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Abstract

We address the challenge of sequential data-
driven decision-making under context distri-
butional uncertainty. This problem arises
in numerous real-world scenarios where the
learner optimizes black-box objective func-
tions in the presence of uncontrollable con-
textual variables. We consider the setting
where the context distribution is uncertain
but known to lie within an ambiguity set de-
fined as a ball in the Wasserstein distance.
We propose a novel algorithm for Wasserstein
Distributionally Robust Bayesian Optimiza-
tion that can handle continuous context dis-
tributions while maintaining computational
tractability. Our theoretical analysis com-
bines recent results in self-normalized concen-
tration in Hilbert spaces and finite-sample
bounds for distributionally robust optimiza-
tion to establish sublinear regret bounds that
match state-of-the-art results. Through ex-
tensive comparisons with existing approaches
on both synthetic and real-world problems,
we demonstrate the simplicity, effectiveness,
and practical applicability of our proposed
method.

1 INTRODUCTION

Bayesian Optimization (BO) has emerged as a powerful
algorithm for zero-order optimization of expensive-to-
evaluate black-box functions, with applications ranging
from hyperparameters tuning to scientific discovery
and robotics (Ueno et al., 2016; Li et al., 2019; Ru
et al., 2020; Shahriari et al., 2015). In the standard
BO setting, the learner sequentially selects points to
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evaluate the unknown objective function and uses the
observed data to update a surrogate model that cap-
tures the function’s behavior. In the contextual BO
setting, the objective function depends on an additional
variable, called the context, which cannot be controlled
by the learner (Krause and Ong, 2011; Valko et al.,
2013; Kirschner and Krause, 2019). Typically, the
context distribution is used to model the uncertainty
of the learner related to uncontrollable environmental
variables. When the distribution of the context vari-
able is known, the BO algorithm can be used to solve
the Stochastic Optimization (SO) problem, where the
objective is to maximize the reward of the unknown
function in expectation with respect to the context
distribution

max
x∈X

Ec∼P [f(x, c)] .

However, in many real-world scenarios, the learner does
not have access to the true context distribution, but
only to an approximate one. This can happen, e.g.,
when the context distribution is estimated from his-
torical data, and only a finite number of samples are
available. This results in a distributional mismatch
between the distribution available to the learner for
optimization and the true distribution of the context
variable. To formally account for the effect of the distri-
butional mismatch, Distributionally Robust Optimiza-
tion (DRO) has recently gained considerable attention,
especially in the sampled data settings (Rahimian and
Mehrotra, 2019; Kuhn et al., 2019; Gao et al., 2024).
In DRO, the learner optimizes the reward under the
worst-case distribution of the context within a so-called
ambiguity set B that captures the uncertainty of the
learner about the true context distribution

max
x∈X

inf
Q∈B

Ec∼Q[f(x, c)] . (1)

The advantage of the robust approach is that, by ap-
propriately choosing the ambiguity set B, we can guar-
antee that the reward computed for the DRO problem
lower-bounds the reward for the true unknown context
distribution.

In this work, we introduce Wasserstein Distributionally
Robust Bayesian Optimization (WDRBO), a novel algo-
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rithm that combines the principles of BO and DRO to
address the challenge of sequential data-driven decision-
making under context distributional uncertainty. We
consider ambiguity sets defined as balls in the Wasser-
stein distance (Kuhn et al., 2019) which allows for a
flexible and intuitive way to model the uncertainty in
the context distribution. We design a computationally
tractable algorithm and analyze its performance in two
settings: the General WDRBO setting, where at
each time-step the Wasserstein ambiguity set is pro-
vided to the learner, and the Data-Driven WDRBO
setting, in which we assume that the true context distri-
bution is time-invariant and the Wasserstein ambiguity
set is built using the past context observations.

Our main contributions are as follows:

• We propose a novel, computationally tractable
algorithm for Wasserstein Distributionally Ro-
bust Bayesian Optimization that handles continu-
ous context distributions. Our approach exploits
an approximate reformulation based on Lipschitz
bounds of the acquisition function, circumventing
the need for context discretization.

• We establish a cumulative expected regret bound
of order Õ(

√
TγT ) for the general WDRBO setting,

where T is the number of iterations and γT is the
maximum information gain. For the data-driven
setting, we obtain sublinear regret guarantees with-
out requiring assumptions on the rate of decay of
the ambiguity set radius.

• We derive novel Lipschitz bounds for the mean
and variance estimates, and leverage recent finite-
sample bounds for Wasserstein DRO to address
the dimensionality challenges in continuous context
spaces.

• We provide comprehensive empirical evaluations
on synthetic and real-world problems, demonstrat-
ing that our method achieves competitive perfor-
mance with significantly lower computational com-
plexity compared to existing DRBO approaches.

The rest of the paper is organized as follows. In Sec-
tion 2, we review related work. In Section 3, we intro-
duce the problem formulation. In Section 4, we present
the proposed algorithm and provide the theoretical
analysis. In Section 5, we present the experimental
results. Finally, in Section 6, we conclude the paper
and discuss future work.

2 RELATED WORK

The foundation of DRBO was laid by Kirschner et al.
(2020), who introduced the concept of distributional

robustness in BO. They propose a BO formulation
that is robust to the worst-case context distribution
within an ambiguity set defined by the Maximum Mean
Discrepancy (MMD) distance. While groundbreaking,
the inner worst-case calculation requires at each iter-
ation the solution of a convex optimization problem
that renders this approach computationally viable only
when the context space is discrete and with low car-
dinality. A quadrature-based scheme for DRBO is
proposed in Nguyen et al. (2020), but their algorithm
is limited to the simulator setting where at each it-
eration the learner is allowed to choose the context.
Husain et al. (2024) develops a DRBO formulation for
phi-divergence-based ambiguity sets, but their formula-
tion has some implicit requirements on the support of
the distributions captured by the ambiguity set. Rec-
ognizing these computational limitations, Tay et al.
(2022) proposed a set of approximate techniques us-
ing worst-case sensitivity analysis based on Taylor’s
expansions. These methods offer better computational
complexity for multiple descriptions of ambiguity sets
at the expense of performance and regret bounds that
scale linearly with the worst-case sensitivity approxi-
mation error. To avoid the challenges of context space
discretization, Huang et al. (2024) proposes a kernel
density estimation step that uses the available context
samples to estimate a continuous context distribution.
The estimated context distribution is then sampled and
the samples are used in a DRBO formulation where the
ϕ-divergence ambiguity sets capture the distributional
uncertainty introduced by the density estimation step.

The regret analysis of the existing literature on DRBO
builds on the GP-UCB formulation of Srinivas et al.
(2009, 2012), we instead exploit self-normalizing concen-
tration bounds in Reproducing Kernel Hilbert Space
(RKHS) (Abbasi-Yadkori, 2013; Kirschner et al., 2020;
Whitehouse et al., 2023). We address a gap in the
DRBO literature and analyze the continuous context
distribution setting under the Wasserstein-based ambi-
guity set. We leverage recent advancements in Wasser-
stein DRO literature (Gao, 2023; Gao et al., 2024) to
provide state-of-the-art regret rates in the data-driven
setting.

3 PROBLEM FORMULATION

We consider an unknown objective function f : X×C →
R, where X ⊂ Rdx is the input space and C ⊂ Rdc is
the context space. The learner’s goal is to maximize
the expected value of the function under the context
distribution by sequentially selecting points to evaluate
and receiving noisy observations of the function. More
specifically, at each iteration t = 1, 2, . . ., the learner
selects a point xt ∈ X to query the function, and
observes the context ct ∈ C and a noisy output yt =
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f (x t ; ct ) + � t . The context sample ct is assumed to
be an independent sample from some unknown, time-
dependent, context distribution P �

t , while � t is a zero-
mean R-sub-Gaussian noise, where an upper bound on
R is known.

