to (x̄1, x̄2) by changing one variable at a time.
This allows us to write the ratio of the joint distri-
bution as a product of conditional distributions. This
leads to a natural approach to recover a joint distribu-
tion (up to a constant) from the given Fu.

Definition 3.1 (Path-Recovered Joint Distribution).
For a set of functions Fu, a constant x̄ = (x̄1, . . . , x̄d),
and a permutation function σ : [d] → [d] (which repre-
sents a path from x to x̄ by changing one variable at a
time), the corresponding path-recovered joint distribu-
tion is given by

hσ,x̄(x; {fi|−i}) =
d∏

i=1

fσ(i)|−σ(i)(xσ(i), x
′
−i,σ)

fσ(i)|−σ(i)(x̄σ(i), x
′
−i,σ)

, (5)

where x′−i,σ = {xσ(s)|s > i} ∪ {x̄σ(s)|s < i}.
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Figure 1: An illustration of joint distribution recovery
with path when d = 3. The colored arrows represent
different paths from (x1, x2, x3) to (x̄1, x̄2, x̄3) by
changing one variable at a time (left) or when we
allow changing multiple variables at a time (right).
Each path corresponds to a path-recovered joint
distribution (Equation (5)). The path consistency
(Definition 3.2) ensures that the recovered joint
distribution is the same regardless of the path.

We illustrate the path recovery in Figure 1. Since our
main goal is to recover a joint distribution that is in-
dependent of any permutation σ, it is desirable if the
path-recovered joint hσ,x̄ is also independent of permu-
tation σ. We formally define this as a path consistency
condition.

Definition 3.2 (Path Consistency). Functions Fu =
{fi|−i(xi, x−i) | i ∈ [d]} are path consistent if for any
x̄ = (x̄1, . . . , x̄d) and any permutation functions σ, σ′ :
[d] → [d], we have

hσ,x̄(x;Fu) = hσ′,x̄(x;Fu) . (6)

In fact, we can show that the path consistency condi-
tion is a necessary condition for Fu to correspond to a
consistent joint distribution. Furthermore, if there ex-
ists such a consistent joint distribution, path recovery
(Equation (5)) will lead to the correct joint distribu-
tion (which is also unique), making this a principled
approach to recover the joint distribution.

Proposition 3.3 (Correctness of path recovery and
Necessity of Path Consistency). If a set of functions
Fu correspond to a consistent joint distribution q, then
they are also path consistent, so that for any permuta-
tion σ, the path-recovered joint distribution satisfies

hσ,x̄(x;Fu) =
q(x)

q(x̄)
. (7)

Consequently, path consistency is a necessary condi-
tion for Fu to correspond to a consistent joint distri-
bution.

Moving forward, we will focus on the path consistency
condition. We choose to emphasize this condition be-
cause it is a desirable property to have as discussed
earlier and it is also a necessary condition for a con-
sistent joint. Moreover, path consistency is easier to
verify in practice than the consistency condition itself

since it only requires checking every permutation σ
(of which there are d! permutations), while verifying
consistency involves exploring the space of all possi-
ble distributions in X . Regardless, both search spaces
grow substantially as dimension d increases. Next, we
provide a necessary and sufficient condition for any
fi|−i to be path consistent, which provides insight into
how one can design a parameterization of conditionals
that are always path consistent.

Theorem 3.4 (Necessary and Sufficient Condition for
Path Consistency). Functions fi|−i(xi, x−i) for i ∈ [d]
are path consistent if and only if there exist functions
h(x) and qi(x−i) for i ∈ [d] such that

fi|−i(xi, x−i) = h(x) qi(x−i) . (8)

Theorem 3.4 implies that there must be a shared struc-
ture h among all fi|−i for the path consistency to hold.
In the next section, we investigate the discrete classi-
fication setting, and show that if we learn fi|−i sepa-
rately for each i with discriminative models, then fi|−i

may not be consistent.

3.1 Discriminative Models May Not be Path
Consistent

Here, we investigate the path consistency of discrim-
inative models for the discrete classification setting
where each xi ∈ {1, . . . ,K} for all i ∈ [d]. We then
consider general discriminative models of the form:

fi|−i(xi, x−i) =
exp

(
W⊤

xi,i
ϕi(x−i)

)
∑k

l=1 exp
(
W⊤

l,iϕi(x−i)
) , (9)

where ϕi(x−i) ∈ Rm is a feature map and Wl,i ∈ Rm

are the softmax weight vectors for the l-th possible
value of xr. In deep neural models, ϕi(x−i) is the pre-
softmax layer activations, and in logistic regression,
ϕi(x−i) = x−i. In the next result, we show that path
consistency requires that the neural features ϕi and
ϕj of different fi|−i and fj|−j have to follow specific
constraints that also involve their softmax weights.

Theorem 3.5. Let fi|−i(xi, x−i) be parameterized as
in Equation (9) for i ∈ [d]. If fi|−i are path consis-
tent, then for any i, j ∈ {1, . . . , d} and for any possible
values xi, x

′
i, xj , x

′
j ∈ [K], we must have

(Wxi,i −Wx′
i,i
)⊤
(
ϕi(xj , x−{i,j})− ϕi(x

′
j , x−{i,j})

)
= (Wxj ,j −Wx′

j ,j
)⊤
(
ϕj(xi, x−{i,j})− ϕj(x

′
i, x−{i,j})

)
.

(10)

This relation is rather specific and if we learn fi|−i and
fj|−j independently, it is unlikely that this condition
will hold. To see this more clearly, we consider the
case of logistic regression where ϕi(x−i) = x−i then
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Theorem 3.5 implies that the parameterization has to
belong to exponential family distribution,

fi|−i(xi, x−i) ∝ exp
(∑

j ̸=i

Ai,j xjxi +Bi,jxj

)
, (11)

with Ai,j = Aj,i. We provide examples of models that
satisfy Theorem 3.4, Theorem 3.5 in Appendix D. It
is an interesting open question whether we can de-
sign neural architectures so that these constraints are
automatically satisfied, similar to how CNNs architec-
turally encode translation invariance constraints.

3.2 Complementary Conditioning Sets with
Arbitrary Size

Next, we consider a more general setting when |S| may
be smaller than n− 1. Remarkably, our proposed idea
of recovering the joint via paths is still applicable in
this case. The key difference is that, instead of moving
from x to x̄ with one variable at a time, we may change
more than one variable at a time. We only need to
ensure that we can change all xj to x̄j . To do this, we
first define a complete tuple.

Definition 3.6 (Complete tuple). Let A = {(T, S) |
T ∪ S = [d], T ∩ S = ∅} be a set of complementary
conditioning set pairs. A tuple T = (T1, . . . , Tk) is a

complete tuple of A if
⋃k

i=1 Ti = [d] and (Ti, [d]\Ti) ∈
A for all i ∈ [k].

If T = (T1, . . . , Tk) is a complete tuple of A then
for any permutation function σ : [k] → [k], Tσ =
(Tσ(1), . . . , Tσ(k)) is also a complete tuple of A. We
can use any complete tuple of A to recover a joint dis-
tribution with a path along that tuple, and extend our
results to this general setting. To this end, we define
the general path consistency as follows.

Definition 3.7 (General Path Consistency). Let A =
{(T, S) | T ∪ S = [d], T ∩ S = ∅} be a set of
complementary conditioning set pairs. For a set of
functions F = {fT |S(xT , xS) | (T, S) ∈ A}, a con-
stant x̄ = (x̄1, . . . , x̄d), and a complete tuple of A,
T = (T1, . . . , Tk), the corresponding path-recovered
joint distribution is given by

hx̄,T (x;F) =

k∏
i=1

fTi|Si

(
x′Ti

, x′Si

)
fTi|Si

(
x̄Ti

, x′Si

) , (12)

where for A ∈ {Si, Ti}, x′Ai
= {x̄j | j ∈ Ai∩Ui}∪{xj |

j ∈ Ai \ Ui} and Ui =
⋃i−1

s=1 Ts is the union of all
variables updated in previous steps. Furthermore, we
say that F is path consistent if for any complete tuples
T1, T2 of A, we have

hx̄,T1
(x;F) = hx̄,T2

(x;F) . (13)

Similarly to Proposition 3.3, we can show that general
path consistency is a necessary condition for consis-
tency, i.e., if F corresponds to a consistent joint dis-
tribution q, the path recovered distribution satisfies

hx̄,T (x;F) =
q(x)

q(x̄)
, ∀x, x̄ ∈ X . (14)

Furthermore, Theorem 3.4 can be generalized in this
case to show that F is path consistent if and only if
there exists h(x) and qS(xS) for any S and T = [d]\S,

fT |S(xT , xS) = h(x) qS(xS) . (15)

To summarize, we have extensively explored the path
consistency condition, which we have shown to be a
necessary condition for the existence of a consistent
joint distribution. We also provide a necessary and suf-
ficient condition for path consistency, further demon-
strating that when each conditional fi|−i is learned
separately, this condition may not hold. Generalizing
our path consistency results further – bringing them
closer to achieving full consistency of conditionals in
the setting of complementary conditioning sets – re-
mains an open question for future research.

4 GENERAL CONDITIONING
SETS

In this section, we extend our analysis to the set-
ting where the conditioning pairs in A include subsets
(T, S) such that T ∪ S ⊆ [d]. First, we consider the
case where the set of conditioning pairs contains all
possible pairs in the form ({i}, S) for some set S. We
denote this as

Ap := {({i}, S) | ∀i ∈ [d],∀S ⊆ [d] \ {i}} . (16)

We also let Fp := {fT |S(xT , xS) | ∀(T, S) ∈ Ap}. Note
that {(i,−i) | i ∈ [d]} ⊆ Ap. Hence, the necessary
conditions for the existence of a consistent joint distri-
bution discussed in Section 3 continue to hold in this
setting. The following proposition clarifies why we are
focusing on this set Ap (all proofs for this section are
given in Appendix B).

Proposition 4.1. For any conditioning set A such
that Ap ⊆ A, the conditionals F = {fT |S(xT , xS) |
(T, S) ∈ A} are consistent provided the following two
conditions hold:

(a) The conditionals in Fp are consistent with a
unique joint distribution q.

(b) The conditionals in FA\Ap
= {fT |S(xT , xS) |

(T, S) ∈ A \ Ap} are consistent with q. This can
be verified using only Fp.

Our key observation is that assuming the first condi-
tion holds, the second condition can be verified simply
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as follows. When Fp corresponds to a consistent joint
distribution q, this, in turn, can be used to recover
the marginals q(xS) for any S ⊆ [d]. This also implies
that we can recover the conditionals q(xT | xS) =
q(xS∪T )/q(xS) for any (S, T ) ∈ A \ Ap. Given these,
we can simply check whether fT |S(xT , xS) = q(xT |
xS). Given this proposition, in the sequel, we focus
on Ap and investigate the conditions under which Fp

corresponds to a consistent joint distribution.

Our next key observation is that with access to condi-
tionals of the form q(xi | xS), we can utilize an au-
toregressive model to recover the joint distribution.
Specifically, if we have access to the sequence of condi-
tionals q(x1), q(x2 | x1), . . . , q(xd | x1, . . . , xd−1), we
can reconstruct the joint distribution by:

q(x) = q(x1)
d∏

i=2

q(xi | x<i) , (17)

where x<i = (x1, x2, . . . , xi−1). This leads to another
approach to recover a joint distribution.

Definition 4.2 (Joint Distribution Recovery with Au-
toregressive Model). For a set of functions Fp and a
permutation function σ : [d] → [d], the joint distribu-
tion recovered via an autoregressive model with respect
to σ is given by

gσ(x;Fp) =

d∏
i=1

fσ(i)|σ(<i)(xσ(i), xσ(<i)) , (18)

where fσ(i)|σ(<i) = f{σ(i)}|{σ(1),...,σ(i−1)} and xσ(<i) =
(xσ(1), xσ(2), . . . , xσ(i−1)).

Since we are recovering a joint distribution that is inde-
pendent of a permutation σ, it would also be desirable
if gσ(x;Fp) is independent of any permutation σ. We
define a notion of path consistency for the autoregres-
sive joint distribution recovery.

Definition 4.3 (Autoregressive Path Consistency). A
set of functions Fp is said to be autoregressive path
consistent if for any two permutations σ and σ′, the
autoregressive recovered joint distributions are equal:

gσ(x;Fp) = gσ′(x;Fp) . (19)

As with the path consistency notion specified in Defini-
tion 3.2, the autoregressive consistency defined above
is also a necessary condition for consistency. But, per-
haps surprisingly, it is also a sufficient condition for
consistency.

Theorem 4.4. A set of functions Fp is consistent if
and only if it is autoregressive path consistent. In par-
ticular, when Fp is consistent, the joint distribution is
given by q(x) = gσ(x;Fp) for any permutation σ.

