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Abstract

Federated Learning (FL) involves a server ag-
gregating local models from clients to com-
pute a global model. However, this process
can struggle to position the global model in
low-loss regions of the parameter space for all
clients, resulting in subpar convergence and
inequitable performance across clients. This
issue is particularly pronounced in non-IID
settings, common in clinical contexts, where
variations in data distribution, class imbal-
ance, and training sample sizes result in client
heterogeneity. To address this issue, we pro-
pose a mode connectivity-based FL frame-
work that ensures the global model resides
within the overlapping low-loss regions of all
clients in the parameter space. This frame-
work models the low-loss regions as non-
linear mode connections between the current
global and local models, and optimises to
identify an intersection among these mode
connections to define the new global model.
This approach enhances training stability
and convergence, yielding better and more
equitable performance compared to standard
FL frameworks like federated averaging. Em-
pirical evaluations across multiple healthcare
datasets demonstrate the benefits of the pro-
posed framework.
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1 INTRODUCTION

Federated Learning (FL) has become a vital ap-
proach for developing clinical models across dis-
tributed healthcare datasets while addressing privacy
concerns and regulatory constraints (Soltan et al.,
2023; Molaei et al., 2024; Rieke et al., 2020). Instead
of centralising data, FL transmits model updates, en-
abling collaborative model development while main-
taining data privacy, making it particularly suitable
for healthcare (McMahan et al., 2017; Thakur et al.,
2021).

Despite its potential, FL faces significant optimisa-
tion challenges, especially due to client heterogene-
ity, where data across clients often follows non-IID
(non-Independent and Identically Distributed) distri-
butions (Li et al., 2020; Kairouz et al., 2021). This
heterogeneity—marked by differences in class distri-
bution, data characteristics, and sample sizes—causes
substantial divergence in client-specific models. Most
FL frameworks use Federated Averaging (FedAvg),
which aggregates client-specific models into a global
model during each training round (McMahan et al.,
2017). However, this divergence, combined with the
non-convex and highly irregular nature of neural net-
work loss landscapes (Li et al., 2018), often results in
global models that settle in high-loss regions of the
parameter space during training (Zhou et al., 2023),
as illustrated in Figure 1. Consequently, this leads to
poor convergence and inconsistent performance across
clients (Karimireddy et al., 2020).

These challenges are particularly pronounced in clin-
ical applications, where FL is deployed across a di-
verse range of medical institutions that vary in size,
geographic location, and patient demographics (Rieke
et al., 2020; Lu et al., 2022). This diversity exacer-
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Figure 1: Illustration of a hypothetical scenario in pa-
rameter space where the divergence of client models
results in a global model being situated in a high-loss
region within the loss landscape.

bates the heterogeneity of data characteristics among
clients, complicating the optimisation process and in-
creasing the likelihood of the global model being sub-
optimal or exhibiting uneven performance across insti-
tutions. While many clinical FL frameworks still rely
on Federated Averaging (FedAvg), methods like Fed-
Prox (Li et al., 2020) and SCAFFOLD (Karimireddy
et al., 2020) have been proposed to alleviate the im-
pact of client heterogeneity. These methods primarily
aim to stabilise convergence and improve model per-
formance by addressing client divergence. However,
these methods do not explicitly address the issue of
client fairness, which is crucial to ensuring that the
global model performs equitably across all clients, ir-
respective of disparities in data distribution. This is
particularly important in clinical contexts, where sub-
par performance on data from smaller or underrep-
resented institutions could have severe consequences.
Therefore, there is a pressing need for FL frameworks
that not only overcome data heterogeneity but also
enhance client fairness, ensuring robust and equitable
model performance across all participants.

In response to this need, this paper presents a novel FL
framework that directly addresses client model diver-
gence and the resulting suboptimal global model ag-
gregation, thereby tackling the challenges of client het-
erogeneity more effectively. The framework leverages
the concept of mode connectivity (Garipov et al., 2018)
to ensure that the global model is positioned at or near
the intersection of the low-loss regions corresponding
to each client’s model. In this approach, each client
learns a non-linear low-loss path, or manifold, called a
mode connection, which links the global model with its
local model within the parameter space. Every point
on this path represents a viable optimal solution for
the client’s task. These paths, along with their associ-
ated loss values, are transmitted to the server, which
optimises to find the intersection of these paths. This

intersection is used as the updated global model, en-
suring it remains within a shared low-loss region. By
maintaining the global model in an optimal region of
the loss landscape throughout training, the framework
improves convergence and ensures more consistent per-
formance across all clients. Figure 2 illustrates the
difference in the process of computing local models in
FedAvg and the proposed framework.