3.1 Wasserstein Distributionally Robust
Objective

In this work, we consider the setting of distributionally
robust optimization, where the learner does not have
access to the true context distribution P �

t , but instead
optimizes for the expected reward under the worst-case
distribution within an ambiguity set

max
x 2X

inf
Q2B " t ( P̂ t )

Ec�Q [f (x; c)] : (2)

The time-dependent ambiguity set B" t (P̂t ) is de�ned
as a ball in the Wasserstein distance centered at the
distribution P̂t and with radius " t (Kuhn et al., 2019).
This is the set of all distributions that are within a
Wasserstein distance" t from the center distribution P̂t

B" t (P̂t ) =
n

Q 2 P (C) : dW (Q; P̂t ) � " t

o
:

The type-1 Wasserstein metricdW : M (Q) � M (Q) !
R� 0 de�nes the distance between two distributions Q1

and Q2 as

dW (Q1; Q2) := inf
�

� Z

Q� Q
kq1 � q2k � (d q1; dq2)

�
;

where the transportation map � takes values in the set
of joint distributions of q1 and q2 with marginals Q1

and Q2, and k � k is the euclidean norm.

3.2 Regularity Assumptions and Surrogate
Model

The BO algorithm maintains a surrogate model of
the objective function, which is used to guide the se-
lection of the next query point. We use a regular-
ized least squares estimator of the functionf in the
RKHS(Abbasi-Yadkori, 2013; Kirschner and Krause,
2018) under the assumption that f is an unknown
�xed member of the RKHS H k that is speci�ed by the
positive semi-de�nite kernel k : Z � Z ! R, where
Z = X � C . Here we de�ne z = [ x> ; c> ]> to keep
the notation compact. We assume that the spacesX
and C are compact. We de�ne the norm of a function
g 2 H k as kgkH k =

p
g> g =

p
hg; gi H k . We also as-

sume that the unknown function f has bounded RKHS
norm, i.e., kf kH k � B , for someB > 0, and that the
kernel k is bounded, i.e.,k(z; z0) � 1, for all z; z0 2 Z .
The assumptions made here are common in the BO
literature, we point the reader to e.g. Bogunovic and

Krause (2021) for the analysis of bandits optimization
with misspeci�ed RKHS. The details of the following
derivations are available in the Appendix Section 7.

Given the dataset Dt = f (zi ; yi )gt
i =1 , and regulariza-

tion parameter � > 0, the regularized least-squares
regression problem in RKHS is written as follows:

min
� 2H k

tX

i =1

(yi � � (zi ))
2 + � k� k2

H k
: (3)

The resulting least squares estimator is

� t (z) = kt (z)> (K t + �I ) � 1y1:t ; (4)

where kt (z) = [ k(z; z1); : : : ; k(z; zt )]> , K t =
[k(zi ; zj )]t

i;j =1 , and y1:t = [ y1; : : : ; yt ]> . We also de-
�ne

� 2
t (z) =

1
�

�
k(z; z) � kt (z)> (K t + �I ) � 1kt (z)

�
: (5)

Under suitable assumptions on the prior and the noise
distribution, � t and � 2

t correspond to the posterior
mean and variance of a Gaussian process with kernel
k conditioned on the observationsy1:t (Schölkopf and
Smola, 2002; Williams and Rasmussen, 2006).

We state here a fundamental result adapted
from Abbasi-Yadkori (2013) that provides probabilis-
tic �nite-sample con�dence guarantees for the least
squares estimator (4).

Lemma 1. [(Abbasi-Yadkori, 2013, Th. 3.11)] Let
Z � Rd, where d = dx + dc, and f : Z :! R be
a member ofH k , with kf kH k � B , and let � t be F t

measurable andR-sub-Gaussian conditionally onF t .
Then, for any � > 0, with probability 1 � � , we have
that for all z 2 Z and all t � 1:

j� t � 1(z) � f (z)j � � t � t � 1(z) ; (6)

with

� t := R

vu
u
t 2 log

 
det(I + � � 1K t � 1)

1
2

�

!

+ �
1
2 B ; (7)

where� t � 1 and � t � 1 are de�ned as in equations(4),(5).

We also introduce here the maximum information
gain (Srinivas et al., 2009; Chowdhury and Gopalan,
2017; Vakili et al., 2021), a fundamental kernel-
dependent quantity that quanti�es the complexity of
learning in RKHS

 t := sup
z1 ;z2 ;:::;z t

log det
�
I + � � 1K t � 1

�
:

In order to derive the main results in the following
sections, we require the kernel to satisfy the following
Lipschitz property
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Assumption 1 (Lipschitz property) . There exists a
L > 0 such that for any z; z0 2 X � C , d(z; z0) :=
kk(�; z) � k(�; z0)kH k � Lkz � z0k .

As we prove in Lemma 11 in the Appendix, Assump-
tion 1 is veri�ed for popular kernels, e.g. the squared
exponential kernel, and some kernels in the Matérn
family satisfy.

4 WASSERSTEIN
DISTRIBUTIONALLY ROBUST
BAYESIAN OPTIMIZATION

In classical BO, following the rich literature of opti-
mism in the face of uncertainty , the learner selects
the query point x t by maximizing the Upper Con�dence
Bound (UCB) function (Auer, 2002). This provides
a trade-o� between exploration and exploitation, and
results in provable regret guarantees (Srinivas et al.,
2009).

Departing from the classical approach, and inspired
by Kirschner et al. (2020), we adopt a robust approach,
where we consider the optimization of a robusti�ed
version of the UCB function

x t = arg max
x 2X

inf
Q2B " t ( P̂ t )

Ec�Q [UCBt (x; c)] ; (8)

where

UCBt (x; c) = � t � 1(x; c) + � t � t � 1(x; c); (9)

with � t , � t , and � t are given in (4), (5), (7) respectively.

Similar to Kirschner et al. (2020), we will analyze two
settings, which di�er in the way the ambiguity set is
obtained. We �rst consider the General WDRBO
setting, where at each time-step the Wasserstein am-
biguity set is provided to the learner, and then turn
to the Data-Driven WDRBO setting, in which the
Wasserstein ambiguity set is built using the past con-
text observations under the assumption that the true
context distribution is time-invariant.

All proofs along with supporting derivations and lem-
mas are provided in Section 8 of the Appendix.

To evaluate the performance of the proposed algorithm
we look at the notion of regret . Regret is used to
capture the di�erence in performance between some
algorithm and a benchmark algorithm that has access
to privileged information. The de�nition of regret and
the choice of benchmark is not unique, and the one
chosen here di�ers from the ones used in the DRBO
literature Kirschner and Krause (2019), Husain et al.
(2024), Tay et al. (2022).

We will consider the following de�nitions of instanta-
neous expected regret :

r t = Ec�P �
t
[f (x �

t ; c)] � Ec�P �
t
[f (x t ; c)] ; (10)

and cumulative expected regret :

RT =
TX

t =1

r t : (11)

The benchmark solution x �
t is the optimal solution

to the true stochastic optimization problem at time-
step t, given access to the true functionf and context
distribution P �

t , i.e.,

x �
t = arg max

x 2X
Ec�P �

t
[f (x; c)] :

Hence, this de�nition of regret captures the (cumula-
tive) sub-optimality gap, between some proposed algo-
rithm and the optimal solution to the true stochastic
optimization problem.

4.1 General WDRBO

In the General WDRBO setting, at each time-stept,
the center P̂t and the radius " t of the Wasserstein am-
biguity set are provided to the learner. This represents
the setting where there is some understanding of what
the context distribution is, e.g. with weather or prices
forecast, but there is still some uncertainty about its
distribution.

To make the robust problem 8 tractable, we introduce
a well-known result from the Wasserstein DR optimiza-
tion literature (Kuhn et al., 2019; Gao et al., 2024)
that has been adapted to our problem.