This theorem implies that autoregressive path consis-
tency enables a practical algorithm for testing consis-
tency: We can check whether the joint distributions
recovered from different permutations are equivalent.
Specifically, we can compute the joint distributions gσ
corresponding to all permutations σ and verify their
equality. However, can we provide a simpler condition
that is easier to check? Toward this goal, we introduce
the concept of swap consistency.

Definition 4.5 (Swap Consistency). A set of func-
tions F = {fi|S(xi, xS) | (i, S) ∈ A} for some set

A ⊂ [d]× 2[d] is said to be swap consistent if

fi|S∪{j}fj|S = fj|S∪{i}fi|S (20)

for all {i, j, S} such that (i, S), (j, S), (i, S∪{j}), (j, S∪
{i}) ∈ A.

If F is consistent with a joint p, then LHS and
RHS of (20) represent two ways of factorizing
p(xi, xj |xS) as p(xi, xj |xS) = p(xi|xS∪{j})p(xj |xS) =
p(xj |xS∪{i})p(xi|xS). Hence, swap consistency can
be seen as a necessary condition for the consistency
of any F . Furthermore, when F = Fp, it becomes
equivalent to autoregressive consistency since any
permutation σ is equivalent to a sequence of permu-
tations, each differing by a swap of consecutive terms.
Consequently, the swap consistency also becomes
sufficient for consistency.

Theorem 4.6. If the set of conditionals F =
{fi|S(xi, xS)|(i, S) ∈ A} is consistent with some joint,
then F is swap consistent. Furthermore, when F =
Fp, that is, F includes all conditionals, swap consis-
tency also becomes sufficient for consistency.

As noted above, swap consistency is a necessary con-
dition for consistency of arbitrary sets F , and hence
can be used as a direct necessary if not sufficient check
for consistency of these as well.

4.1 On Parameterization of Conditionals

So far, we have investigated the question of when any
given set of conditionals is consistent. Next, we con-
sider this question in the discrete setting where each
variable xj ∈ X = {1, . . .K} for a discrete set of size
K. Our key observation is that conditional distribu-
tions could be viewed as set functions over a particular
class of sets. Specifically, fi|S(xi, xS) takes as argu-
ment the tuple (x, i, S), which could be mapped to the
following set:

C(x, i, S) = {(i, j, xj) | j ∈ S} ∪ {(i, j) | j ̸∈ S} . (21)

Next, we define the class of such sets C =
∪x∈X ,i,j∈[d]C(x, i, S) ⊆ 2[d]×[d]×(X+1).



Majid, Pukdee, Agrawal, Varıcı, Ravikumar

Proposition 4.7. The set of functions {fi|S(xi, xS) |
S ⊆ [d], i ∈ [d], i ̸∈ S} for a discrete set X with |X | =
K can be equivalently written as a set function ρ : C →
RK where:

ρ(C(x, i, S))v = fi|S(xi = v, xS) .

Since ρ is a function acting over a set, we can use the
result of Zaheer et al. (2017, Theorem 2) which showed
that any f : C → R with domain as a class of sets can
be decomposed as f(C) = ρ(

∑
c∈C ϕ(c)), for suitable

transformations ϕ and ρ. This can be readily extended
to functions mapping C 7→ RK . Using an embedding to
represent each element c ∈ X × [d]× [d] via ϕ(c) ∈ RD,
we get the following:

Proposition 4.8. For any set of conditionals
{fi|S(xi, xS) | S ⊂ [d], i ∈ [d], i ̸∈ S} there exists some
g : RD → RK

+ and wi,j,k, wi,j ∈ RD for i, j ∈ [d],
k ∈ X such that

fi|S(xi = v, xS) = g(ψi(xS))v , (22)

where ψi(xS) =
∑

j∈S wi,j,xj
+
∑

j ̸∈S wi,j.

Any set of conditionals, whether consistent or not, can
be parameterized as described in Proposition 4.8. We
aim to characterize the conditions on g under which
the resulting conditionals are consistent, or equiva-
lently the set of joint distributions induced by such
a parameterized family of g. We show that when g is
a logistic parameterization, i.e., a linear layer followed
by a sigmoid, it results in a degenerate bag-of-words
distribution.

Theorem 4.9. Let g(z)v =
exp(w⊤

v z)∑2
k=1 exp(w⊤

k z)
for some

parameters wk ∈ RD for each k ∈ {1, 2}. The set of
conditionals {fi|S(xi, xS) | S ⊂ [d], i ∈ [d], i ̸∈ S} are
consistent if and only if p(x) can be factorized as

p(x) =
∏

{v}∈V

p(xv)
∏

{u,v}∈E

p(xu, xv)
∏
C∈C

p(xC) , (23)

where V,E, C are partitions of the index set [d] into
subsets of size 1, 2 and ⩾ 3, respectively, and p(xC)
is a degenerate distribution that only depends on the
count of the words: p(x) ∝ exp(f(sum(x, 1), sum(x, 2))
for some function f : Z2 → R, and sum(x, k) =∑d

i=1 I(xi = k).

Theorem 4.9 implies that the probability distribution
that can be consistently parameterized with a logistic
function g is very limited where the joint distribution
must decompose into isolated components: either in-
dependent variables, pairwise interactions, or larger
clusters that depend only on aggregate counts of cat-
egories rather than specific configurations. We expect

to obtain richer distributions as we make g more com-
plex. We pose characterizing joint distributions en-
tailed by richer classes of g (e.g., MLPs, transformers,
RNNs) as an open question for future research.

5 EXPERIMENTS

The primary goal of our experimental study is to eval-
uate the performance and consistency of conditional
distributions modeled via neural network parameter-
izations, and test the consistency measures we pro-
posed. Specifically, we aim to

1. Explore whether a deep neural network such as
a multi-layer perceptron (MLP) can be used to
model g given in Proposition 4.8.

2. Investigate whether path consistency (Defini-
tion 3.1) and swap consistency (Definition 4.5)
can serve as effective proxies for assessing the con-
sistency of a model.

Data generating process. We follow a similar data
generating process to Jiang et al. (2024) (which also
learn conditional distributions) and focus on binary
variables X = {0, 1}d. To create a controlled envi-
ronment where the true conditional distributions are
known, we construct a joint distribution p(x) using
Bayesian networks. Specifically, we generate three
DAGs with d ∈ {10, 25, 50} variables and 32, 84, 116
edges, respectively. For each DAG, the entries of
the conditional probability table, i.e., p(Xi | Xpa(i))’s
where pa(i) denotes the parents of node i, are sampled
from the uniform distribution U(0, 1) for each parent
configuration.

Learning the conditionals. Since our goal is to
learn conditional distributions p(xi|xS) for varying i,
S, the input to the model is a tuple (i, S, xS) and out-
put is a distribution over xi = {0, 1}. As customary
to the related literature (e.g., masked autoencoders),
we sample tuples (x, i, S) as follows:

1. Sample an x from the true joint p.

2. Sample the size of a mask m from a uniform dis-
tribution over [d].

3. Sample a set S′ with size |S′| = m with a uniform
probability, and sample i ∈ [d]\S′ with a uniform
probability.

This process specifies a tuple (x, i, S) which is drawn
from some distribution denoted by D. Then, our ob-
jective is given by

min
θ

E(x,i,S)∼D[− log fi|S(xi | xS ; θ)] . (24)

To evaluate the goodness of fit of the learned condi-
tionals, we compare the total variation (TV) distance



On the Consistent Recovery of Joint Distributions from Conditionals

Table 1: dTV between the learned model and the true
conditionals when g is a 3 layer MLP with hidden size
64. ∆ represents the percent reduction in dTV as the
embedding dimension D increases from 2 to 512.

d/D 2 8 32 128 512 ∆

10 0.079 0.068 0.062 0.062 0.059 25%
25 0.121 0.110 0.107 0.104 0.100 17%
50 0.111 0.102 0.098 0.098 0.097 13%

Table 2: dTV between the learned model and the true
conditionals when g is a L-layer MLP with hidden size
128 (L = 0 indicates g is a just a sigmoid). ∆ repre-
sents the percent reduction in dTV as the number of
hidden layers increase from 0 to 8.

d/L 0 3 8 ∆

10 0.089 0.052 0.049 47%
25 0.129 0.097 0.098 17%
50 0.122 0.089 0.089 31%

between the model and true conditional distributions,

dTV(p, fθ) = E(x,i,S)∼D

[∣∣fi|S(xi|xS ; θ)− p(xi|xS)
∣∣] .

Model & training details. We parameterize fi|S
following Proposition 4.8, that is, the weights wi,j,k,
wi,j for i ∈ [d], j ∈ [d], k ∈ [2]. We parameterize g
with an MLP with l hidden layers, ReLU activation,
skip connection, and batch normalization in each layer.
We train each model for 20000 steps with a batch size
of 256, and use Adam optimizer with a learning rate
of 0.01 for the first 2000 steps and 0.001 for the next
18000 steps.

MLPs fail to learn the true conditionals. We
present the total variation (TV) distance between the
learned model and the true conditionals. To deter-
mine whether g parameterized through an MLP can
learn the true conditionals, we varied two key factors:
the embedding dimension D (Table 1) and the num-
ber of hidden layers L (Table 2). We found that as
the embedding dimension D increases from 2 to 512,
we observe only slight improvements in TV distance,
which diminish as the number of variables d increases.
In addition, we observe a similar trend as we increase

Table 3: Pearson correlation coefficient of EPC and
ESC with EAC when g is a sigmoid (L = 0) or an MLP
with 1 hidden layer.

d 10 25 50 10 25 50
L 0 0 0 1 1 1

Swap/AR 0.97 0.99 0.99 0.97 0.96 0.98
Path/AR 0.89 0.95 0.92 0.56 0.89 0.97

Table 4: dTV between the learned model and the true
conditionals when f is parameterized with a trans-
former where L denote the number of layers and
demb = dmodel = 128, dhead = 4.

d/L 1 4 9

10 0.121 0.112 0.127
25 0.173 0.178 0.176
50 0.189 0.190 0.179

Figure 2: Measures of Path and Swap Consistency
(EPC, ESC) show high correlation with a measure of
Autoregressive Consistency (EAC) for a model where g
is a 1 layer MLP, with D = 32, and number of vari-
ables d = 50.

the model complexity via the number of hidden lay-
ers where the TV distance only decreases slightly with
a diminishing return in d. These results suggest that
MLPs struggle to learn conditional distributions, es-
pecially as the number of variables grows.

Transformer underperforms compared to our
set-invariant parameterization. Further, we in-
vestigate the performance of a transformer model on
the same task in Table 4 where we provide full details
of the implementation in Appendix C. We found that
the TV distance of the transformer models is signifi-
cantly higher even when using up to 9 layers, compared
to our models which follow the parameterization given
by Proposition 4.8, even when g is just a sigmoid. One
possible explanation could be that our parameteriza-
tion suggests n2 embeddings, one for each pair of i, j
whereas transformer only has n embeddings, one for
each position i.

Path consistency and swap consistency are ef-
fective consistency proxies. Since autoregressive
consistency is a necessary and sufficient condition for
consistency, it serves as a ground truth consistency
measure. Next, we define the following metrics to mea-
sure each of the proposed consistency measures. For
a given distribution we collect all the models fθ for
(θ1, . . . θt) gathered every 500 training steps and com-
pute various consistency metrics.
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d ESC EPC − log p(xi | x[d]\i) − log p(xi | x[d]\i,j)
8 0.43± 0.14 0.48± 0.29 5.31± 1.38 5.98± 1.41
16 0.29± 0.11 0.45± 0.23 3.57± 1.05 3.88± 1.17
32 0.23± 0.10 0.37± 0.15 2.92± 0.88 3.08± 0.97
64 0.16± 0.08 0.25± 0.09 2.46± 0.67 2.62± 0.62
128 0.09± 0.05 0.18± 0.07 2.27± 0.99 2.34± 0.99
256 0.09± 0.06 0.19± 0.04 2.21± 0.80 2.24± 0.75

Table 5: Measures of Path and Swap Consistency of a pretrained BERT model with different values of the
context length d. We also report the negative log likelihood for each d.

• Path consistency: We take the mean of standard
deviation (std) of log hσ as σ is varied. Path consis-
tency would imply a small value of this measure,

EPC(θ) = Ex,x̄∼P

[
Stdσ[log hσ,x̄(x; fθ)]/d

]
. (25)

• Autoregressive consistency: Similarly we take the
mean of std of log gσ which should be small if au-
toregressive consistency holds,

EAC(θ) = Ex∼P

[
Stdσ[log gσ(x; fθ)]/d

]
. (26)

• Swap consistency: We report the mean of the ab-
solute difference between log of LHS and RHS of
Equation (20) with respect to a distribution D′ over
(x, i, j, S) similar to the way we defined D over
(x, i, S),

ESC(θ) = E(x,i,j,S)∼D′ [∆(fθ, x, i, j, S)] , (27)

∆(f, x, i, j, S) =
∣∣∣ log (f(xi|xS∪{j})f(xj |xS)

)
− log

(
f(xj |xS∪{i})f(xi|xS)

)∣∣∣/2 .
(28)

We note that the metrics defined above directly cap-
ture meaningful quantitative metrics for the consis-
tency of our conditionals (rather than being mere
yes/no criteria). A detailed discussion of the equa-
tions above is provided in Appendix E. In Table 3, we
show that EPC and ESC are highly correlated with EAC.
This result suggests that our measures of path consis-
tency and swap consistency are not only theoretically
desirable but are also a practical and useful proxy for
measuring how consistent are the learned conditionals.