2 EARLIER STUDIES

Federated Learning: FedAvg is a founda-
tional framework for FL, widely used in various do-
mains, including clinical applications. While it typi-
cally converges well with similar clients (Karimireddy
et al., 2020), challenges arise due to client heterogene-
ity and irregular neural network loss landscapes, lead-
ing to suboptimal global model. This issue is often
overlooked in clinical FL studies, such as CURIAL-
FL (Soltan et al., 2023), which trains COVID-19 pre-
diction models across multiple sites, as well as in ap-
proaches like neighbourhood regularisation (Thakur
et al., 2021) and augmented graph attention network-
based FL (Molaei et al., 2024) in medical informatics.

To address FedAvg’s limitations in non-IID scenarios,
several variants have been developed. FedProx (Li
et al., 2020) introduces a regularisation term that miti-
gates the impact of client update divergence during ag-
gregation, improving stability in heterogeneous envi-
ronments. SCAFFOLD (Karimireddy et al., 2020) ad-
dresses data heterogeneity by using control variates to
reduce variance in client updates, leading to more con-
sistent global model updates. FedMarl (Zhang et al.,
2022) leverages multi-agent reinforcement learning to
optimise client selection, improving the training pro-
cess under client heterogeneity. More recently, Fed-
erated Neural Propagation (FedNP) (Wu et al., 2023)
has been proposed, which introduces an auxiliary task
of estimating a latent global data distribution to reg-
ularise local models, thereby enhancing performance
in non-IID settings. Building on these advancements,
FedIMA (Zhou et al., 2024) also aims to alleviate the
optimisation issue of global model aggregation in non-
IID scenarios by introducing iterative moving averag-
ing of past global models, which smooths out fluctua-
tions across training rounds and enhances the conver-
gence and robustness of FL in heterogeneous environ-
ments. Furthermore, hypernetwork-based FL (Sham-
sian et al., 2021) leverages hypernetworks to generate
personalised models for each client, facilitating param-
eter sharing while retaining the ability to create unique
models that adapt to client-specific data distributions.

More recent efforts have focused on improving local
and global optimization strategies. Sharpness-Aware
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Figure 2: (a) FedAvg vs. proposed method: FedAvg averages client models, often placing the global model
outside low-loss regions. The proposed method intersects low-loss paths (red) between the global and client
models, maintaining optimal positioning. (b) Training dynamics on 15 clients (MIMIC-III, Physionet) and 100
clients (eICU-CRD). MIMIC-III and Physionet exhibit higher heterogeneity. The proposed method achieves
better convergence in all cases.

Minimization (SAM) improves local generalization by
encouraging flatter minima, mitigating sharp optima
caused by non-IID data (Qu et al., 2022). This re-
sults in more stable local updates, leading to a bet-
ter aggregated global model. In contrast, Multi-Model
Collaborative Optimization (MMCO) enables models
to collaborate by jointly optimizing different layers
or parameter subsets before aggregation, enhancing
generalization in heterogeneous settings where tradi-
tional FL struggles with local adaptation (Hu et al.,
2024). However, its impact may be limited in shal-
low models with fewer layers available for collabora-
tive optimization. Additionally, FedGuCci+ (Li et al.,
2024) explores model connectivity in FL by improv-
ing group-wise connectivity among local models using
fixed anchor models and transitivity properties in the
loss landscape. This approach enhances generalization
by stabilizing model fusion, particularly in non-IID en-
vironments.

Mode Connectivity: Mode connectivity refers
to the idea that different local minima found by in-
dependently trained models are often connected by
a low-loss path in the parameter space, suggesting a
broader and more interconnected space of good solu-
tions (Garipov et al., 2018; Lubana et al., 2023). Early
studies modelled non-linear mode connections using
Bezier curves and polygon chains, leveraging these for
ensemble-based uncertainty estimation. In contrast,
linear mode connectivity has been used in regularisa-
tion for multi-tasking and continual learning, ensuring
new tasks stay close to previous ones, similar to the
regularisation constraints in FedProx (Mirzadeh et al.,
2021).