Lemma 2. Let f : X � C ! R be a function that is
L f

c (x)-Lipschitz in the context space, i.e. jf (x; c) �
f (x; c0)j � L f

c (x)kc� c0k, for all c; c0 2 C. Let B" (P̂ ) be
a Wasserstein ambiguity set de�ned as a ball of radius"
in the Wasserstein distance centered at the distribution
P̂ . Then, for any x 2 X and for any distribution
~P 2 B " (P̂ ), we have that

jEc� ~P [f (x; c)] � Ec� P̂ [f (x; c)]j � "L f
c (x) : (12)

Lemma 2 provides a simple Lipschitz-based bound on
the worst-case expectation for any distribution in the
ambiguity set. By combining Lemma 2 with Assump-
tion 1 we obtain a tractable approximation of the robust
maximization problem 8. Thus, at each time-stept the
query point x t is selected by the followingacquisition
function

x t = arg max
x 2X

Ec� P̂ t
[UCB t (x; c)] � " t L UCB t (x) ; (13)
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Algorithm 1 General Algorithm for WDRBO

for t = 1 to T do
� t � 1; � t � 1  �t (Dt � 1)
x t = arg maxx 2X Ec� P̂ [UCB t (x; c)] � " t L UCB t (x)
The environment returns ct and yt = f (x t ; ct )+ � t ,
where ct � P �

t 2 B " t (P̂t )
Dt  D t � 1 [ f (x t ; ct ; yt )g

end for

where L UCB t (x) is the Lipschitz constant of the func-
tion UCB t with respect to the context variable c, eval-
uated at x. The resulting algorithm for WDRBO is
provided in Algorithm 1.

We remark that, unlike the algorithm proposed
in Kirschner and Krause (2019), Husain et al.
(2024), Tay et al. (2022), that rely on discrete context
distributions, neither Algorithm 1 nor the following
theoretical analysis require a discrete context space
or that the distributions in the ambiguity have �nite
support. The only practical limitation imposed by
our algorithm when the center is a continuous context
distribution, is the ability to perform the numerical
integration required to compute the expectation.

While in Algorithm 1 the Lipschitz constant L UCB t (x)
can be computed at each timestept from the �tted
UCB function UCB t , in the following lemma we derive
a novel upper bound onL UCB t (x) that will be useful
for the theoretical analysis of the regret.

Lemma 3. Let 0 < � < 1 be a failure probability

and let �B t := � � 1
2 R

s

2 log
�

det( I + � � 1 K t � 1 )
1
2

�

�
+ B �

� � 1
2

��
R

q
2 log 1

� + R
p

2 t

�
+ B

�
.

Then, with probability 1 � � for all t � 1 we have
k� t � 1kH k � �B t : Further, if Assumption 1 holds we
have:

(i) With probability 1 � � , for any z; z0 2 X � C :
j� t � 1(z) � � t � 1(z0)j � �B t Lkz � z0k:

(ii) For any z; z0 2 X � C : j� t � t � 1(z) � � t � t � 1(z0)j �
� t � � 1

2 Lkz � z0k = �B t Lkz � z0k:

Therefore, with probability 1 � � , the UCB function is
Lipschitz continuous with constant:

L UCB t � 2 �B t L:

We can now turn to the derivation of the bound on the
instantaneous expected regret for the General WDRBO
setting.

Theorem 4 (Instantaneous expected regret). Let As-
sumption 1 hold. Fix a failure probability 0 < � < 1.
With probability at least 1 � � , for all t � 1 the instan-

taneous expected regret can be bounded by

r t � Ec�P �
t

[2� t � t � 1(x t ; c)] + 2 " t L UCB t (x �
t ) (14)

We can observe that the �rst term has the same expres-
sion as the instantaneous regret of the GP-UCB Srinivas
et al. (2009), while the second term captures the e�ect
of the distributional uncertainty which depends on the
maximum distribution shift as speci�ed by " t , and on
a sensitivity term that is bounded by the Lipschitz
constants L UCB t (x t ) computed at the selected input
x t .

Theorem 5 (Cumulative expected regret). Let As-
sumption 1 hold and letL UCB t (x) be a Lipschitz con-
stant with respect to the contextc for UCBt (x; c). Fix
a failure probability 0 < � < 1. With probability at least
1 � 2� , the cumulative expected regret afterT steps can
be bounded as:

RT � 4� T

r

T  T + 4 log(
6
�

) +
TX

t =1

" t 2L UCB t (x �
t ) ;

(15)

where  T is the maximum information gain at time T.

Note that the cumulative expected regret is a random
quantity, as the expectation is taken only with respect
to the contexts.

We can combine Lemma 3 with Theorem 5 to derive
the regret rate for the cumulative expected regret.

Corollary 6 (General WDRBO Regret Order). Let
0 < � < 1 be a failure probability and let Assumption 1
hold. Then, with probability 1 � 3� , the cumulative
expected regret is of the order of

RT = ~O

 
p

T  T +
p

 T

TX

t =1

" t

!

:

For the Squared Exponential kernel, this reduces to

RT = ~O

 
p

T +
TX

t =1

" t

!

;

where ~O omits logarithmic terms.

The second term depends on the sum of all radiiP T
t =1 " t . Hence, a su�cient condition in order to get

sublinear regret guarantees, is that the radii converge
to 0 su�ciently fast. If, e.g., " t = O(t � 1

2 ), we obtain

RT = ~O
� p

T  T

�
. This can also occur in certain sit-

uations like the data-driven setting that we analyze
next.
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4.2 Data-Driven WDRBO

In the Data-Driven WDRBO we still rely on Al-
gorithm 1, but di�erently from the general setting we
need to build the Wasserstein ambiguity set using the
past context observations. With the assumption that
the unknown context distribution is time-invariant, i.e.
P �

t := P � , t 2 1; : : : ; T , we build the ambiguity set cen-
ter P̂t as the empirical distribution of the past observed
contexts, i.e.

P̂t =
1
t

tX

i =1

I f c= ci g ;

where I f c= ci g is the indicator function centered on
the context sample ci , and we derive a bound on the
sequence of radii" t using �nite-sample concentration
results.

Using �nite-sample results for the convergence of em-
pirical measures in Wasserstein distance Fournier and
Guillin (2015); Fournier (2022) we can bound the size
of " t such that with high probability the true con-
text distribution P � is contained in the ambiguity set
B" t (P̂t ). Unfortunately, this approach su�ers from the
so-called curse of dimensionality with respect to the
dimension dc of the context. To circumvent this issue
we propose a novel result result that leverages recent
�nite-sample concentration results from Gao (2023).
Instead of focusing on the rate of convergence of the
empirical distribution P̂t to the true unknown P � , we
focus on the rate at which the worst-case expected
cost concentrates around the expected cost under the
true context distribution. Since there are multiple pos-
sible UCB functions, we need an additional covering
argument to apply the result from Gao (2023).

Lemma 7. De�ne the class of UCB functions as

U(A) = f h : h(z) = � (z) + � t � t � 1(z); k� kH k � Ag ;

and let N1 (�; H k ; A) be its covering number under the
in�nity norm, up to precision � . Let diam(X ), diam(C)
denote the diameters of the setsX ; C respectively. Let
0 < � < 1 be a failure probability. Let

" t =

r

�
log 1=� + dx log(1+2tdiam(X )) + log N1 (t � 1; H k ; A)

t
;

where � = 2 diam(C), and � t = 3(1 + LA )=t. Then,
with probability at least 1 � � , for all h 2 U(A) and all
x 2 X

Ec�P � [h(x; c)] � Ec� P̂ t
[h(x; c)] � " t L h

c (x) � � t :

We can now use the bound of Lemma 7 to derive the
data-driven analogous of Theorem 4 and Theorem 5.

Theorem 8 (Data-driven instantaneous expected re-
gret). Let Assumption 1 hold. Fix a failure probability
0 < � < 1. With probability at least 1 � � , for all t � 1
the instantaneous expected regret for the data-driven
setting can be bounded by

r t � Ec�P �
t

[2� t � t � 1(x t ; c)] + 2 " t L UCB t (x �
t ) + 2 � t

(16)

Theorem 9 (Data-driven cumulative expected regret).
Let Assumption 1 hold and letL UCB t (x) be a Lipschitz
constant with respect to the contextc for UCBt (x; c).
Fix a failure probability 0 < � < 1. With probability
at least 1 � 2� , the cumulative expected regret for the
data-driven setting can be bounded as:

RT � 4� T

r

T  T + 4 log(
6
�

) +
TX

t =1

�
" t 2L UCB t (x �

t ) + 2 � t
�

:

(17)

We can use Lemma 19 withA = �B t from Lemma 3 to
derive a bound on the rate of the cumulative expected
regret in the data-driven setting. To specialize the
result to the Squared Exponential kernel case, we use
a result from Yang et al. (2020) to obtain a bound on
N1 (�; H k ; B ).