Experiments with BERT. We demonstrate that
our proposed metrics are applicable to modern self-
supervised models by calculating the consistency met-
rics on a pretrained BERT model (Devlin et al., 2019).
In particular, we consider bert-base-uncased with 110
million parameters and evaluate our consistency met-
rics on random sentences of varying length from Book-
Corpus dataset (Zhu et al., 2015), which was one of the
two datasets which BERT was trained on.

We start with the procedure to estimate EPC. For a
given context length d, we sample n = 1024 random
sentences of length at least d from the corpus and select
the first d tokens to get n sentences x1, . . . , xn of length
d. Then, we create a random shuffle of these sentences
to get reference data points x′1, . . . , x′n to create pairs
(x1, x′1), . . . , (xn, x′n). Finally, for each pair, we use
k = 30 random permutations σ to compute EPC ac-
cording to (25). For ESC, for each x1, . . . xn, we use
k = 30 random pairs of positions (i, j) ∈ [d]. Then,
use (28) and (27) to calculate ESC.

We also report mean NLL (negative log likelihood) of
xi given the x[d]\i (logit for token at position i given
the sentence with position i masked) and xi given an-
other masked token at position j, i.e., given x[d]\{i,j}
(logit for token at position i given the sentence with
positions i, j masked). We observe that both the pro-
posed consistency metrics and NLL become smaller as
d gets larger. Regardless, the value of the consistency
metric is still positive for d = 256, which suggests that
modern self-supervised models such as BERT may not
be consistent, and learning more consistent represen-
tations remains an important research problem.

6 CONCLUSION

In this paper, we addressed the question: given a set
of conditional distributions, when are they consistent
with a joint distribution? We introduced consistency
conditions which are necessary (and sufficient) for
a consistent joint distribution which can also serve
as a good proxy to evaluate the consistency level
in practice. We examined when these conditions
hold and demonstrated that standard discriminative
models may fail to satisfy them. Furthermore, our
experiments showed that even more complex parame-
terizations fail to achieve consistency. This highlights
the inherent difficulty of this problem. We pose an
open question on how can we parameterize models
of conditional distributions to enable learning of rich
joint distributions?
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On the Consistent Recovery of Joint Distributions from Conditionals:
Supplementary Material

A PROOFS FOR COMPLEMENTARY CONDITIONING SETS

In the following proofs, for brevity, we will occasionally have a slight abuse of notation in which we can swap
the order of the inputs of a function, similar to how we do it in probability. For example, if we have a function
h : (x1, x2, x3) → R, we can write h as

h(x1, x2, x3) = h(x1, x{2,3}) = h(x2, x1, x3) , (29)

where we use the index xi to note that the value is for the ith input of h and use the set notation xS to refer to
{xi | i ∈ S}.

A.1 Proof of Proposition 3.3

Proposition 3.3 (Correctness of path recovery and Necessity of Path Consistency). If a set of functions Fu

correspond to a consistent joint distribution q, then they are also path consistent, so that for any permutation σ,
the path-recovered joint distribution satisfies

hσ,x̄(x;Fu) =
q(x)

q(x̄)
. (7)

Consequently, path consistency is a necessary condition for Fu to correspond to a consistent joint distribution.

Proof. Let Fu correspond to a consistent joint distribution q then for any i ∈ [d] and x ∈ X ,

fi|−i(xi, x−i) = q(xi | x−i) . (30)

Therefore, for any x−i we have

fi|−i(xi, x−i)

fi|−i(x̄i, x−i)
=
q(xi | x−i)

q(x̄i | x−i)
=
q(xi, x−i)

q(x̄i, x−i)
. (31)

We can substitute this back to the definition of the path recovery,

hσ,x̄(x; {fi|−i}) =
d∏

i=1

fσ(i)|−σ(i)(xσ(i), x
′
−i,σ)

fσ(i)|−σ(i)(x̄σ(i), x
′
−i,σ)

(32)

=

d∏
i=1

q(xσ(i), x
′
−i,σ)

q(x̄σ(i), x
′
−i,σ)

(33)

=
q(x)

q(x̄)
. (34)

The final step is from the definition of x′−l,σ = {xσ(s)|s > l} ∪ {x̄σ(s)|s < l} where we can rewrite it as

x′−l,σ =

l−1⋃
i=1

{x̄σ(i)} ∪
d⋃

i=l+1

{xσ(i)} . (35)

Therefore,

{x̄σ(l)} ∪ x′−l,σ = {x̄σ(l)} ∪
l−1⋃
i=1

{x̄σ(i)} ∪
d⋃

i=l+1

{xσ(i)} (36)
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=

l⋃
i=1

{x̄σ(i)} ∪
d⋃

i=l+1

{xσ(i)} (37)

=

l⋃
i=1

{x̄σ(i)} ∪
d⋃

i=l+2

{xσ(i)} ∪ {xσ(l+1)} (38)

= x′−(l+1),σ ∪ {xσ(l+1)} . (39)

As a consequence, for any l
q(xσ(l+1), x

′
−(l+1),σ)

q(x̄σ(l), x
′
−l,σ)

= 1 , (40)

so that these terms cancel each other out and we are left with the numerator of the first term and the denominator
of the last term which are q(x) and q(x̄) respectively.

A.2 Proof of Theorem 3.4

Theorem 3.4 (Necessary and Sufficient Condition for Path Consistency). Functions fi|−i(xi, x−i) for i ∈ [d]
are path consistent if and only if there exist functions h(x) and qi(x−i) for i ∈ [d] such that

fi|−i(xi, x−i) = h(x) qi(x−i) . (8)

Proof. ⇒) Suppose that fi|−i are path consistent. We first show that fi|−i must be of the form fi|−i(xi, x−i) =
h(x)qi(x−i) for some functions h, qi. For a fixed constant x̄, consider a permutation σ such that σ(1) = i.
Applying the path recovery we have

hσ,x̄(x;Fu) =
fi|−i(xi, x−i)

fi|−i(x̄i, x−i)

d∏
j=2

fσ(j)|−σ(j)(xσ(j), x
′
−j,σ)

fσ(j)|−σ(j)(x̄σ(j), x
′
−j,σ)

. (41)

Note that the right-hand side terms do not depend on xi apart from fi|−i(xi, x−i) because other terms contain
x̄i instead. We define

1

qi(x−i)
=

1

fi|−i(x̄i, x−i)

d∏
j=2

fσ(j)|−σ(j)(xσ(j), x
′
−j,σ)

fσ(j)|−σ(j)(x̄σ(j), x
′
−j,σ)

. (42)

We have hσ,x̄(x;Fu) =
fi|−i(xi,x−i)

qi(x−i)
, that is, fi|−i(xi, x−i) = hσ,x̄(x;Fu)qi(x−i). We can repeat the same argument

for any i = 1, . . . , d,
fi|−i(xi, x−i) = hσ(i),x̄(x;Fu)qi(x−i) , (43)

where σ(i) is a permutation such that σ(i)(1) = i. The path consistency condition ensures that we have the same
h(x) for all i that is for any permutation σ(i), σ(j) we have

hσ(i),x̄(x;Fu) = hσ(j),x̄(x;Fu) , (44)

and we denote this as h(x). Therefore, there exists a function h(x) and qi(x−i) such that for all i ∈ [d],

fi|−i(xi, x−i) = h(x) qi(x−i) . (45)

⇐) Suppose that fi|−i(xi, x−i) = h(x) qi(x−i) for some functions h, qi for all i ∈ [d]. We will show that Fu are
path consistent. For any x̄ and any permutation functions σ, σ′, we have

hσ,x̄(x;Fu) =

d∏
i=1

fσ(i)|−σ(i)(xσ(i), x
′
−i,σ)

fσ(i)|−σ(i)(x̄σ(i), x
′
−i,σ)

(46)

=

d∏
i=1

h(xσ(i), x
′
−i,σ)qσ(i)(x−i,σ′)

h(x̄σ(i), x
′
−i,σ)qσ(i)(x−i,σ′)

(47)
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=

d∏
i=1

h(xσ(i), x
′
−i,σ)

h(x̄σ(i), x
′
−i,σ)

(48)

=
h(x)

h(x̄)
. (49)

The last equality follows from the cancellation between h between path from x to x̄ which hold from an observation
that

h(xσ(l+1), x
′
−(l+1),σ)

h(x̄σ(l), x
′
−l,σ)

= 1 . (50)

We refer to Equation (36) for more details on the derivation. Finally, we can see that the recovered hσ,x̄(x;Fu)
does not depend on the permutation σ and, therefore, must be the same for all σ. This implies that fi|−i are
path consistent.

A.3 Proofs for Section 3.1

Theorem 3.5. Let fi|−i(xi, x−i) be parameterized as in Equation (9) for i ∈ [d]. If fi|−i are path consistent,
then for any i, j ∈ {1, . . . , d} and for any possible values xi, x

′
i, xj , x

′
j ∈ [K], we must have

(Wxi,i −Wx′
i,i
)⊤
(
ϕi(xj , x−{i,j})− ϕi(x

′
j , x−{i,j})

)
= (Wxj ,j −Wx′

j ,j
)⊤
(
ϕj(xi, x−{i,j})− ϕj(x

′
i, x−{i,j})

)
.

(10)

Proof. From Equation (9) we have that

fi|−i(xi, x−i) =
exp

(
W⊤

xi,i
ϕi(x−i)

)
∑k

l=1 exp
(
W⊤

l,iϕi(x−i)
) . (51)

Since fi|−i are path consistent, Theorem 3.4 implies that there exists a function h and qi such that

exp
(
W⊤

xi,i
ϕi(x−i)

)
∑k

l=1 exp
(
W⊤

l,iϕi(x−i)
) = h(x)qi(x−i) (52)

h(x)

exp
(
W⊤

xi,i
ϕi(x−i)

) = qi(x−i)

k∑
l=1

exp
(
W⊤

l,iϕi(x−i)
)
. (53)

Note that the terms on the right-hand side are independent of xi. This implies that as we change the value of
xi, the value of the right-hand side would be the same. Formally, for any xi, x

′
i ∈ [K],

h(xi, x−i)

exp
(
W⊤

xi,i
ϕi(x−i)

) =
h(x′i, x−i)

exp
(
W⊤

x′
i,i
ϕi(x−i)

) , (54)

h(xi, x−i)

h(x′i, x−i)
=

exp
(
W⊤

xi,i
ϕi(x−i)

)
exp

(
W⊤

x′
i,i
ϕi(x−i)

) . (55)

Let x−{i,j} denote the rest of x without xi and xj . With some abuse of notation, we can rewrite the above
equation as

h(xi, xj , x−{i,j})

h(x′i, xj , x−{i,j})
=

exp
(
W⊤

xi,i
ϕi(xj , x−{i,j})

)
exp

(
W⊤

x′
i,i
ϕi(xj , x−{i,j})

) . (56)

Conversely, by swapping i and j we have

h(xi, xj , x−{i,j})

h(xi, x′j , x−{i,j})
=

exp
(
W⊤

xj ,j
ϕj(xi, v)

)
exp

(
W⊤

x′
j ,j
ϕj(xi, x−{i,j})

) . (57)
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These equations give us the ratio between h(x) as we change one variable xi to x
′
i in terms of Wxi,i,Wx′

i,i
and

ϕi(x−i). Our result comes from an observation that we can change from (xi, xj , x−{i,j}) to (x′i, x
′
j , x−{i,j})

in two different ways: i) (xi, xj , x−{i,j}) → (x′i, xj , x−{i,j}) → (x′i, x
′
j , x−{i,j}), and ii) (xi, xj , x−{i,j}) →

(xi, x
′
j , x−{i,j}) → (x′i, x

′
j , x−{i,j}). This corresponds to

h(xi, xj , x−{i,j})

h(x′i, x
′
j , x−{i,j})

=
h(xi, xj , x−{i,j})

h(x′i, xj , x−{i,j})

h(x′i, xj , x−{i,j})

h(x′i, x
′
j , x−{i,j})

=
h(xi, xj , x−{i,j})

h(xi, x′j , x−{i,j})

h(xi, x
′
j , x−{i,j})

h(x′i, x
′
j , x−{i,j})

. (58)

By substituting (56) and (57) into this equation, we have

exp
(
W⊤

xi,iϕi(xj , x−{i,j}) +W⊤
xj ,jϕj(x

′
i, x−{i,j}) +W⊤

x′
j ,j
ϕj(xi, x−{i,j}) +W⊤

x′
i,i
ϕi(x

′
j , x−{i,j})

)
(59)

= exp
(
W⊤

x′
i,i
ϕi(xj , x−{i,j}) +W⊤

x′
j ,j
ϕj(x

′
i, x−{i,j}) +W⊤

xj ,jϕj(xi, x−{i,j}) +W⊤
xi,iϕi(x

′
j , x−{i,j})

)
. (60)

Rearranging the terms gives us

(Wxi,i −Wx′
i,i
)⊤
(
ϕi(xj , x−{i,j})− ϕi(x

′
j , x−{i,j})

)
= (Wxj ,j −Wx′

j ,j
)⊤
(
ϕj(xi, x−{i,j})− ϕj(x

′
i, x−{i,j})

)
. (61)

Next, we consider a special case of logistic regression where ϕi(x−i) = x−i. This lets us better see the impact of
Theorem 3.5.