Apart from that, Zhou et al. studied mode connec-
tivity to analyse the impact of data heterogeneity on
FL (Zhou et al., 2023). They found that linear connec-
tions between client-specific and global models, as well
as between iterations of the global model in FedAvg,
often lead to a loss barrier under heterogeneity. How-

ever, low-loss paths can be achieved with non-linear
connections like polygonal chains. Additionally, re-
ducing data heterogeneity and using wider models im-
proves mode connectivity, enhancing alignment and
performance in FL.

Comparison with proposed approach:
While the FL methods discussed above improve upon
FedAvg in non-IID settings, they do not ensure that
the global model consistently remains in the low-loss
regions for all clients. In contrast, the proposed frame-
work actively keeps the global model near the intersec-
tion of these low-loss regions, represented as mode con-
nections, in the loss landscape. This approach guaran-
tees robust performance across the entire client base.
Additionally, unlike Zhou et al. (2023), which studies
mode connections under data heterogeneity, the pro-
posed framework directly exploits these connections to
address optimisation challenges.

3 BACKGROUND

Problem Statement: We consider a FL frame-
work with K clients, each participating in every train-
ing round. A central server initialises the global model
and coordinates the training across clients to minimise
a shared global objective:

min
θG

ℓ(θ) =

K∑
k=1

pkℓk(θ) = Ek[ℓk(θ)], (1)

where pk is the weight of client k, with pk > 0 and∑K
k=1 pk = 1. The goal is to optimise the global model

θG to perform well across all clients, despite the het-
erogeneity across their local datasets Dk. Each client
optimises its local objective ℓk on its own data, con-
tributing to the improvement of the global model while
maintaining data privacy.

Mode Connectivity: Consider two optima, or
modes, θA ∈ RN and θB ∈ RN , in the parameter space
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for a given task. Mode connectivity refers to the low-
loss path, γθA→θB , between these two optima, where
every point along the path represents an effective so-
lution with minimal or no increase in loss.

While a linear path (a straight line between θA and
θB) may encounter loss barriers, non-linear paths pro-
vide a more reliable way to connect these modes with-
out hitting such barriers (Zhou et al., 2023). In this
work, we focus exclusively on non-linear mode connec-
tions, modelled using a parameterised quadratic Bézier
curve, Φϕ(t), as introduced by (Garipov et al., 2018):

Φϕ(t) = (1− t)2θA + 2t(1− t)ϕ+ t2θB , (2)

where ϕ ∈ RN are the trainable parameters defining
the curve. The variable t controls the position along
the curve, with t = 0 corresponding to θA and t = 1
to θB , for t ∈ [0, 1].

4 PROPOSED METHOD

4.1 FedMode : Proposed Framework

The proposed FL framework, termed FedMode, en-
hances FedAvg by incorporating mode connectivity-
based global model computation and modifying both
server-side and client-side operations. The detailed
steps of these operations in a single training round of
FedMode are as follows:

Client-side Operations: Each client k re-
ceives the global model θg from the server and ini-
tialises its local model θk using the global model, such
that θk = θg. The client then performs local updates
using its local dataset Dk by minimising the local loss
function ℓk(θk) through the following update rule:

θk = θk − η∇θkℓk(θk), (3)

where η is the learning rate.

After updating the local model θk, the client aims to
learn a low-loss path or mode connection γθg→θk be-
tween the global model θg and the local model θk mod-
elled as parameterised Bézier curve, Φϕk

(t), defined in
Equation 8. This Φϕk

is trained by updating ϕk to
achieve minimum loss at different values of t, thereby,
obtaining the desired mode connection γθg→θk :

ϕk = ϕk − η∇ϕk
ℓk(Φϕk

(t)), t ∼ U(0, 1). (4)

Once γθg→θk is obtained, models are sampled along
this path using a set τ of predefined t values provided
by the server. The sampled models are then used to
compute the loss ℓk for the training samples along the
Bézier curve: Lk = {ℓk(Φϕk

(t)) | ∀t ∈ τ}. The client

then transmits the local model θk, the Bézier curve
parameters ϕk, and the losses Lk along γθg→θk .