Corollary 10. Let 0 < � < 1 be a failure probability
and let Assumption 1 hold. Then, With probability
1� 3� , the cumulative expected regret in the data-driven
setting is of the order of

RT � ~O( T

p
T +

TX

t =1

~O(( t � 1 logN1 (t � 1; H k ; �B t ))
1
2
p

 t )

+
TX

t =1

~O(t � 1=2p
 t )

(18)

For the Squared Exponential kernel, this reduces to a
sublinear regret with order

RSE
T = ~O

� p
T

�
:

Following the same procedure, using the bounds on
the covering numberN1 derived in Yang et al. (2020),
it is possible to derive similar bounds for other com-
monly used kernels. The rate derived in Corollary 10
shows that a sublinear regret is achievable when the
dependency on the covering number and the maximum
information gain are well behaved. These are linked
to the smoothness of the kernel. It is not yet clear
whether this is a fundamental limitation or if it is an
artifact of our proving technique. We will leave this for
future work.
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Note that with the proposed data-driven WDRBO,
we have a principled way to choose the sequence of
radii " t that provides a probabilistic guarantee on the
maximum distance between the expectation under the
true context generating distribution P � and the ex-
pectation under the empirical distribution P̂t . This
makes Algorithm 1 a practical tool to handle continu-
ous context distributions, in contrast with Kirschner
et al. (2020), Husain et al. (2024), Tay et al. (2022),
where it is assumed that the true distribution is sup-
ported on a �nite number of contexts. The proposed
approach di�ers also from Huang et al. (2024) where
their DRO-KDE algorithm robusti�es against the gap
between the approximate context distribution obtained
by KDE from the observed contexts and the empirical
distribution obtained by sampling it.

5 EXPERIMENTS

In this section, we analyze the performance of the pro-
posed algorithm and compare it with the algorithms
in the literature. We will start with a simple example
that showcases the e�ect of the robust acquisition func-
tion (13) in the general setting. We will then provide
an extensive comparison of the algorithms in the data-
driven setting, as we consider it the most relevant and
more challenging in practice.

To highlight the need for robustness against context
distribution shifts, we consider the general DRBO
setting with �xed context distributions P̂t = N (0:5; 0:1)
for all t = 1 ; : : : ; 100 and P �

t = N (0:6; 0:2) for all
t = 1 ; : : : ; 100, and the unknown function

f (x; c) = 1 �
jc � 0:5j
jxj + 0 :2

�
p

jxj + 0 :05 :

A plot of the function and its optima under P̂t and P �
t

is shown in Fig. 1a. We compare the performance of
the proposed WDRBO as in Algorithm 1 with " t = 0 :1
for all t = 1 ; : : : ; 100, and ERBO (Empirical Risk BO),
the non-robust variant of WDRBO that assumes " t = 0
for all t = 1 ; : : : ; 100.

In Fig. 1b we show that the robust WDRBO results in
a lower cumulative regret than ERBO. This is because
ERBO solves the stochastic optimization problem as-
suming that the context is distributed according to
the ambiguity set center P̂t , while WDRBO optimizes
for the worst-case distribution in the ambiguity set
of radius 0:1. In this simple setting, since the radius
" t remains constant over time, following the result of
Theorem 5, the cumulative expected regret shows a
linear trend.

For the data-driven DRBO setting we adopt the
setup of Huang et al. (2024) and provide a comparison

(a) (b)

Figure 1: (a) Function f (x; c) and its optima under
optima under P̂t and P �

t . (b) Mean and standard error
of the cumulative expected regret.

of the di�erent methods on synthetic function and the
realistic problems.1 We will compare the algorithms'
performance based on the cumulative expected regret
as in (11).

We will compare compare the following algorithms:
WDRBO : Data-Driven WDRBO algorithm with
robusti�ed acquisition function 13, where the center of
the Wasserstein ambiguity set is given by the empirical
distribution of the observed contexts and the radius is
chosen as" t = O(1=

p
t).

ERBO : This is equivalent to WDRBO but we set
" t = 0 in the acquisition function 13, i.e. we maximize
the empirical risk with respect to the observed contexts
x t = arg max x 2X Ec� P̂ t

[UCB t (x; c)] .
GP-UCB : Implements the UCB maximization
algorithm proposed by Srinivas et al. (2012) ignoring
the context variable in both the de�nition of the
Gaussian process model and in the acquisition function
maximization.
SBO-KDE : Stochastic BO formulation of Huang
et al. (2024). An approximate context distribution is
estimated from the observed samples by kernel density
estimation. The acquisition function maximizes the
expectation of the UCB with respect to the empirical
distribution of the context obtained by sampling the
approximate context distribution (sample average
approximation).
DRBO-KDE : DR formulation of SBO-KDE proposed
by Huang et al. (2024). Robusti�es the SBO-KDE
algorithm by considering DR formulation with a total
variation ambiguity set. The ambiguity set is centered
on the empirical distribution of the context obtained
by sampling from the density estimate.
DRBO-MMD : DRBO formulation with MMD ambi-
guity set of Kirschner et al. (2020). The continuous
context space is discretized and the UCB is maximized

1The code is available at the following
link https://github.com/frmicheli/WDRBO .
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Figure 2: Mean and standard error of the cumulative expected regret.

for the worst-case distribution supported on the
discrete context space for a given MMD budget. The
complexity of the robusti�ed acquisition function
scales with the cube of the cardinality of the context
support.
DRBO-MMD Minmax : Minmax approximate
formulation of DRBO-MMD proposed in Tay et al.
(2022). The discretization can be �ner as the worst-case
sensitivity approximation reduces the computational
burden of the method.
StableOpt : Implementation of StableOpt Bogunovic
et al. (2018). Implements a robust acquisition
function x t = arg maxx 2 X minc2 C t UCB t (x; c), where,
following Huang et al. (2024), the setCt is chosen at
each time t as the set where for each dimension of the
context we consider the interval [�̂ ci

t � �̂ ci

t ; �̂ ci

t + �̂ ci

t ],
with �̂ ci

t and �̂ ci

t the empirical mean and variance of
the observed contexts.

For all the algorithms considered we �xed the value of
the UCB trade-o� parameter � t = 1 :5. This has been
done to be consistent with the engineering practice and
earlier works such as Huang et al. (2024). We consider
a set of arti�cial and real-world problems and di�erent
types of context distributions. For each problem and
algorithm, we ran 100 iterations and repeated over
15 random seeds. Fig. 2 shows the resulting cumula-
tive expected regret for WDRBO, ERBO, GP-UCB,
SBO-KDE, and DRBO-KDE. More details about the
speci�cs of the test problems and the implementations
are left in the Appendix. We also leave the results for

DRBO-MMD, DRBO-MMD Minmax, and StableOpt
to the Appendix as their performance was not com-
petitive with the other methods. The performance
of DRBO-MMD is limited by the coarseness of the
context discretization which is required to have a com-
putationally tractable inner convex optimization step.
The performance of DRBO-MMD Minmax is mainly
limited by the worst-case sensitivity that introduces a
linear term in the resulting regret bound. StableOpt
su�ers from the fact that it is solving a robust opti-
mization problem.

We tracked the time required by each algorithm for a
100-iteration-long experiment. We report in Table 1
the computational times in seconds for the Ackley and
Branin functions. The computational times are af-
fected both by algorithm speci�c characteristics, e.g.
an inner convex optimization problem is solved at each
iteration, and by speci�c parameters choices, e.g. the
discretization grid-size. The reported times have been
obtained by running the algorithm on CPU only, as
some of the algorithms have not been implemented to
exploit the potential speed-ups resulting from running
on GPU. For this test we used an Intel(R) Core(TM)
i9-9900K@3.60GHz. GP-UCB has the smallest com-
putational time as it ignores the context, thus also
reducing the regression step complexity. ERBO and
SBO-KDE are not robust approaches, the extra time
required by SBO-KDE is due to the KDE step. One of
the advantage of the proposed WDRBO is that is is able
to add robustness against context distribution uncer-
tainty without the large overheads of the other robust
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methods. The extra computational time required by
WDRBO compared to ERBO is related to the calcula-
tion of the Lipschitz constant from the UCB expression.
The main computational bottleneck for DRBO-MMD
and DRBO-KDE is related to the solution of the inner
minimization problems.