Corollary A.1. Let fi|−i(xi, x−i) be parameterized as in Equation (9). If fi|−i are path consistent and ϕi(x−i) =

x−i ∈ [K]d−1, (logistic regression) then we must have,

fi|−i(xi, x−i) ∝ exp
(∑

j ̸=i

Ai,j xjxi +Bi,jxj

)
, (62)

for some constants Ai,j ∈ R where Ai,j = Aj,i.

Proof. Recall that we have a parameterization,

fi|−i(xi, x−i) =
exp

(
W⊤

xi,i
ϕi(x−i)

)
∑k

l=1 exp
(
W⊤

l,iϕi(x−i)
) , (63)

where ϕi(x−i) ∈ Rd−1 and Wl,i ∈ Rd−1. For the sake of notational convenience, we add a dummy ith column
with value zero to ϕi and Wl,i so that they are now a vector in Rd. Note that this does not change any output
of fi|−i(xi, x−i) but allows us to write an index more concisely. As a result, we observe that

ϕi(xj , x−{i,j})− ϕi(x
′
j , x−{i,j}) = (xj − x′j)ej , (64)

where ej denotes a vector in Rd with value 1 on the jth coordinate and 0 elsewhere. Applying Theorem 3.5, for
any i, j and any xi ̸= xj , x

′
i ̸= x′j , we have

(Wxi,i −Wx′
i,i
)⊤
(
ϕi(xj , x−{i,j})− ϕi(x

′
j , x−{i,j})

)
= (Wxj ,j −Wx′

j ,j
)⊤
(
ϕj(xi, x−{i,j})− ϕj(x

′
i, x−{i,j})

)
, (65)

(Wxi,i −Wx′
i,i
)⊤(xj − x′j)ej = (Wxj ,j −Wx′

j ,j
)⊤(xi − x′i)ei, (66)

(Wxi,i −Wx′
i,i
)j(xj − x′j) = (Wxj ,j −Wx′

j ,j
)i(xi − x′i), (67)

(Wxi,i −Wx′
i,i
)j

(xi − x′i)
=

(Wxj ,j −Wx′
j ,j

)i

(xj − x′j)
. (68)

We can see that the left-hand side is independent of xj , x
′
j while the right-hand side is also independent of xi, x

′
i.

Since this has to hold for any xi, xj , there exists a constant Ai,j for which

(Wxi,i −Wx′
i,i
)j

(xi − x′i)
=

(Wxj ,j −Wx′
j ,j

)i

(xj − x′j)
= Ai,j . (69)
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Therefore, we have
(Wxi,i −Wx′

i,i
)j = Ai,j(xi − x′i) , (70)

and setting x′i = c for some constant c,

(Wxi,i)j = (Wc,i)j +Ai,j(xi − c) . (71)

Substitute back to Equation (63), we have that

fi|−i(xi, x−i) ∝ exp(W⊤
xi,iϕi(x−i)) (72)

fi|−i(xi, x−i) ∝ exp(
∑
j ̸=i

(Wxi,i)jxj) (73)

fi|−i(xi, x−i) ∝ exp(
∑
j ̸=i

((Wc,i)j +Ai,j(xi − c))xj) (74)

fi|−i(xi, x−i) ∝ exp(
∑
j ̸=i

Ai,jxixj +Bi,jxj) , (75)

where Ai,j , Bi,j are constant and that Ai,j = Aj,i.

A.4 Proof for Section 3.2

Proposition A.2 (Correctness of path recovery). Let A = {(T, S) | T ∪ S = [d], T ∩ S = ∅} be a set of
complementary conditioning set pairs. If a set of functions F = {fT |S(xT , xS) | (T, S) ∈ A} correspond to a
consistent joint distribution q then for any complete tuple of A, T = (T1, . . . , Tk), and any x, x̄, the path-recovered
joint distribution satisfies

hx̄,T (x;F) =
q(x)

q(x̄)
. (76)

Consequently, path consistency is a necessary condition for F to correspond to a consistent joint distribution.

Proof. Let F correspond to a consistent joint distribution q, then for any (T, S) ∈ A and for any x ∈ X ,

fT |S(xT , xS) = q(xT | xS) . (77)

Recall that for a constant x̄ = (x̄1, . . . , x̄d), and a complete tuple of A, T = (T1, . . . , Tk), the corresponding
path-recovered joint distribution is given by

hx̄,T (x;F) =

k∏
i=1

fTi|Si

(
x′Ti

, x′Si

)
fTi|Si

(
x̄Ti , x

′
Si

) =

k∏
i=1

q(x′Ti
| x′Si

)

q(x̄Ti
| x′Si

)
=

k∏
i=1

q(x′Ti
, x′Si

)

q(x̄Ti
, x′Si

)
, (78)

where x′Si
= {x̄j | j ∈ Si ∩Ui} ∪ {xj | j ∈ Si \Ui}, x′Ti

= {x̄j | j ∈ Ti ∩Ui} ∪ {xj | j ∈ Ti \Ui} and Ui =
⋃i−1

s=1 Ts
is the union of all variables updated in previous steps. Intuitively, x′Si

, x′Ti
change all xj that have been updated

in the previous step to x̄j . By definition, we have

x̄Ti ∪ x′Si
= x̄Ti ∪ {x̄j | j ∈ Si ∩ Ui} ∪ {xj | j ∈ Si \ Ui} (79)

= {x̄j | j ∈ (Si ∩ Ui) ∪ Ti} ∪ {xj | j ∈ Si \ Ui} . (80)

Since Si ∪ Ti = [d], we have

(Si ∩ Ui) ∪ Ti = (([d] \ Ti) ∩
i−1⋃
s=1

Ts) ∪ Ti =
i⋃

s=1

Ts = Ui+1 , (81)

and

Si \ Ui = ([d] \ Ti) \
i−1⋃
s=1

Ts = [d] \ Ui+1 . (82)

Therefore,
x̄Ti

∪ x′Si
= {x̄j | j ∈ Ui+1} ∪ {xj | j ∈ [d] \ Ui+1} . (83)
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On the other hand, we use the fact that Ti+1 ∪ Si+1 = [d] to show that

x′Ti+1
∪ x′Si+1

= {x̄j | j ∈ Si+1 ∩ Ui+1} ∪ {xj | j ∈ Si+1 \ Ui+1} ∪ {x̄j | j ∈ Ti+1 ∩ Ui+1} ∪ {xj | j ∈ Ti+1 \ Ui+1}
(84)

= {x̄j | j ∈ Ui+1} ∪ {xj | j ∈ [d] \ Ui+1} (85)

= x̄Ti
∪ x′Si

. (86)

Therefore,
q(x′Ti+1

∪ x′Si+1
)

q(x̄Ti ∪ x′Si
)

= 1 , (87)

and that these terms would cancel each other out and we are left with

hx̄,T (x;F) =
q(x′T1

, x′S1
)

q(x̄Tk
, x′Sk

)
=
q(x)

q(x̄)
, (88)

as required.

Theorem A.3 (Sufficient and Necessary Condition for Path Consistency). Let A = {(T, S) | T ∪S = [d], T ∩S =
∅} be a set of complementary conditioning set pairs. A set of functions F = {fT |S(xT , xS) | (T, S) ∈ A} are path
consistent if and only if there exist functions h(x) and qS(xS) for any S that (T, S) ∈ A such that

fT |S(xT , xS) = h(x) qS(xS) . (89)

Proof. The proof strategy is similar to the proof of Theorem 3.4. ⇒) Assume that F is path consistent. Then
consider a complete tuple T = {T1, . . . , Tk} such that S1 = [d] \ T1 = S. Also, for simplicity, we write T = T1.
From path consistency, there exists a unique h(x) such that

h(x) = hx̄,T (x;F) =

k∏
i=1

fTi|Si

(
x′Ti

, x′Si

)
fTi|Si

(
x̄Ti

, x′Si

) =
fT |S (xT , xS)

fT |S (x̄T , xS)

k∏
i=2

fTi|Si

(
x′Ti

, x′Si

)
fTi|Si

(
x̄Ti

, x′Si

) . (90)

This follows from the fact that x′T1
= xT1 and x′S1

= xS . Now, we observe that

1

fT |S (x̄T , xS)

k∏
i=2

fTi|Si

(
x′Ti

, x′Si

)
fTi|Si

(
x̄Ti

, x′Si

) , (91)

depends only on xS , since the term that depends on xT is replaced by x̄T . Denote

1

qS(xS)
=

1

fT |S (x̄T , xS)

k∏
i=2

fTi|Si

(
x′Ti

, x′Si

)
fTi|Si

(
x̄Ti

, x′Si

) , (92)

and we have

h(x) =
fT |S (xT , xS)

qS(xS)
. (93)

Therefore, fT |S (xT , xS) = h(x)qS(xS). The path consistency condition ensures that h(x) is well-defined and is
the same for all complete tuples T .

⇐) Assume that for a set of function F = {fT |S(xT , xS) | (T, S) ∈ A}, there exists a function h, qS where for
any (T, S) ∈ A,

fT |S(xT , xS) = h(x)qS(xS) . (94)

We will show that F is path consistent. For any complete tuple T = (T1, . . . , Tk), we have

hx̄,T (x;F) =

k∏
i=1

fTi|Si

(
x′Ti

, x′Si

)
fTi|Si

(
x̄Ti , x

′
Si

) (95)
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=

k∏
i=1

h(x′Ti
, x′Si

)qSi
(x′Si

)

h(x̄Ti
, x′Si

)qSi
(x′Si

)
(96)

=

k∏
i=1

h(x′Ti
, x′Si

)

h(x̄Ti
, x′Si

)
(97)

=
h(x)

h(x̄)
. (98)

This implies that hx̄,T (x;F) is independent of T and therefore F is path consistent. The final step is due to the
fact that

x′Ti+1
∪ x′Si+1

= x̄Ti ∪ x′Si
, (99)

so that terms in between cancel with each other. We refer to (84) for the details of the derivation.

B PROOFS FOR GENERAL CONDITIONING SETS

B.1 Proof of Proposition 4.1

Proposition 4.1. For any conditioning set A such that Ap ⊆ A, the conditionals F = {fT |S(xT , xS) | (T, S) ∈
A} are consistent provided the following two conditions hold:

(a) The conditionals in Fp are consistent with a unique joint distribution q.

(b) The conditionals in FA\Ap
= {fT |S(xT , xS) | (T, S) ∈ A \ Ap} are consistent with q. This can be verified

using only Fp.

Proof. By definition, F corresponds to a consistent joint distribution if there exists a joint distribution q such
that for any (T, S) ∈ A,

fT |S(xT , xS) = q(xT | xS) . (100)

This implies that Fp ⊆ F must be consistent with joint distribution q. To show that q is unique, we observe
that we can use an autoregressive recovery to recover q

q(x) = q(x1)

d∏
i=2

q(xi | x<i) , (101)

q(x) = f1|∅(x1)

d∏
i=2

fi|<i(xi, x<i) , (102)

where we write fi|<i in short for f{i}|{1,...i−1} and x<i in short for {x1, . . . , xi−1}. Note that the right-hand side
only depends on fi|S ∈ Fp. Therefore, q must be unique for each Fp and this concludes a). Next, we can see
that the first part of b) is straightforward from the definition. We will show that this condition can be verified
with access to Fp. For any fT |S ∈ FA\Ap

, from consistency with q, we have

fT |S(xT , xS) = q(xT | xS) =
q(xT∪S)

q(xS)
. (103)

The final step is from the fact that q is a valid distribution. Similar to above, if Fp is consistent with q,
we can write q(xT | xS) and q(xS) as a product of functions in Fp with an autoregressive recovery. For any
S = {s1, . . . , sk},

q(xS) = q(xs1)

d∏
i=2

q(xsi | x<si) (104)

q(xS) = f1|∅(xs1)

d∏
i=2

f{si}|{sj |j<i}(xsi , x<si) (105)
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where we write x<si = {xsj | j < i} for brevity. For a set S = {s1, . . . , sk} where for any i < j, si < sj , we
denote

g(x, S,Fp) = f1|∅(xs1)

d∏
i=2

f{si}|{sj |j<i}(xsi , x<si) (106)

as an autoregressive recovery for q(xS) starting from the variables xi with the smallest index i to the largest
index. We can see that every term in the right-hand side of the equation is in the form of fi|S so it is a product
of members of Fp. Also, if Fp is consistent with q, then we must have

g(x, S,Fp) = q(xS) . (107)

Finally, we conclude that if condition a) holds, then condition b) holds only when for any fT |S ∈ FA\Ap
,

fT |S(xT , xS) = q(xT | xS) =
q(xT∪S)

q(xS)
=
g(x, S ∪ T,Fp)

g(x, S,Fp)
. (108)

Since the final term depends only on Fp, we can verify whether the condition b) holds using only Fp.