Ackley Branin
WDRBO (ours) 44:3 � 2:2 54:5 � 2:6
ERBO (ours) 43:8 � 1:6 45:2 � 2:5
GP-UCB 15:7 � 1:4 15:1 � 1:0
SBO-KDE 46:7 � 0:7 49:7 � 1:5
DRBO-KDE 599:7 � 33:0 525:0 � 71:7

Table 1: Mean and standard error of computational
times in seconds for the Ackley (dx = 1 , dc = 1 ) and
Branin ( dx = 2 , dc = 2 ) functions.

We can see in Fig. 2 that the performance of WDRBO,
ERBO, and SBO-KDE is extremely compelling, partic-
ularly when considering the computational complexity
of the other algorithms. We argue that the performance
of DRBO-KDE does not justify the extra computation
required to solve the inner two-dimensional optimiza-
tion problem. While we observe very strong perfor-
mances for ERBO and SBO-KDE in the data-driven
setting, with the smallest computational complexities,
we want to highlight that, contrarily to WDRBO and
DRBO-KDE, they do not compute a robust solution.
This might lead to disappointing performance as shown
in the �rst example where the ambiguity set does not
collapse to the true distribution as the number of iter-
ations grows, and for which a robust solution might be
preferable.

6 CONCLUSIONS AND FUTURE
WORK

In this paper, we introduced Wasserstein Distribution-
ally Robust Bayesian Optimization (WDRBO), a novel
algorithm that addresses the challenge of sequential
data-driven decision-making under context distribu-
tional uncertainty. We developed a computationally
tractable algorithm for WDRBO that can handle con-
tinuous context distributions, leveraging an approxi-
mate reformulation based on Lipschitz bounds of the
acquisition function. This approach extends the exist-
ing literature on Distributionally Robust Bayesian Op-
timization by providing a principled method to handle
continuous context distributions within a Wasserstein
ambiguity set, allowing for a �exible and intuitive way
to model uncertainty in the context distribution while
maintaining computational feasibility.

Our theoretical analysis provides an cumulative ex-

pected regret bounds that match state-of-the-art re-
sults. Notably, for the data-driven setting, the bound
does not require assumptions on the rate of decay of
the ambiguity set radius but relies on �nite-sample con-
centration results, making our approach more broadly
applicable to real-world situations. Lastly, we con-
ducted a comprehensive empirical evaluation demon-
strating the e�ectiveness and practical applicability of
WDRBO on both synthetic and real-world benchmarks.
Our results show that the proposed WDRBO algorithm
exhibits promising performance in terms of regret while
avoiding computationally expensive inner optimization
steps.

The promising results of WDRBO open up exciting
opportunities for further research and development in
the �eld of Distributionally Robust Bayesian optimiza-
tion. Extending the WDRBO framework to risk mea-
sures, such as Conditional Value at Risk (CVaR), could
broaden its applicability to risk-sensitive domains, such
as robotics and �nance.
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Wasserstein Distributionally Robust Bayesian Optimization
with Continuous Context: Supplementary Materials

7 BACKGROUND ON RKHS AND KERNEL RIDGE REGRESSION

In this paper, we consider the frequentist perspective and formulate the surrogate model as the solution of
a regularized least-squares regression problem in the Reproducing Kernel Hilbert Space (RKHS). A similar
formulation can be derived following the Bayesian perspective of Gaussian Process Regression under suitable
assumptions on the Gaussian Process prior and observation noise Kanagawa et al. (2018).

Consider an RKHS (H k ; h�; �i H k ) with reproducing kernel k : Z � Z ! R. De�ne the inner product of the RKHS
as f > g = hf; g i H k and the outer product as fg > = f hg;�i H k . Let � t := ( k(�; z1); : : : ; k(�; zt ))> be the feature map
of the RKHS for a sequence of pointsz1; : : : ; zt 2 Z . De�ne the kernel matrix K t = � t � >

t and the covariance
operator Vt = � >

t � t . The RKHS norm of a function f 2 H k is de�ned as kf kH k =
p

f > f =
p

hf; f i H k . By the
reproducing property of the kernel, we have that f (z) = hf; k (�; z)i H k for all z 2 Z .

With a slight abuse of notation we write the following equality which will be useful in the upcoming derivations

� (� >
t � t + �I ) � 1 = I � � >

t (� t � >
t + �I ) � 1� t ; (19)

where it should be clear from the context that I is either the identity matrix or the identity operator in the
RKHS. We also de�ne the short-hand notation �Vt = Vt + �I = � >

t � t + �I .

Given the observed dataDt = f (zi ; yi )gt
i =1 , the regularized least-squares regression problem in RKHS is de�ned

as follows:

min
� 2H k

tX

i =1

(yi � � (zi ))2 + � k� k2
H k

: (20)

The solution to this problem is given by:

� t = �V � 1
t � >

t y1:t

= ( Vt + �I ) � 1� >
t y1:t

= � >
t (� t � >

t + �I ) � 1y1:t

(21)

where y1:t = ( y1; : : : ; yt )> is the vector of observed responses. By the representation theorem, we can compute� t

at some new pointz 2 Z as follows:

� t (z) = h� t ; k(�; z)i H k

= � >
t (� t � >

t + �I ) � 1y1:t

= kt (z)> (K t + �I ) � 1y1:t ;

(22)

where kt (z) = ( k(z; z1); : : : ; k(z; zt ))> is the vector of kernel evaluations atz.

We can also compute

� 2
t (z) := kk(�; z)k2

�V � 1
t

=
1
�

�
k(z; z) � kt (z)> (K t + �I ) � 1kt (z)

�
;

(23)

where kk(�; z)k2
�V � 1

t
= kt (z)> (� >

t � t + �I ) � 1kt (z), and we use (19) to get the �nal equation.

We are using the notation � t (z) and � 2
t (z) to align with the Gaussian Process Regression literature Kanagawa

et al. (2018), where� t (z) and � 2
t (z) would represent the mean and variance of the Gaussian Process posterior at

z respectively.
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7.1 Kernels that satisfy the Lipschitz condition in Assumption 1

Assumption 1 is satis�ed for commonly used kernels. For example, it is satis�ed withL = 1 for the squared
exponential kernel and the Matérn kernel for � = 3=2 (Van Waarde and Sepulchre, 2022, Proposition 2). In fact,
all smooth, positive de�nite, stationary kernels that have zero derivatives at zero satisfy Assumption 1. This, in
turn, implies that Assumption 1 is satis�ed for Matérn kernels with � = p + 1=2, for p = 1 ; 2; : : : .

Lemma 11. Let k be a positive de�nite, stationary kernel such thatk(x; x 0) = r (kx � x0k), for some function
r : R ! R that is continuously twice di�erentiable in a neighborhood of the origin with �rst derivative r (1) (0) = 0 .
Then, the kernel-induced distance

d(x; x 0) :=
p

k(x; x ) + k(x0; x0) � k(x; x 0) � k(x0; x) � M kx � x0k;

for some constantM > 0.

Proof. Replacing k with r in the expression ofd(x; x 0) we write

d(x; x 0) =
p

2r (0) � 2r (kx � x0k):

Pick any � > 0. Let's consider two cases:

Case 1: Forkx � x0k � � , by the positive de�nite property, we have jr (kx � x0k)j � r (0) for any x; x 0. Therefore:

d(x; x 0) � 2
p

r (0) � 2
p

r (0) kx � x0k=� = M 1kx � x0k;

where M 1 = 2
p

r (0)=�.

Case 2: Forkx � x0k � � , using the Taylor remainder formula and the fact that r (1) (0) = 0 :

r (kx � x0k) = r (0) +
kx � x0k2

2
r (2) (s);

for somes 2 [0; kx � x0k]. Sincer (kx � x0k) � r (0), we havekx � x0k2r (2) (s) � 0, which, in turn, implies that
r (2) (s) � 0. As a result,

d(x; x 0) =
q

�k x � x0k2r (2) (s) = kx � x0k
q

� r (2) (s) � k x � x0k max
s2 [0;� ]

q
� r (2) (s) = M 2kx � x0k:

Since the function has a continuous second derivative in the interval[0; � ] and r (2) (s) � 0 for all s 2 [0; � ], the
maximum M 2 = max s2 [0;� ]

p
� r (2) (s) is well-de�ned and �nite.

The result follows by taking

M = max f M 1; M 2g = max

(
2
p

r (0)
�

; max
s2 [0;� ]

q
� r (2) (s)

)

8 MAIN PROOFS

We can state here a well-known result from the Wasserstein DR optimization literature Kuhn et al. (2019); Gao
et al. (2024).

Lemma 12. Consider a function g : � ! R that is L g-Lipschitz, i.e. jg(� ) � g(� 0)j � L gk� � � 0k, for all �; � 0 2 � .
Let B" (P̂ ) be a Wasserstein ambiguity set de�ned as a ball of radius" in the Wasserstein distance centered at the
distribution P̂ . Then,

sup
Q2B " ( P̂ )

E� �Q [g(� )] � E� � P̂ [g(� )] + "L g ; (24)

Similarly,

inf
Q2B " ( P̂ )

E� �Q [g(� )] � E� � P̂ [g(� )] � "L g : (25)
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As a consequence of Lemma 12, we can state the following result.

Lemma 13. Let f : X �C ! R be a function that is L f
c (x)-Lipschitz in the context space, i.e. jf (x; c) � f (x; c0)j �

L f
c (x)kc � c0k, for all c; c0 2 C. Let B" (P̂ ) be a Wasserstein ambiguity set de�ned as a ball of radius" in the

Wasserstein distance centered at the distributionP̂ . Then, for any x 2 X and for any distribution ~P 2 B " (P̂ ), we
have that

jEc� ~P [f (x; c)] � Ec� P̂ [f (x; c)]j � "L f
c (x) : (26)

Lemma 14 (Lemma 3 in the main text) . Let 0 < � < 1 be a failure probability and let

�B t := � � 1
2 R

vu
u
t 2 log

 
det(I + � � 1K t � 1)

1
2

�

!

+ B � � � 1
2

  

R

r

2 log
1
�

+ R
p

2 t

!

+ B

!

: (27)

Then, with probability 1 � � for all t � 1 we havek� t � 1kH k � �B t : Further, if Assumption 1 holds (i.e.,
kk(�; z) � k(�; z0)kH k � Lkz � z0k), we have:

(i) With probability 1 � � , for any z; z0 2 X � C : j� t � 1(z) � � t � 1(z0)j � �B t Lkz � z0k:

(ii) For any z; z0 2 X � C : j� t � t � 1(z) � � t � t � 1(z0)j � � t � � 1
2 Lkz � z0k = �B t Lkz � z0k:

Therefore, with probability 1 � � , the UCB function is Lipschitz continuous with constant: L UCB t � 2 �B t L:

Proof. The UCB is de�ned as:
UCB t (z) = � t � 1(z) + � t � t � 1(z);

where z = ( x; c) 2 X � C .

We have

� t (z) = h(�I + Vt ) � 1� >
t y1:t ; k(�; z)i ; (28)

and

k� t kH k = k(�I + Vt ) � 1� >
t y1:t kH k (29)

= k(�I + Vt ) � 1� >
t (f (z1:t ) + � 1:t )kH k (30)

= k(�I + Vt ) � 1� >
t (� t f + � 1:t )kH k (31)

� k (�I + Vt ) � 1� >
t � t f kH k + k(�I + Vt ) � 1� >

t � 1:t kH k (32)

= k(�I + Vt ) � 1Vt f kH k + k(�I + Vt ) � 1� >
t � 1:t kH k (33)

� k (�I + Vt ) � 1Vt kH k kf kH k + k(�I + Vt ) � 1
2 kH k k(�I + Vt ) � 1

2 � >
t � 1:t kH k (34)

� B + � � 1
2 k(�I + Vt ) � 1

2 � >
t � 1:t kH k ; (35)

where we used the assumption thatkf kH k � B and the fact that k(�I + Vt ) � 1Vt kH k � 1 for � � 0.

Applying Corollary 3.6 of Abbasi-Yadkori (2013), with probability at least 1 � � and for all t � 1, we have

k(�I + Vt ) � 1
2 � >

t � 1:t kH k � R

vu
u
t 2 log

 
det(I + � � 1Vt )

1
2

�

!

= R

vu
u
t 2 log

 
det(I + � � 1K t )

1
2

�

!

: (36)

Thus, we obtain

k� t kH k � � � 1
2 R

vu
u
t 2 log

 
det(I + � � 1K t )

1
2

�

!

+ B = �B t : (37)
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If Assumption 1 holds, for any z; z0 2 X � C , we have:

j� t � 1(z) � � t � 1(z0)j = jh� t � 1; k(�; z) � k(�; z0)i H k j (38)

� k � t � 1kH k � kk(�; z) � k(�; z0)kH k (39)

� �B t � Lkz � z0k (40)

where we used the Cauchy-Schwarz inequality and Assumption 1.

For the term � t � t � 1(z), we need to analyze the Lipschitz property of� t � 1(z). We know by the Woodbury identity:

� 2
t � 1(z) = hk(�; z); (�I + Vt � 1) � 1k(�; z)i H k =

1
�

�
k(z; z) � kt � 1(z)> (K t � 1 + �I ) � 1kt � 1(z)

�
(41)

This gives us:

� t � 1(z) = k(�I + Vt � 1) � 1=2k(�; z)kH k (42)

Now, for the Lipschitz property, by the triangle inequality:

j� t � 1(z) � � t � 1(z0)j � k (�I + Vt � 1) � 1=2(k(�; z) � k(�; z0))kH k (43)

� k (�I + Vt � 1) � 1=2kop � kk(�; z) � k(�; z0)kH k (44)

� � � 1
2 � Lkz � z0k (45)

where we used the fact thatk(�I + Vt � 1) � 1=2kop � � � 1
2 and Assumption 1.

Therefore:

j� t � t � 1(z) � � t � t � 1(z0)j � � t � � 1
2 Lkz � z0k (46)

Note that, recalling the de�nition of � t :

� t := R

vu
u
t 2 log

 
det(I + � � 1K t � 1)

1
2

�

!

+ �
1
2 B; (47)

we can observe that� t � � 1
2 = �B t .

Combining the results, with probability 1 � � , we have:

jUCB(z) � UCB(z0)j = j� t � 1(z) + � t � t � 1(z) � � t � 1(z0) � � t � t � 1(z0)j (48)

� j � t � 1(z) � � t � 1(z0)j + j� t � t � 1(z) � � t � t � 1(z0)j (49)

� �B t Lkz � z0k + � t � � 1
2 Lkz � z0k (50)

= ( �B t L + �B t L)kz � z0k (51)

= 2 �B t Lkz � z0k (52)

where we used the fact that� t � � 1
2 = �B t .

Thus, with probability 1 � � , the Lipschitz constant of the UCB function is:

L UCB t � 2 �B t L (53)

which concludes the proof.