B.2 Proofs of Theorem 4.4 and Theorem 4.6

Recall that Theorem 4.4 and Theorem 4.6 are given by

Theorem 4.4. A set of functions Fp is consistent if and only if it is autoregressive path consistent. In particular,
when Fp is consistent, the joint distribution is given by q(x) = gσ(x;Fp) for any permutation σ.

Theorem 4.6. If the set of conditionals F = {fi|S(xi, xS)|(i, S) ∈ A} is consistent with some joint, then F is
swap consistent. Furthermore, when F = Fp, that is, F includes all conditionals, swap consistency also becomes
sufficient for consistency.

In this section, we will prove these theorems with the following plan

1. We will first show that autoregressive path consistency is a necessary condition for a consistent joint.

2. We will show that swap consistency is also a necessary condition for a consistent joint.

3. We will show that when F = Fp, swap consistency and autoregressive path consistency are equivalent.

4. Finally, when F = Fp, autoregressive path consistency and swap consistency are sufficient condition for a
consistent joint.

Note that, these four results altogether imply Theorem 4.4 and Theorem 4.6.

Proposition B.1. If Fp corresponds to a consistent joint distribution then it has to be autoregressive path
consistent.

Proof. Assume that Fp corresponds to a consistent joint distribution, then there exists a joint distribution q
such that for any fi|S ∈ Fp,

fi|S(xi, xS) = q(xi | xS). (109)

From its definition, an autoregressive path recovery with respect to a permutation σ is given by

gσ(x;Fp) =

d∏
i=1

fσ(i)|σ(<i)(xσ(i), xσ(<i)) , (110)

where fσ(i)|σ(<i) = f{σ(i)}|{σ(1),...,σ(i−1)} and xσ(<i) = (xσ(1), xσ(2), . . . , xσ(i−1)). Substituting (109), we have

gσ(x;Fp) =

d∏
i=1

q(xσ(i) | xσ(<i)) = q(x) , (111)

which is independent of the permutation σ. The final Equation holds since q(x) is a joint distribution so we can
recover q with an autoregressive path. Therefore, we can conclude that if Fp corresponds to a consistent joint
distribution then it is also autoregressive path consistent.
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Proposition B.2. If F corresponds to a consistent joint distribution then it has to be swap consistent.

Proof. Assume that F corresponds to a consistent joint distribution, then there exists a joint distribution q such
that for any fi|S ∈ Fp,

fi|S(xi, xS) = q(xi | xS) . (112)

The proof idea is based on the property that we can factorize a conditional distribution in different ways, where
for any set S and i, j ∈ [d] \ S, we have

q(xi, xj , xS) = q(xi | xj , xS)q(xj | xS)q(xS) , (113)

and
q(xi, xj , xS) = q(xj | xi, xS)q(xi | xS)q(xS) . (114)

As a result, we have
q(xi | xj , xS)q(xj | xS) = q(xj | xi, xS)q(xi | xS) . (115)

Substituting (112), we obtain

fi|S∪{j}(xi, xS ∪ {xj})fj|S(xj , xS) = fj|S∪{i}(xj , xS ∪ {xi})fi|S(xj , xS) , (116)

which implies that F is swap consistent, by definition.

Proposition B.3. Fp is autoregressive path consistent if and only if it is swap consistent.

Proof. ⇒) Assume that Fp is autoregressive path consistent. For any set S ⊆ [d] and i, j ∈ [d] \ S, we will
show that Fp satisfies the condition for swap consistency for (S, i, j). First, we write S = {s1, s2, . . . , sk} and
T = [d] \ (S ∪ {i, j}) = {t1, t2, . . . , td−k−2}. We consider a permutation σ : [d] → [d],

σ(m) =


sm if 1 ⩽ m ⩽ k ,

i if m = k + 1 ,

j if m = k + 2 ,

tm−k−2 if k + 3 ⩽ m ⩽ d .

(117)

Equivalently, in one-line notation,

σ = (s1, s2, . . . , sk, i, j, t1, t2, . . . , td−k−2) . (118)

Alternately, define σ′ by swapping the i and j,

σ′ = (s1, s2, . . . , sk, j, i, t1, t2, . . . , td−k−2) . (119)

By autoregressive path consistency, we must have,

gσ(x;Fp) = gσ′(x;Fp) , (120)

d∏
l=1

fσ(l)|σ(<l)(xσ(l), xσ(<l)) =

d∏
l=1

fσ′(l)|σ′(<l)(xσ′(l), xσ′(<l)) . (121)

Note that the terms for l ⩽ k and l ⩾ k + 3 are equal on both sides, i.e.,

fσ(l)|σ(<l)(xσ(l), xσ(<l)) = fσ′(l)|σ′(<l)(xσ′(l), xσ′(<l)) , (122)

which follows by the definition of σ and σ′. As a result, these terms cancel each other and we are left with

k+2∏
l=k+1

fσ(l)|σ(<l)(xσ(l), xσ(<l)) =

k+2∏
l=k+1

fσ′(l)|σ′(<l)(xσ′(l), xσ′(<l)) , (123)

fi|S(xi, xS)fj|S∪{i}(xj , xS ∪ {xi}) = fj|S(xj , xS)fi|S∪{j}(xi, xS ∪ {xj}) . (124)
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Since this holds for any (S, i, j), we conclude that Fp is swap consistent.

⇐) Assume that Fp is swap consistent. We will show that it is also autoregressive path consistent. Our strategy
is to show that swap consistency implies that for any permutation σ, if we swap any output of two consecutive
indices e.g. σ′(k + 1) = σ(k), σ′(k) = σ(k + 1) and keep the rest of the permutation to be the same, then this
new permutation σ′ would still lead to the same autoregressive recovery. In particular, for any σ, define σ′ as

σ′(m) =


σ(m) if m /∈ {k, k + 1} ,
σ(k + 1) if m = k ,

σ(k) if m = k + 1 .

(125)

Here, we have that xσ(m) = x′σ(m) for any m /∈ {k, k+1} and that x<σ(m) = x<σ′(m) for any m ̸= k+1. Then,

gσ′(x;Fp) =

d∏
l=1

fσ′(l)|σ′(<l) (126)

=
( ∏

l ̸=k,k+1

fσ′(l)|σ′(<l)

)
· fσ′(k)|σ′(<k) · fσ′(k+1)|σ′(<k+1) (127)

=
( ∏

l ̸=k,k+1

fσ(l)|σ(<l)

)
· fσ(k+1)|σ(<k) · fσ(k)|σ(<k)∪{σ(k+1)} , (128)

where we omitted the input of each function f for simplicity. Note that, by swap consistency, we know that

fσ(k+1)|σ(<k) · fσ(k)|σ(<k)∪{σ(k+1)} = fσ(k)|σ(<k) · fσ(k+1)|σ(k)∪{σ(<k)} (129)

= fσ(k)|σ(<k) · fσ(k+1)|σ(<k+1) . (130)

Substituting into (128), we have

gσ′(x;Fp) =
( ∏

l ̸=k,k+1

fσ(l)|σ(<l)

)
· fσ(k)|σ(<k) · fσ(k+1)|σ(<k+1) =

d∏
l=1

fσ(l)|σ(<l) = gσ(x;Fp) . (131)

We can conclude that σ, σ′ leads to the same autoregressive recovery. Therefore, swap consistency implies that
swapping the output of any two consecutive indices in the permutation does not change the output of the
autoregressive recovery of a new permutation. However, we note that we can achieve any permutation from
any starting permutation by applying a sequence of these swaps. Thus, every permutation must have the same
autoregressive recovery and Fp must be autoregressive path consistent.

Proposition B.4. If Fp is autoregressive path consistent then Fp corresponds to a consistent joint distribution.

Proof. Our proof is divided into two parts; first, we will show that the output of the autoregressive recovery
q(x) = gσ(x;Fp) is a valid distribution, second, we will show that q with consistent with any conditionals
fi|S(xi, xS). Let σ be an identity permutation where σ(i) = i. The autoregressive path recovery is given by

gσ(x;Fp) =

d∏
l=1

fl|<l(xl, x<l) . (132)

We denote this as q(x). We will show that q is a valid joint distribution by showing that q(x) > 0 for any x and
the sum of q(x) over all possible values of x is 1 (the similar result also holds for the continuous setting where
we replace the sum with an integration). The first point is trivial since fl|<l(xl, x<l) ⩾ 0 for any l since fl|<l is
a conditional distribution. On the second point,∑

x

q(x) =
∑

x1,x2,...,xd

f1|∅(x1) f2|1(x2, x1) · · · fd|<d(xd, x<d) (133)

=
∑
x1

f1|∅(x1)

(∑
x2

f2|1(x2, x1) · · ·
(∑

xd−1

fd−1|<d−1(xd−1, x<d−1)
(∑

xd

fd|<d(xd, x<d)
)
· · ·
)
· · ·

)
.

(134)
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Since fl|<l are conditional distributions, we know that for any fixed x̄<l, we have
∑

xl
fl|<l(xl, x̄<l) = 1. There-

fore, we can start from the deepest term in the bracket,
∑

xd
fd|<d(xd, x<d) = 1, and then work backward. Now,

we have ∑
x

q(x) =
∑
x1

f1|∅(x1)

(∑
x2

f2|1(x2, x1) · · ·
( ∑

xd−1

fd−1|<d−1(xd−1, x<d−1)
)
· · ·
)
. (135)

Using the same argument, the summation over xd−1 for each fixed x̄<d−1 would be 1 and we can keep doing this
until we reach the first term. Thus, we must have∑

x

q(x) = 1 , (136)

which concludes that q(x) is a valid joint distribution. Next, we will show that q is consistent with any conditional
fi|S ∈ Fp, that is, we need to show that for any xi, xS

fi|S(xi, xS) = q(xi, xS) . (137)

First, we note that the conditional q(xi|xS) is defined as

q(xi|xS) =
q(xS∪{i})

q(xS)
, (138)

where the marginal q(xS) is computed by

q(xS) =
∑
x[d]\S

q(xS , x[d]\S) . (139)

Denote the set S = {s1, s2, . . . , sk}. Construct a permutation σ : [d] → [d] such that i) the first k elements are
the elements of S, i.e. σ(i) = si for all i ∈ [k], ii) the next element is i, σ(k + 1) = i, iii) the remaining elements
are the indices not in S∪{i}, denoted by T = [d]\ (S∪{i}), in any order. With this permutation, we can express
q(xS∪{i}) as

q(xS∪{i}) =
∑
xT

q(x) (140)

=
∑
xT

( d∏
l=1

fl|<l(xl, x<l)
)

(141)

=
∑
xT

( d∏
l=1

fσ(l)|<σ(<l)(xσ(l), xσ(<l))
)
, (142)

where xT denotes the variables xj for j ∈ T , and σ(< l) = {σ(1), σ(2), . . . , σ(l − 1)}. Here, we use the
autoregressive path consistency property to ensure that the term above equals to q(x) defined earlier with an
identity permutation. Breaking down the product inside the summation, we have

d∏
l=1

fσ(l)|<σ(<l) =
( k∏

l=1

fσ(l)|<σ(<l)

)
· fi|S ·

( d∏
l=k+2

fσ(l)|<σ(<l)

)
, (143)

where we drop the input of each function for simplicity. We note that the first term only involves variables in S
while the second term is fi|S so that we can factorize the first and the second term from the sum,

q(xS∪{i}) =
∑
xT

(
d∏

l=1

fσ(l)|<σ(<l)(xσ(l), xσ(<l))

)
(144)

=

(
k∏

l=1

fσ(l)|<σ(<l)

)
· fi|S ·

∑
xT

(
d∏

l=k+2

fσ(l)|<σ(<l)

)
. (145)
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Similarly to when we were showing that the sum of q(x) over all possible x is one, we will show that

∑
xT

( d∏
l=k+2

fσ(l)|<σ(<l)

)
= 1 . (146)

We can see this by expanding it as∑
xσ(k+2)

fσ(k+2)|σ(<k+2)(xσ(k+2), xσ(<k+2))

(
· · ·
(
· · ·
∑
xσ(d)

fσ(d)|σ(<d)(xσ(d), xσ(<d))
)
· · ·
)
, (147)

where we can use the same argument that for any l, and any fixed x̄σ(<l),∑
xσ(l)

fσ(l)|σ(<l)(xσ(l), x̄σ(<l))) = 1 . (148)

Finally, we conclude that

q(xS∪{i}) =

(
k∏

l=1

fσ(l)|<σ(<l)(xσ(l), xσ(<l))

)
· fi|S(xi, xS) . (149)

Similarly, to compute the marginal q(xS), we sum over both xi and xT :

q(xS) =
∑
xi

∑
xT

q(x) (150)

=
∑
xi

( k∏
l=1

fσ(l)|<σ(<l)(xσ(l), xσ(<l))

)
· fi|S(xi, xS) (151)

=

( k∏
l=1

fσ(l)|<σ(<l)(xσ(l), xσ(<l))

)
·
∑
xi

fi|S(xi, xS) (152)

=

( k∏
l=1

fσ(l)|<σ(<l)(xσ(l), xσ(<l))

)
. (153)

Again, the final line holds from the fact that for a fixed x̄S ,
∑

xi
fi|S(xi, x̄S) = 1. Now, we can compute the

conditional probability q(xi|xS):

q(xi|xS) =
q(xS∪{i})

q(xS)
= fi|S(xi, xS) .