Theorem 15 (Instantaneous expected regret -Thm. 4 in the main text ). Let Assumption 1 hold. Fix a
failure probability 0 < � < 1. With probability at least 1 � � , for all t � 1 the instantaneous expected regret can be
bounded by

r t � Ec�P �
t

[2� t � t � 1(x t ; c)] + 2 " t L UCB t (x �
t ) (54)
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Proof. Recall that the benchmark solution x �
t is the optimal solution to the stochastic optimization problem at

time-step t, given access to the true functionf and context distribution P �
t

x �
t = arg max

x 2X
Ec�P �

t
[f (x; c)] :

Whereasx t is the solution to the robusti�ed UCB acquisition function as given in (13)

x t = arg max
x 2X

Ec� P̂ t
[UCB t (x; c)] � " t L UCB t (x) ;

From the de�nition of instantaneous regret, we can write:

r t = Ec�P �
t
[f (x �

t ; c)] � Ec�P �
t
[f (x t ; c)]

(i)
� Ec�P �

t
[UCB t (x �

t ; c)] � Ec�P �
t

[LCB t (x t ; c)]
(ii)
� Ec� P̂ t

[UCB t (x �
t ; c)] + " t L UCB t (x �

t ) � Ec�P �
t

[LCB t (x t ; c)]
(iii)
� Ec� P̂ t

[UCB t (x t ; c)] � " t L UCB t (x t ) + 2 " t L UCB t (x �
t ) � Ec�P �

t
[LCB t (x t ; c)]

(iv)
� Ec�P �

t
[UCB t (x t ; c)] + 2 " t L UCB t (x �

t ) � Ec�P �
t

[LCB t (x t ; c)]
(v)
� Ec�P �

t
[� t � 1(x t ; c) + � t � t � 1(x t ; c) � � t � 1(x t ; c) + � t � t � 1(x t ; c)] + 2 " t L UCB t (x �

t )

= Ec�P �
t

[2� t � t � 1(x t ; c)] + 2 " t L UCB t (x �
t ) :

(55)

Where (i) holds with probability 1 � � by de�nition of UCB and LCB, with � t chosen as in Lemma 1. (ii) holds
by applying Lemma 2 under the assumption that P �

t 2 B " t (P̂t ). In (iii) we add and subtract " t L UCB t (x � ) and
use the fact that x t is the maximizer of the acquisition function (13). The inequality (iv) follows from another
application of Lemma 2, and �nally (v) follows again from the de�nitions of the UCB and the LCB.

Theorem 16 (cumulative expected regret -Thm. 5 in the main text ). Let Assumption 1 hold. Fix a failure
probability 0 < � < 1. With probability at least 1 � 2� , the cumulative expected regret afterT steps can be bounded
as:

RT � 4� T

s

T
�

 T + 4 log
6
�

�
+

TX

t =1

" t 2L UCB t (x �
t ) ; (56)

where  T is the maximum information gain (Srinivas et al., 2009; Chowdhury and Gopalan, 2017; Vakili et al.,
2021) at time T, which is de�ned as

 t := sup
z1 ;z2 ;:::;z t

log det
�
I + � � 1K t � 1

�
:

Proof. Starting from the de�nition of cumulative expected regret:

RT =
TX

t =1

r t =
TX

t =1

Ec�P �
t
[f (x �

t ; c)] � Ec�P �
t
[f (x t ; c)]

(i)
�

TX

t =1

Ec�P �
t

[2� t � t � 1(x t ; c)] +
TX

t =1

" t 2L UCB t (x �
t )

� 2� T

TX

t =1

Ec�P �
t

[� t � 1(x t ; c)] +
TX

t =1

" t 2L UCB t (x �
t )

(ii)
� 2� T

vu
u
t T

TX

t =1

�
Ec�P �

t
[� t � 1(x t ; c)]

� 2
+

TX

t =1

" t 2L UCB t (x �
t )

(iii)
� 2� T

vu
u
t T

TX

t =1

Ec�P �
t

[� t � 1(x t ; c)2] +
TX

t =1

" t 2L UCB t (x �
t )

(57)
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Where the inequality (i) follows from Theorem 15, (ii) follows from the Cauchy-Schwarz inequality, and (iii)
follows from Jensen's inequality.

We can now apply the concentration of conditional mean result from Lemma 7 of Kirschner et al. (2020) (see also
Lemma 3 of Kirschner and Krause (2018)), with probability at least 1 � � we obtain for all T :

TX

t =1

Ec�P �
t

�
� t � 1(x t ; c)2�

(i)
� 2

TX

t =1

� t � 1(x t ; ct )2 + 8 log
6
�

(ii)
� 2

TX

t =1

2 log(1 + � t � 1(x t ; ct )2) + 8 log
6
�

(iii)
� 4 T + 16 log

6
�

(58)

where (i) follows from Lemma 7 of Kirschner et al. (2020) noting that k(z; z0) � 1 by assumption, (ii) follows
from the fact that x � 2a log(1 + x) for all x 2 [0; a], and (iii) follows from the de�nition of maximum information
gain. By substituting this result into the cumulative regret expression we get with probability 1 � 2� :

RT � 4� t

s

T
�

 T + 4 log
6
�

�
+

TX

t =1

" t 2L UCB t (x �
t ) ; (59)

which concludes the proof.

In order to provide rates for the cumulative expected regret we want to provide high probability bounds for the
Lipschitz constants L UCB t (x).

Corollary 17 (Corollary 6 in the main text � General WDRBO Regret Order) . Let 0 < � < 1 be a failure
probability and let Assumption 1 hold. Then, with probability1 � 3� , the cumulative expected regret is of the order
of

RT = ~O

 
p

T  T +
p

 T

TX

t =1

" t

!

:

For the Squared Exponential kernel, this reduces to

RT = ~O

 
p

T +
TX

t =1

" t

!

;

where ~O omits logarithmic terms.

Proof. We can combine the results of Theorem 5 and Lemma 6 to write

RT � 4� t

r

T  T + 4 log
6
�

+
TX

t =1

" t 2L UCB t (x �
t )

� 4� t

r

T  T + 4 log
6
�

+
TX

t =1

" t 4� � 1
2

  

R

r

2 log
1
�

+ R
p

2 t

!

+ B

!

L

� 4(R
p

2 log(1=� ) + R
p

2 T + �
1
2 B )

r

T  T + 4 log
6
�

+
TX

t =1

" t 4� � 1
2

  

R

r

2 log
1
�

+ R
p

2 t

!

+ B

!

L

= O( T

p
T +

p
� T T) +

TX

t =1

" t O(� � 1
2
p

 T )

= O( T

p
T + � � 1

2
p

 T

TX

t =1

" t ) ;

(60)



Wasserstein Distributionally Robust Bayesian Optimization with Continuous Context

which proves the first statement.

The maximum information gain for the Squared Exponential kernel can be bounded as Vakili et al. (2021):

γt ≤ O(logd+1(t)) .

Thus, the rate for the cumulative expected regret is

RT = Õ

 
√
T +

TX
t=1

εt

!

8.1 Proofs of the data-driven scenario

We can now show how this result translates to the data-driven formulation, and provide a rate for the cumulative
expected regret.

Define the class of UCB functions as

U(B) = {h : h(z) = µ(z) + βtσt−1(z), ∥µ∥Hk
≤ B} ,

and let N∞(ρ,Hk, B) be its ρ-covering number. We use a result from Yang et al. (2020) to obtain a bound
on N∞(ρ,Hk, B), specialized to the squared exponential kernel. The proposed analysis works in more general
settings with kernels experiencing either exponential or polynomial eigendecay, see e.g. Yang et al. (2020); Vakili
and Olkhovskaya (2023).

Lemma 18 (Adapted from Lemma D.1 of Yang et al. (2020)). Let k(z, z′) be the squared exponential kernel,
∥f∥Hk

≤ B, and k(z, z) ≤ 1. Then, there exist global constant CN such that

logN∞(ρ,Hk, B) ≤ CN

d

�
1 + log

B

ρ

�1+d

+
CN

d

�
1 + log

1

ρ

�1+2d

The following result is an adaptation of Corollary 2 of Gao (2023). Let diam(X ), diam(C) denote the diameters
of the sets X , C respectively.

Lemma 19. Let 0 < δ < 1 be a failure probability. Let

εt(ρ) =

r
τ
log 1/δ + dx log(1 + 2ρ−1diam(X )) + logN∞(ρ,Hk, B)

t
,

where τ = 2diam(C). With probability at least 1− δ

∀h ∈ SB ,∀x ∈ X : Ec∼P� [h(x, c)] ≤ Ec∼P̂t [h(x, c)] + εt(ρ)L
h
c (x) + 3(1 + LB)ρ. (61)

Proof. Let h ∈ SB , x ∈ X . Following the notation of Gao (2023), let for any ε > 0

RP(ε, h(x, ·)) = sup
Q∈B"(P)

Ec∼Q(h(x, c))− Ec∼P(h(x, c)).

Using the bound on the Lipschitz constant derived in 3, it holds that

RP(ε, h(x, ·)) ≤ ε2LB̄T (62)

Let h̃ ∈ SB , x̃ ∈ X . Following the proof of Corollary 2 in Gao (2023), we have

RP(ε,−h(x, ·))−RP(ε,−h̃(x̃, ·)) ≤ sup
Q∈B"(P)

|Ec∼Q(h̃(x̃, c))− Ec∼Q(h(x, c))|.
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Using

|h(x, c)− h̃(x̃, c)| = |h(x, c)− h̃(x, c) + h̃(x, c)− h̃(x̃, c)|
≤ ∥h− h̃∥∞ +BL∥x− x̃∥,

we obtain

RP(ε,−h(x, ·))−RP(ε,−h̃(x̃, ·)) ≤ ∥h− h̃∥∞ +BL∥x− x̃∥ (63)

Similarly

|Ec∼P�(h̃(x̃, c))− Ec∼P�(h(x, c))| ≤ ∥h− h̃∥∞ +BL∥x− x̃∥
|Ec∼P̂t(h̃(x̃, c))− Ec∼P̂t(h(x, c))| ≤ ∥h− h̃∥∞ +BL∥x− x̃∥

(64)

Let Xρ be a covering of X of precision ρ with respect to the Euclidean norm and Sρ,B be a covering of SB of
precision ρ with respect to the infinity norm. We have that |Xρ| ≤ (1 + 2diam(X )ρ−1)dx (Vershynin, 2018, Ch.
4), while by definition |Sρ,B | = N∞(ρ,Hk, B).

By the definition of the coverings and (63), (64), we have that

∀h̃ ∈ Sρ,B ,∀x̃ ∈ Xρ Ec∼P� [h̃(x̃, c)] ≤ Ec∼P̂t [h̃(x̃, c)] +RP�(ε, h̃(x̃, ·))⇒

∀h ∈ SB ,∀x ∈ X Ec∼P� [h(x, c)] ≤ Ec∼P̂t [h(x, c)] +RP�(ε, h(x, ·)) + 3 min
~h∈S�;B

∥h− h̃∥∞ + 3BL min
~x∈X�

∥x− x̃∥

≤ Ec∼P̂t [h(x, c)] +RP�(ε, h(x, ·)) + 3(1 +BL)ρ.

Hence,

P(∀h ∈ SB ,∀x ∈ X : Ec∼P� [h(x, c)] ≤ Ec∼P̂t [h(x, c)] +RP�(ε, h(x, ·)) + 3(1 +BL)ρ)

≥ 1−
X

~h∈S�;B

X
~x∈X�

P(Ec∼P� [h̃(x̃, c)] ≥ Ec∼P̂t [h̃(x̃, c)] +RP�(ε, h̃(x̃, ·)))

≥ 1− |Xρ||Sρ,B |e−ε2t/τ ,

where the last inequality follows from Theorem 1 in Gao (2023). The result follows from picking ε = εt(ρ).

By integrating the result from Lemma 19 in place of Lemma 2, and following the same steps for the derivation
of the instantaneous expected regret, we obtain the following cumulative expected regret for the data-driven
scenario:

RT ≤ 4βT

r
TγT + 4 log

6

δ
+

TX
t=1

�
εt2L

UCBt(x∗
t ) + ρt

�
,

Lemma 20. Fix a failure probability 0 ≤ δ ≤ 1, and let

εt =

r
2diam(C)2 log 1/δ + dx log(1 + 2tdiam(X )) + logN∞((t)−1,Hk, B̄t)

t
,

and

B̄t = 2λ− 1
2

  
R

r
2 log

1

δ
+R

p
2γt

!
+B

!
,

as in Lemma 3. Then, for the Squared Exponential kernel, the cumulative expected regret for the data-driven
scenario is bounded by

RT ≤ Õ(βT

p
TγT +

p
(dγT + log 1/δ)T ) .

Proof. The proof of the first part follows by applying Lemma 19 to −h(x, c), with ρ = 1/t, B = B̄t, and using
the fact that ∥UCBt∥Hk

≤ B̄t from Lemma 3. We can combine these results to obtain bounds on the Lipschitz
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LUCBt(x∗
t ) and on ρt. Thus,

RT ≤ 4βT

r
TγT + 4 log

6

δ
+

TX
t=1

�
εt2L

UCBt(x∗
t ) + ρt

�
≤ 4βT

r
TγT + 4 log

6

δ
+

TX
t=1

�
εt2B̄tL+ 3(1 + B̄tL)/t

�
For the Squared Exponential kernel we have that γt ≤ O(logd+1(t)) and the covering number bound for Squared
Exponential kernels from Lemma 18.

Under the selections for ρt and εt, B̄t = O(
p
log 1/δ + logd/2 t), and

logN∞(1/t,Hk, B̄t) = O(d log(log t{
p

log 1/δ + logd/2 t})) = Õ(d),

where Õ hides logarithmic terms of t and log 1/δ. Hence,

εt = Õ

 r
log 1/δ + d

t

!

We can derive the rate for the cumulative expected regret

RT ≤ Õ(βT

p
TγT +

p
(dγT + log 1/δ)T ) .

γt ≤ O(logd+1(t)) .

We have
RT ≤ Õ(

p
TγT ) = Õ(

√
T )

9 EXPERIMENTS DETAILS AND ADDITIONAL EXPERIMENTS

The experimental setup is based on an adaptation of the work of Huang et al. (2024). We exploit their
implementation of the methods GP-UCB, SBO-KDE, DRBO-KDE, DRBO-MMD, DRBO-MMD Minmax, and
StableOpt, available at https://github.com/lamda-bbo/sbokde, with only minor changes to make the code
compatible with our hardware. We refer to Appendix B.1 of Huang et al. (2024) for more details. The algorithms,
including ERBO and WDRBO, are implemented in BoTorch Balandat et al. (2020), with the inner convex
optimization problems of DRBO-KDE and DRBO-MMD solved using CVXPY Diamond and Boyd (2016). Our
code is available at the following link https://github.com/frmicheli/WDRBO .

We also exploited the implementations of the functions Ackley, Hartmann, Modified Branin, Newsvendor, Portfolio
(Normal), and Portfolio (Uniform) of Huang et al. (2024). We refer to Appendix B.2 of Huang et al. (2024) for
more details. The only variation has been in the choice of context distribution for Ackley, Hartmann, Modified
Branin, Portfolio (Normal) where we used c ∼ N (0.5, 0.22) with c clipped to [0, 1]. We implemented the Three
Humps Camel function that is a standard benchmark function for global optimization algorithms. The input space
is two-dimensional, we restricted it to the domain x ∈ [−1, 1] and c ∈ [−1, 1], and chose a uniform distribution for
the context c. We function is defined as follows:

f(x) = 2x2 − 1.05x4 +
x6

6
+ xc+ c2 . (65)

In Fig. 3 we compare the performance of all the algorithms including DRBO-MMD, DRBO-MMD Minmax,
and StableOpt, which we did not show in the main text. In Fig. 4 we show the instantaneous regret for all the
algorithms which can help better compare the asymptotic performance of the different algorithms.

Table 2 reports the mean and standard error of computational times in seconds for the Ackley and Branin
functions for all the considered algorithms.

https://github.com/lamda-bbo/sbokde
https://github.com/frmicheli/WDRBO
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Ackley Branin
WDRBO (ours) 44.3± 2.2 54.5± 2.6
ERBO (ours) 43.8± 1.6 45.2± 2.5
GP-UCB 15.7± 1.4 15.1± 1.0
SBO-KDE 46.7± 0.7 49.7± 1.5
DRBO-KDE 599.7± 33.0 525.0± 71.7
DRBO-MMD 644.9± 45.6 131.6± 9.6
DRBO-MMD Minimax 104.8± 3.9 21.1± 1.8
StableOpt 77.6± 2.4 64.7± 4.2

Table 2: Mean and standard error of computational times in seconds for the Ackley (dx = 1, dc = 1) and Branin
(dx = 2, dc = 2) functions.

Figure 3: Mean and standard error of the cumulative expected regret.
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