Thus, we have shown that q(xi|xS) = fi|S(xi, xS) for all i and S, confirming that the constructed q satisfies the
required consistency condition.

B.3 Proof of Proposition 4.7

Proposition 4.7. The set of functions {fi|S(xi, xS) | S ⊆ [d], i ∈ [d], i ̸∈ S} for a discrete set X with |X | = K
can be equivalently written as a set function ρ : C → RK where:

ρ(C(x, i, S))v = fi|S(xi = v, xS) .

Proof. Recall the definition of C in (21) as :

C(x, i, S) := {(i, j, xj)|j ∈ S} ∪ {(i, j)|j ̸∈ S} . (154)

First, observe that C(x1, i, S) = C(x2, i, S) for all x1, x2, such that (x1)S = (x2)S . Thus, C(x, i, S) only depends
on (xS , i, S). Hence, let us use C(xS , i, S) for C(x, i, S).
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Next, define g(xS , i, S) ∈ RK as
g(xS , i, S)v := fi|S(xi = v, xS) . (155)

We can readily see that g uniquely defines {fi|S}. Now we will prove that C(xS , i, S) uniquely defines (xS , i, S),
i.e. there exists C−1 such that C−1C(xS , i, S) = (xS , i, S). Suppose on the contrary that there exists two
tuples (x1S1 , i1, S1), (x2S2 , i2, S2) such that C(x1S1 , i1, S1) = C(x2S2 , i2, S2). Since {i : (i, j) ∈ C(xS , i, S)} = {i},
{j : (i, j) ∈ C(xS , i, S)} = [d]/S, thus i1 = i2 and S1 = S2. Finally {(j, xj) : (i, j, xj) ∈ C(xS , i, S)} = xS , thus
x1S = x2S . Hence there exists ρ = g · C−1 such that ρ(C(x, i, S))v = ρ(C(x, i, S))v = fi|S(xi = v, xS).

B.4 Proof of Proposition 4.8

Proposition 4.8. For any set of conditionals {fi|S(xi, xS) | S ⊂ [d], i ∈ [d], i ̸∈ S} there exists some g : RD →
RK

+ and wi,j,k, wi,j ∈ RD for i, j ∈ [d], k ∈ X such that

fi|S(xi = v, xS) = g(ψi(xS))v , (22)

where ψi(xS) =
∑

j∈S wi,j,xj
+
∑

j ̸∈S wi,j.

Proof. From Proposition 4.7, there exists ρ : C → RK where ρ(C(x, i, S))v = fi|S(xi = v, xS). Then, using the
result in Zaheer et al. (2017, Theorem 2), ρ can be decomposed as ρ(C) = g(

∑
c∈C ϕ(c)) for some function g.

Letting ϕ(c) = wc ∈ RD, we have ρ(C) = g(
∑

c∈C wc). Since C(xS , i, S) = {(i, j, xj)|j ∈ S} ∪ {(i, j)|j ̸∈ S}, we
have ρ(C(xS , i, S)) = g(

∑
j∈S wi,j,xj

+
∑

j ̸∈S wi,j) which concludes the proof.

B.5 Proof of Theorem 4.9

Theorem B.5. Let g(z)v = exp(w⊤
v z)/

∑K
k=1 exp(w

⊤
k z) for some parameters wk ∈ RD for each k ∈ [K] where

K = 2. The set of conditionals {fi|S(xi, xS) | S ⊂ [d], i ∈ [d], i ̸∈ S} parameterized by

fi|S(xi = k, xS) = g(ψi(xS))k , (156)

where
ψi(xS) =

∑
j∈S

zi,j,xk
+
∑
j ̸∈S

zi,j , (157)

correspond to a consistent joint distribution only when the joint distribution can be factorized into independent
subsets of variables of sizes 1, 2, or at least 3 where for subsets of size at least 3, the distribution has to be simple
and depends only on the counts of the different values in the subset. Formally, p(x) can be factorized as

p(x) =
∏

{v}∈V

p(xv)
∏

{u,v}∈E

p(xu, xv)
∏
C∈C

p(xC) . (158)

Here V,E, C are partitions of the index set [d] into a subset of size 1,2 and at least 3 respectively

[d] =
⋃
v∈V

{v} ∪
⋃

{u,v}∈E

{u, v} ∪
⋃
C∈C

C . (159)

For any C ∈ C, the distribution p(xC) has a specific simple form given by

p(xC) = fC(count(xC , 1), . . . count(xC ,K)) , (160)

for some function fC and count(xC , k) =
∑

c∈C I(xc = k). As a result, the variables within C are interchangeable.

Proof. Assume that the set of conditionals is parameterized as in equations (156), (157). corresponds to a
consistent joint distribution p. Then for any i, S we have

fi|S(xi, xS) = p(xi | xS) , (161)

We will show that p(x) can be factorized as in the Theorem above. We break down our proof into 2 parts,
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1. Step 1: By using the swap consistency condition and solving the equations with this specific parameteri-
zation, we can show that for any pair i, j ∈ [d], one of the following must hold

(a) xi, xj are independent to each other

(b) xi, xj are independent of other variables xS

(c) xi, xj can be exchanged.

2. Step 2: We will show that the conditions from Step 1 implies that we can factorize p(x) as desired.

Step 1: Deriving the conditions for any pair (i, j)

We first start with writing p(xi | xS) in terms of our parameterization. Recall that we parameterize

ψi(xS) =
∑
j∈S

zi,j,xk
+
∑
j ̸∈S

zi,j , (162)

so we have

w⊤
k ψi(xS) = w⊤

k

(∑
j∈S

zi,j,xj +
∑
j ̸∈S

zi,j
)

(163)

=
∑
j∈S

w⊤
k zi,j,xj

+
∑
j ̸∈S

w⊤
k zi,j (164)

=
∑
j∈S

w⊤
k (zi,j,xj − zi,j) +

d∑
j=1

w⊤
k zi,j . (165)

Let vki,j,xj
= w⊤

k (zi,j,xj
− zi,j) and v

k
i =

∑d
j=1 w

⊤
k zi,j , we also denote ϕi(xS)k = w⊤

k ψi(xS). Then, we have

ϕi(xS)k = w⊤
k ψi(xS) =

∑
j∈S

vki,j,xj
+ vki . (166)

Thus p(xi|xS) is given as

p(xi|xS) =
exp(ϕi(xS)xi

)∑K
k=1 exp(ϕi(xS)k)

=
exp(

∑
j∈S v

xi
i,j,xj

+ vxi
i )∑K

k=1 exp(
∑

j∈S v
k
i,j,xj

+ vki )
. (167)

For consistency, using the swap consistency condition (Theorem 4.6), we require that

p(xi, xj |xS) = p(xj |xS , xi)p(xi|xS) = p(xi|xS , xj)p(xi|xS) . (168)

Substituting the parameterization of the conditionals above into these equations, we have

LHS : p(xj | xS , xi)× p(xi | xS) =

[
exp

(
ϕj(xS)xj + v

xj

j,i,xi

)∑K
k=1 exp

(
ϕj(xS)k + vkj,i,xi

)]× [ exp (ϕi(xS)xi
)∑K

k=1 exp (ϕi(xS)k)

]
, (169)

RHS : p(xi | xS , xj)× p(xj | xS) =

 exp
(
ϕi(xS)xi + vxi

i,j,xj

)
∑K

k=1 exp
(
ϕi(xS)k + vki,j,xj

)
×

[
exp

(
ϕj(xS)xj

)∑K
k=1 exp (ϕj(xS)k)

]
. (170)

By the equality of these two expressions, we get[
exp

(
ϕj(xS)xj

+ v
xj

j,i,xi

)∑K
k=1 exp

(
ϕj(xS)k + vkj,i,xi

)]× [ exp (ϕi(xS)xi
)∑K

k=1 exp (ϕi(xS)k)

]
(171)
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=

 exp
(
ϕi(xS)xi

+ vxi
i,j,xj

)
∑K

k=1 exp
(
ϕi(xS)k + vki,j,xj

)
×

[
exp

(
ϕj(xS)xj

)∑K
k=1 exp (ϕj(xS)k)

]
. (172)

Rearranging:

exp
(
v
xj

j,i,xi

)(∑K
k=1 exp

(
ϕj(xS)k + vkj,i,xi

))
×
(∑K

k=1 exp (ϕi(xS)k)
) (173)

=
exp(vxi

i,j,xj
)(∑K

k=1 exp(ϕi(xS)k + vki,j,xj
)
)
×
(∑K

k=1 exp(ϕj(xS)k)
) (174)

Cross-multiplying the denominator:(∑K
k=1 exp

(
ϕj(xS)k + vkj,i,xi

))
×
(∑K

k=1 exp (ϕi(xS)k)
)

exp
(
v
xj

j,i,xi

) (175)

=

(∑K
k=1 exp(ϕi(xS)k + vki,j,xj

)
)
×
(∑K

k=1 exp(ϕj(xS)k)
)

exp(vxi
i,j,xj

)
(176)

Simplifying:

( K∑
k=1

exp
(
ϕj(xS)k + vkj,i,xi

− v
xj

j,i,xi

))
×
( K∑

k=1

exp(ϕi(xS)k)
)

(177)

=
( K∑

k=1

exp(
(
ϕi(xS)k + vki,j,xj

− vxi
i,j,xj

)
))

×

(
K∑

k=1

exp(ϕj(xS)k)

)
(178)

(∑K
k=1 exp

(
ϕj(xS)k + vkj,i,xi

− v
xj

j,i,xi

))
∑K

k=1 exp(ϕj(xS)k)
=

(∑K
k=1 exp

(
ϕi(xS)k + vki,j,xj

− vxi
i,j,xj

))
∑K

k=1 exp(ϕi(xS)k)
(179)

Expanding ϕj(xS), ϕi(xS) the conditions for consistency are summarized as follows.

For all i, j ∈ [d], i ̸= j, xi, xj ∈ [K], S ⊆ [d]/{i, j}, xS ∈ [K]|S|, we require

∑K
k=1 exp

(∑
m∈S v

k
j,m,xm

+ vkj + vkj,i,xi
− v

xj

j,i,xi

)∑K
k=1 exp(

∑
m∈S v

k
j,m,xm

+ vkj )
=

∑K
k=1 exp

(∑
m∈S v

k
i,m,xm

+ vki + vki,j,xj
− vxi

i,j,xj

)
∑K

k=1 exp(
∑

m∈S v
k
i,m,xm

+ vki )
. (180)

For the rest of the proof, we consider the binary variable setting, K = 2.

Notations : In the rest of the proof, the following notations will be used frequently.

ui,j,k = v2i,j,k − v1i,j,k ui = v2i − v1i (181)

yk = I(xk = 1) y′k = I(xk = 2) = 1− yk (182)

αj,k = uj,k,1 − uj,k,2 νj,S =
∑
k∈S

uj,k,2 + uj (183)

Using xi = 1, xj = 1, the conditions for consistency, Equation (179) becomes

exp
(
ϕj(xS)2 + v2j,i,1 − v1j,i,1

)
+ exp (ϕj(xS)1)

exp(ϕj(xS)1) + exp(ϕj(xS)2)
=

exp
(
ϕi(xS)2 + v2i,j,1 − v1i,j,1

)
+ exp((ϕi(xS)1)

exp(ϕi(xS)1) + exp(ϕi(xS)2)
, (184)

exp
(
ϕj(xS)2 − ϕj(xS)1 + v2j,i,1 − v1j,i,1

)
+ 1

exp(ϕj(xS)2 − ϕj(xS)1) + 1
=

exp
(
ϕi(xS)2 − ϕi(xS)1 + v2i,j,1 − v1i,j,1

)
+ 1

exp(ϕi(xS)2 − ϕi(xS)1) + 1
. (185)
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Next, let us use the notations in (181) and (182), and substitute ϕ from Equation (166) into Equation (185),
which gives

exp
(∑

k∈S uj,k,1yk + uj,k,2y
′
k + uj,i,1 + uj

)
+ 1

exp(
∑

k∈S uj,k,1yk + uj,k,2y′k + uj) + 1
=

exp
(∑

k∈S ui,k,1yk + ui,k,2y
′
k + ui + ui,j,1

)
+ 1

exp(
∑

k∈S ui,k,1yk + ui,k,2y′k + ui) + 1
,

(186)

exp
(∑

k∈S(uj,k,1 − uj,k,2)yk + uj,k,2 + uj + uj,i,1
)
+ 1

exp(
∑

k∈S(uj,k,1 − uj,k,2)yk + uj,k,2 + uj) + 1
=

exp
(∑

k∈S(ui,k,1 − ui,k,2)yk + ui,k,2 + ui + ui,j,1
)
+ 1

exp(
∑

k∈S(ui,k,1 − ui,k,2)yk + ui,k,2 + ui) + 1
.

(187)

Finally, let us use the notation (183), αj,k = uj,k,1 − uj,k,2 and νj,S =
∑

k∈S uj,k,2 + uj , to rewrite

exp
(∑

k∈S αj,kyk + νj,S + uj,i,1

)
+ 1

exp
(∑

k∈S αj,kyk + νj,S

)
+ 1

=
exp

(∑
k∈S αi,kyk + νi,S + ui,j,1

)
+ 1

exp
(∑

k∈S αi,kyk + νi,S

)
+ 1

. (188)

Subtracting 1 from both sides and rearranging, we get

exp(
∑

k∈S αj,kyk + νj,S)(exp(uj,i,1)− 1)

exp(
∑

k∈S αj,kyk + νj,S) + 1
=

exp(
∑

k∈S αi,kyk + νi,S)(exp(ui,j,1)− 1)

exp(
∑

k∈S αi,kyk + νi,S) + 1
, (189)

exp(uj,i,1)− 1

exp(−
∑

k∈S αj,kyk − νj,S) + 1
=

exp(ui,j,1)− 1

exp(−
∑

k∈S αi,kyk − νi,S) + 1
. (190)

We can perform similar calculations as above for different values of xi, xj in Equation (184), to obtain the
following conditions.

1. xi = 1 and xj = 1:

exp(uj,i,1)− 1

exp(−
∑

k∈S αj,kyk − νj,S) + 1
=

exp(ui,j,1)− 1

exp(−
∑

k∈S αi,kyk − νi,S) + 1
. (191)

2. xi = 1 and xj = 2:

exp(−uj,i,1)− 1

exp(
∑

k∈S αj,kyk + νj,S) + 1
=

exp(ui,j,2)− 1

exp(−
∑

k∈S αi,kyk − νi,S) + 1
. (192)

3. xi = 2 and xj = 1:

exp(uj,i,2)− 1

exp(−
∑

k∈S αj,kyk − νj,S) + 1
=

exp(−ui,j,1)− 1

exp(
∑

k∈S αi,kyk + νi,S) + 1
. (193)

4. xi = 2 and xj = 2:

exp(−uj,i,2)− 1

exp(
∑

k∈S αj,kyk + νj,S) + 1
=

exp(−ui,j,2)− 1

exp(
∑

k∈S αi,kyk + νi,S) + 1
. (194)

Setting 1: ui,j,1 = 0 =⇒ (i, j) are independent.

If uj,i,1 = 0, then from Equation (191), we would have ui,j,1 = 0, and from Equation (192), we have ui,j,2 = 0,
which then from Equation (194) implies uj,i,2 = 0 as well. Then, we would have

p(xi|xS , xj) = p(xi|xS) and p(xj |xS , xi) = p(xj |xS) . (195)

In other words, i, j are independent. We denote this by i ⊥ j.

Setting 2: (i, j) are not independent, i ̸⊥ j.
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Now, we focus on pairs (i, j) that are not independent, and ui,j,1, uj,i,1 ̸= 0. Denoting

µi,j =
exp(uj,i,1)− 1

exp(ui,j,1)− 1
, (196)

Equation (191) gives

exp
(
−
∑
k∈S

αj,kyk − νj,S

)
+ 1 = µi,j ·

(
exp

(
−
∑
k∈S

αi,kyk − νi,S

)
+ 1

)
. (197)

Substituting yk = 0 in Equation (197) for all k we get

exp(−νj,S) + 1 = µi,j(exp(−νi,S) + 1) . (198)

We have

exp(−νi,S) =
exp(−νj,S) + 1

µi,j
− 1 . (199)

Substituting yk = 1 in Equation (197) for any k, we get

exp(−αj,k − νj,S) + 1 = µi,j(exp(−αi,k − νi,S) + 1) . (200)

Substituting νi,S in terms of νj,S from Equation (198), this is simplified as

exp(−αj,k − νj,S) + 1 = µi,j

(
exp(−αi,k)(

exp(−νj,S) + 1

µi,j
− 1) + 1

)
, (201)

exp(−αj,k − νj,S) + 1− µi,j = exp(−αi,k)(exp(−νj,S) + 1− µi,j) , (202)

exp(−αi,k) =
exp(−αj,k − νj,S) + 1− µi,j

exp(−νj,S) + 1− µi,j
. (203)

Substituting yk = 1, yl = 1 in Equation (197) for any k, l we get

exp(−αj,k − αj,l − νj,S) + 1 = µi,j(exp(−αi,k − αi,l − νi,S) + 1) . (204)

Substituting νi,S from Equation (198) we get

exp(−αj,k − αj,l − νj,S) + 1 = µi,j exp(−αi,k − αi,l)

(
exp(−νj,S) + 1

µi,j
− 1

)
+ µi,j , (205)

exp(−αj,k − αj,l − νj,S) + 1− µi,j = exp(−αi,k − αi,l)(exp(−νj,S) + 1− µi,j) . (206)

Substituting αi,k, αi,l from Equation (203) and letting µ̄i,j = 1− µi,j , we have

exp(−αj,k − αj,l − νj,S) + µ̄i,j = exp(−αi,k − αi,l)(exp(−νj,S) + µ̄i,j) (207)

=
(exp(−αj,k − νj,S) + µ̄i,j)(exp(−αj,l − νj,S) + µ̄i,j)

exp(−νj,S) + µ̄i,j

(208)

(exp(−νj,S) + µ̄i,j)(exp(−αj,k − αj,l − νj,S) + µ̄i,j) = (exp(−αj,k − νj,S) + µ̄i,j)(exp(−αj,l − νj,S) + µ̄i,j)
(209)

µ̄i,j exp(−νj,S)(exp(−αj,k − αj,l) + 1) = µ̄i,j exp(−νj,S)(exp(−αj,k) + exp(−αj,l)) (210)

µ̄i,j(exp(−αj,k − αj,l) + 1) = µ̄i,j(exp(−αj,k) + exp(−αj,l)) (211)

µ̄i,j(1− exp(−αj,k)− exp(−αj,l) + exp(−αj,k − αj,l)) = 0 (212)

µ̄i,j(1− exp(−αj,k))(1− exp(−αj,l)) = 0 (213)

(1− µi,j)(1− exp(−αj,k))(1− exp(−αj,l)) = 0 . (214)
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This implies µi,j = 1 or αj,k = 0 or αj,l = 0. µi,j = 1 is equivalent to uj,i,1 = ui,j,1. Substituting αj,k = 0 in
Equation (203) we also get αi,k = 0. Since this holds for all pairs k, l ∈ S, k ̸= l and for all S, at least one of the
following holds:

uj,i,1 = ui,j,1 or αj,k = αi,k = 0 for all k ∈ [d]/{i, j, l} for some l ∈ [d] . (215)

We used the consistency conditions in Equation (191) to derive the above. If we use conditions in Equation
(194), with the exact same calculation, we can also derive at least one of the following to hold true:

uj,i,2 = ui,j,2 or αj,k = αi,k = 0 for all k ∈ [d]/{i, j, l} for some l ∈ [d] . (216)

Combining the two, we can say at least one of the following holds true

1). uj,i,1 = ui,j,1 and uj,i,2 = ui,j,2 (217)

2). αj,k = αi,k = 0 for all k ∈ [d]/{i, j, l} for some l ∈ [d] . (218)

Case 1: uj,i,1 ̸= ui,j,1, ∃ k which αj,k, αi,k ⩾ 0, and ∀l ∈ [d] \ {i, j, k}, αj,l, αi,l = 0

Using Equations (198), and (200), we have

µij exp(−νi,S)(exp(−αi,k)− exp(−αj,k)) = (µij − 1)(exp(−αj,k)− 1) . (219)

Since this equation holds for all S, νi,S has to be independent of S, and thus νi,S = ui and ui,l,2 = 0 for all
l ∈ [d]/{i, j}. Then, using Equation (198), we also have νj,S = uj and uj,l,2 = 0 for all l ∈ [d]/{i, j}.

Next, revisiting the consistency conditions Equations (191), and (192) by substituting νj,S = uj , νi,S = ui, and
αj,k′ = 0 for k′ ̸= k, we have

1. xi = 1 and xj = 1:
exp(uj,i,1)− 1

exp(−αj,k − uj) + 1
=

exp(ui,j,1)− 1

exp(−αi,k − ui) + 1
, (220)

exp(uj,i,1)− 1

exp(−uj) + 1
=

exp(ui,j,1)− 1

exp(−ui) + 1
. (221)

2. xi = 1 and xj = 2:
exp(−uj,i,1)− 1

exp(αj,k + uj) + 1
=

exp(ui,j,2)− 1

exp(−αi,k − ui) + 1
, (222)

exp(−uj,i,1)− 1

exp(uj) + 1
=

exp(ui,j,2)− 1

exp(−ui) + 1
. (223)

Eliminating ui,j,1, uj,i,1, ui,j,2, uj,i,2 (dividing Equation (221) from Equation (220), and Equation (223) from
Equation (222)) we get

1. k = 1 and l = 1:
exp(−αj,k − uj) + 1

exp(−uj) + 1
=

exp(−αi,k − ui) + 1

exp(−ui) + 1
. (224)

2. k = 1 and l = 2:
exp(αj,k + uj) + 1

exp(uj) + 1
=

exp(−αi,k − ui) + 1

exp(−ui) + 1
. (225)

Since the RHS of both equations are the same, equating the LHS, we get

exp(−αj,k − uj) + 1

exp(−uj) + 1
=

exp(αj,k + uj) + 1

exp(uj) + 1
(226)

exp(uj + αj,k) = exp(uj) (227)
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αj,k = 0 . (228)

Similarly we also get αi,k = 0.

Thus, if i ̸⊥ j and µi,j ̸= 1, we have αi,k = αj,k = 0 for all k ̸= i, j. This implies that for all S ⊆ [d]/{i, j}

p(xi|xS) = p(xi) , (229)

p(xj |xS) = p(xj) , (230)

p(xi|xS , xj) = p(xi|xj) , (231)

p(xj |xS , xi) = p(xj |xi) . (232)

or i ⊥ k and j ⊥ k for all k ̸= i, j.

Case 2: uj,i,1 = ui,j,1 and uj,i,2 = ui,j,2

uj,i,1 = ui,j,1 immediately gives us the following

νi,S = νj,S , (233)

αi,k = αj,k . (234)

From expression of ν we then have ∑
k∈S

uj,k,2 + uj =
∑
k∈S

ui,k,2 + ui , (235)

for all S, which immediately giving us

ui = uj , (236)

uj,k,2 = ui,k,2 . (237)

Combined with definition of αj,k we also get

uj,k,1 = ui,k,1 . (238)

Thus variables i, j are interchangeable. This can be summarized as

p(xi|xS) = p(xj |xS) , (239)

for all S ⊆ [d]/{i, j}, and
p(xi|xS , xj) = p(xj |xS , xi) . (240)

Step 2: Deriving the form of joint p(x) from the identified conditions for any pair (i, j)

To summarize, for any pair i, j we have one of the following conditions that may hold.

C1. Independence: i ⊥ j

p(xi|xS , xj) = p(xi|xS) (241)

p(xj |xS , xi) = p(xj |xS) (242)

Because p(xi|xS)p(xj |xS , xi) = p(xj |xS)p(xi|xS , xj), it follow that p(xi|xS , xj) = p(xi|xS) if and only if
p(xj |xS , xi) = p(xj |xS). Thus, both conditions are equivalent.

C2. Independence of other variables: ∀k ̸= i, j we have i ⊥ k and j ⊥ k.

C3. Exchange equivalence: i and j can be exchanged

p(xi|xS) = p(xj |xS) (243)

p(xi|xS , xj) = p(xj |xS , xi) (244)

Since p(xi|xS)p(xj |xS , xi) = p(xj |xS)p(xi|xS , xj), we have p(xi|xS) = p(xj |xS) if and only if p(xi|xS , xj) =
p(xj |xS , xi). Thus, both conditions are equivalent.
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To show that p(x) can be factorized as in the Theorem statement, we rely on a series of lemmas and definitions
which we state here.

Lemma B.6. Exchange equivalence (C3) forms an equivalence class.

Proof. 1) Reflexivity is trivially satisfied when i = j. 2) Symmetry: Conditions are symmetric in i, j. 3)
Transitivity: Let (i, j) and (j, k) be exchange equivalent. Then p(xi|xS) = p(xj |xS) = p(xk|xS), thus p(xi|xS) =
p(xk|xS).

Definition B.7 (Equivalence class). Let ⟨i⟩ refer to the equivalence class of i with respect to exchange equivalence
relation. Any two equivalence classes (not necessarily distinct) ⟨i⟩, ⟨j⟩ be called independent denoted by ⟨i⟩ ⊥ ⟨j⟩
if for all k ∈ ⟨i⟩ and l ∈ ⟨j⟩, such that k ̸= l, we have k ⊥ l.

Lemma B.8. If i ⊥ j, and ⟨j⟩ = ⟨k⟩ where k ̸= i, then i ⊥ k.

Proof. i ⊥ j implies p(xj |xS , xi) = p(xj |xS). ⟨j⟩ = ⟨k⟩ implies p(xj |xS) = p(xk|xS) and p(xj |xS , xi) =
p(xk|xS , xi). Thus we get p(xk|xS , xi) = p(xk|xS), and thus i ⊥ k.

The above lemma lets us lift the independence relation to the level of equivalence classes.

Lemma B.9. For i ̸= j, i ⊥ j if and only if ⟨i⟩ ⊥ ⟨j⟩.

Proof. (⇐) is trivial since it is simply the definition of ⟨i⟩ ⊥ ⟨j⟩. (⇒) From Lemma B.8, i ⊥ j′ for all j′ ̸= i
such that ⟨j′⟩ = ⟨j⟩. Again from Lemma B.8, j′ ⊥ i implies j′ ⊥ i′ for i′ ̸= j′ such that ⟨i′⟩ = ⟨i⟩. Together this
gives, i′ ⊥ j′ for all i′ ∈ ⟨i⟩, j′ ∈ ⟨j⟩, j′ ̸= i′, which is the required condition for ⟨i⟩ ⊥ ⟨j⟩.

Lemma B.10. If |⟨i⟩| ⩾ 2, then for all j ̸∈ ⟨i⟩, we have that ⟨i⟩ ⊥ ⟨j⟩.

Proof. Suppose there exists j such that ⟨i⟩ ̸⊥ ⟨j⟩. Since |⟨i⟩| ⩾ 2, there exists k, l ∈ ⟨i⟩ such that k ̸⊥ j and l ̸⊥ j.
Since ⟨k⟩ ̸= ⟨j⟩ and k ̸⊥ j, the second condition (C2) must hold, i.e. j is independent of all other variables, but
that implies j ⊥ l, leading to a contradiction.

Thus by Lemma B.10 for any i : |⟨i⟩| ⩾ 2, ⟨i⟩ is independent of all other variables and the joint can be factorized
as

p(x) = p(x⟨i⟩)p(x[d]/⟨i⟩) . (245)

Using this factorization for all equivalence classes, i : |⟨i⟩| ⩾ 2 we get

p(x) = p(x[d]/C)
∏

⟨i⟩⊆C

p(x⟨i⟩) , (246)

where

C =
⋃

i:|⟨i⟩|⩾2

⟨i⟩ . (247)

Let us denote V ⊆ [d]/C is the set of variables which are independent of the rest, thus factorizing p as

p(x) = p(x[d]/{C∪V })
∏
v∈V

p(xv)
∏

⟨i⟩⊆C

p(x⟨i⟩) . (248)

Now since any variable i ∈ [d]/{C ∪ V }, it cannot be independent to all of the rest, i.e. there exists some
j ∈ [d]/{C ∪ V } such that i ̸⊥ j. For this pair (i, j), from condition (C2) they have to be independent from the
rest of variables. Thus p(xi, xj) can be factored out. Since this holds for any variable in [d]/{C ∪ V }, p can be
further factorized as

p(x) =
∏
v∈V

p(xv)
∏

{u,v}∈E

p(xu, xv)
∏

⟨i⟩⊆C

p(x⟨i⟩) , (249)
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where E is a partition of [d]/{C ∪ V }. To get a unique factorization we can extract out ⟨i⟩ ⊆ C where |⟨i⟩| = 2
and place them as part of E. Let C = {⟨i⟩ : |⟨i⟩| ⩾ 3}, where C is the set of equivalence classes containing three
or more variables. The joint can be written as

p(x) =
∏
v∈V

p(xv)
∏

{u,v}∈E

p(xu, xv)
∏
C∈C

p(xC) , (250)

where V ∪E ∪ C is a partition of [d] into independent subsets of variables of sizes 1, 2 and greater than or equal
to 3, respectively.

Further for any C ∈ C, p(XC) has the form

p(xC) = fC(count(xC , 1), count(xC , 2)) , (251)

for some function fC , where count(xC , k) =
∑

c∈C I(xc = k). This comes from the fact that variables in C are
exchangeable, i.e. given two permutations of variables in C, xi1 , . . . xik and xj1 , . . . xjk , the probabilities are
equal, i.e.

p(xi1 , . . . xik) = p(xj1 , . . . xjk) . (252)

From Zaheer et al. (2017, Theorem 2), any permutation invariant function can be written as a sum, i.e. there
exists fC , ϕC such that

p(xC) = fC

(∑
c∈C

ϕC(xc)
)
. (253)

Since any xc takes two values xc = 1 or xc = 2, let ϕC(1) = λ1 and ϕC(2) = λ2, we get

p(xC) = fC

(∑
c∈C

λ1I(xc = 1) + λ2I(xc = 2)
)
. (254)

This is a special case of a more general form

p(xC) = fC

(∑
c∈C

I(xc = 1),
∑
c∈C

I(xc = 2)
)

(255)

= fC(count(xC , 1), count(xC , 2)) . (256)

C DETAILS OF EXPERIMENTS

C.1 Model and Dataset Statistics

d # edges # params max params

10 32 221 1023
25 84 610 3.3× 107

50 116 647 1.1× 1015

Table 6: # edges denote the total number of edges in the DAG, # params denote the total number of parameters
in the CPT, i.e. Πd

i=12
|pa(i)|. Max params denote the number of parameters (2d − 1) required to specify an

arbitrary joint distribution over d variables.

C.2 Experiments for Transformer

C.2.1 Transformer Model

We use an encoder-only transformer model that takes a sequence of inputs U = (ui, . . . un) where ui ∈ RD and
transforms them to produce the sequence of outputs V = (vi, . . . vn) where vi ∈ RD. This is achieved by a
sequence of intermediate transformations resulting in sequences U1, . . . Uk by positionwise feedforward network
and self-attention.
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n dcontext # layers dhidden # params

10 2 0 - 620
25 2 0 - 3800
50 2 0 - 15100

10 512 8 128 3.4× 105

25 512 8 128 1.1× 106

50 512 8 128 4.0× 106

Table 7: Statistics for the smallest (g is a sigmoid) and largest (g is an MLP with dhidden neurons in each of the
8 hidden layers) model used in our experiments.

Positionwise Feedforward: In positionwise feedforward network, the current sequence Uj = (uj1, . . . u
j
n) is

transformed to Uj+1 = (uj+1
1 , . . . uj+1

n ) as

uj+1
i = fθj (uji ) , for i = 1 . . . n ,

where f is a feedforward network (a 2-layer ReLU network followed by layer normalization and skip connection)
with parameters θj .

Multi head self-attention : In the multi-head self-attention mechanism, the transformed output is given as

uj+1
i = Concat([u′1 . . . u

′
h]) , (257)

u′s =

n∑
k=1

αs
ikW

s
j u

j
k , for s = 1 . . . h , (258)

where W s
j for s = 1 . . . h are learned projection matrices for j’th layer. h is the number of heads. αs

ik is given as,

αs
ik = α̃s

ik/

n∑
k=1

α̃s
ik , (259)

α̃s
ik = exp((Qs

ju
j
k)

⊤(Ks
ju

j
i )) , (260)

where Qs
j ,K

s
j are learned projection matrices for j’th layer and heads s = 1 . . . h.

C.2.2 Adapting transformer for our setting

Given an input (i, S,XS), we create the input sequence of length |S|+ 1 to be fed to transformer as

(ϕ((j1, Xj1)), . . . ϕ((jk, Xjk)), ϕ(i))

where S = {j1, . . . jk} and ϕ is a learned embedding lookup table. As is common in the usage of transformer for
language modeling, we add the embeddings for position j1, . . . jk and words Xj1 . . . Xjk as

ϕ((i, v)) = pi + zv for v = 1 . . .K , (261)

and
ϕ(i) = pi + z0 , (262)

where p1, . . . pd are learned positional embeddings for the variables 1 . . . d and v1, . . . vK are embeddings for the
values any xi takes that ranges from 1 . . .K. z0 is an additional embedding referring to the absence of the value
or to mark the variable i for which the value is to be predicted. In language modeling, this is referred to as a
masked token.

Finally, the last element of the output sequence is used as a prediction for Xi, after projecting back to RK space,
i.e. let vi ∈ RD refer to the last element of the output sequence, then Xi is predicted as

P (Xi = k) =
exp(w⊤

k vi)∑K
k=1 exp(w

⊤
k vi)

, (263)

where w1, . . . wK are also learned embeddings.
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D Examples of models that satisfy Theorem 3.4, Theorem 3.5

Theorem 3.4 implies that fi|−i(xi, x−i) must be able to factorize in the form h(x)qi(x−i) where h(x) is a com-
mon function for all fi|−i(xi, x−i). One example of an architecture that satisfies this condition is to explicitly
parameterize h and each qi with separate neural networks. However, this approach requires d neural networks
to model p(xi|x−i) and exponentially many neural networks, to model p(xT |xS) even when S ∪ T = [d]. For
computational efficiency, we require some shared components between different conditionals. In our paper, we
provide empirical evidence that MLPs are not consistent and pose the problem of designing an efficient and
consistent architecture as an open question.

Theorem 3.5 provides a necessary condition for path consistency for parameterizations of the form of softmax
layer on a linear layer W on top of a feature map ϕ. We do not make any assumptions on ϕ so this result
is quite general and includes deep neural networks. An example of a model that satisfies this condition is an
exponential family in Equation (11). In general, if we have all the feature maps ϕi, then having one linear head
W1 is sufficient to recover all Wj up to an additive factor by solving the Equation (10).

E Quantitative Metrics

In this section, we explain why our proposed metrics are meaningful measures of consistency metric.

1. Path consistency (Equation (25)):

EPC(θ) = Ex,x̄∼P

[
Stdσ[log hσ,x̄(x; fθ)]/d

]
. (264)

The term inside the expectation is the standard deviation of log(hσ(x; fθ)) over a random path σ. As
described in Section 3, hσ in Equation (5) is the constructed ratio of the joint distribution of x and x’ given
σ. This ratio is independent of σ when the model is consistent (Proposition 3.3). Thus, our metric which
calculates the standard deviation of this ratio over different paths σ becomes zero. Moreover, when these
values are not exactly zero, which implies inconsistency, it still tells us how much the recovered ratio of the
joint distribution can vary with the chosen path. Hence, these values being small imply that the conditionals
are more robust to the different paths, and thus are more consistent.

2. Autoregressive path consistency (Equation (26)):

EAC(θ) = Ex∼P

[
Stdσ[log gσ(x; fθ)]/d

]
. (265)

The term inside the expectation is the standard deviation of log(gσ(x; fθ)) over a random path σ. As
described in Section 4, gσ(x) is the joint distribution at x recovered by an autoregressive path recovery with
a permutation σ. When the conditionals are consistent, gσ(x) would be independent of σ which implies that
our metric which calculates the standard deviation of log(gσ(x)) would also be zero. In the same manner,
our metric would have a smaller value whenever the conditionals are more consistent.

3. Swap consistency metric (Equation (27)):

ESC(θ) = E(x,i,j,S)∼D′ [∆(fθ, x, i, j, S)] , (266)

∆(f, x, i, j, S) = | log(f(xi|xS∪{j})f(xj |xS))
− log(f(xj |xS∪{i})f(xi|xS))| .

(267)

The term inside the expectation is the standard deviation of the recovered P (xi, xj | xS) over two different
paths S → i → j and S → j → i. This is based on the observation that in Equation (266), we are cal-
culating ∆(f, x, i, j, S) =

∣∣log (f(xi | xS∪{j})f(xj | xS)
)
− log

(
f(xj | xS∪{i})f(xi | xS)

)∣∣. Here, each term
is a different way to recover the conditional P (xi, xj | xS). The standard deviation interpretation follows
from the fact that the standard deviation of two values a, b is given by |a− b|/2. Similarly, this becomes a
meaningful quantitative metric for swap consistency.