Server-side Operations: The server, simi-
lar to FedAvg, begins by initializing the global model
θg and distributing it to all clients. Along with the
model, the server also transmits τ to each client, which
is used for sampling models along the mode connec-
tions. From each client k, the server receives the
client-specific model θk, the Bézier curve parameters
ϕk, and the losses Lk corresponding to points along
these Bézier curves (mode connections).

The server then samples models along the mode con-
nection for each client k as: Mk = {Φϕk

(t) | t ∈ τ},
where Mk

i denotes the ith sampled model on client
k’s mode connection, and Lki is its corresponding loss.
The objective is to determine a global model Θ that
resides in a region of the parameter space with consis-
tently low loss across all clients. To achieve this, the
server optimizes the following objective function:

J (Θ) =

K∑
k=1

|τ |∑
i=1

1

Lki + ϵ
∥Θ−Mk

i ∥2F − λ ∥Θ− θg∥2F ,

(5)
where θg is the current global model, λ is a coefficient
controlling how far to move from θg, and ϵ is a small
positive constant (e.g., 10−6) to avoid division by zero.

The first term in J (Θ) encourages Θ to stay close to
points on each client’s mode connection where the loss
is relatively small, by assigning larger weights 1

Lk
i +ϵ

to
those low-loss models. Meanwhile, the second term,
due to its negative sign, pushes Θ away from the cur-
rent global model θg. The strength of this push is
determined by the coefficient λ. Higher λ means the
new global model will wander further from θg, allow-
ing more radical updates. Lower λ keeps the update
closer to θg, leading to more conservative movement.

In practice, the server iteratively minimizes J (Θ) via
gradient-based steps: Θ ← Θ − α ∇ΘJ (Θ). Af-
ter convergence, the server sets θg ← Θ as the new
global model, distributing it to the clients for the next
communication round.

4.2 Theoretical Insights

We study the proposed FedMode method to gain
deeper insights into its behaviour, with a focus on how
it handles data heterogeneity, ensures convergence,
and promotes equitable performance across clients.
The theoretical analysis is based on standard assump-
tions regarding the smoothness and convexity of the
local loss functions, bounded variance of stochastic
gradients, and the level of data heterogeneity across
clients. For clarity, we describe these assumptions in
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the supplementary material.

Convergence Analysis: Given these assump-
tions, we now examine the convergence of FedMode
and its sensitivity to data heterogeneity.
Theorem 4.1. Under the assumptions of smoothness
and convexity of local loss functions, bounded vari-
ance of stochastic gradients, and bounded heterogene-
ity, meaning the difference between the local gradi-
ents and the global gradient is bounded by δ, i.e.,
∥∇ℓk(θ) − ∇ℓ(θ)∥ ≤ δ for all k, the FedMode algo-
rithm converges to a stationary point of the global loss
function. Specifically, for FedMode, after T training
rounds or iterations, the following holds:

1

T

T−1∑
t=0

∥∇ℓ(θtg)∥2 ≤ O
(

1√
T

)
+ δ, (6)

where θtg is the global model at the t-th iteration.

Proof. Section C of the supplementary document pro-
vides the complete proof.

From Li et al. (2019), the convergence rate of FedAvg
is given by: 1

T

∑T−1
t=0 ∥∇ℓ(θtg)∥2 ≤ O

(
1√
T

)
+ δ2. This

result shows that FedAvg’s performance degrades sig-
nificantly in the presence of data heterogeneity, as
the residual error—measuring the model’s deviation
from a stationary point or zero gradient norm—scales
quadratically with the heterogeneity parameter δ. In
contrast, as shown in Theorem 4.1, FedMode exhibits
improved resilience to non-IID data, achieving a con-
vergence rate where the residual error depends linearly
on δ. This reflects FedMode’s ability to better han-
dle variations in client data distributions. While both
methods perform similarly under homogeneous data
conditions, FedMode’s superior robustness in hetero-
geneous environments makes it more suitable for real-
world FL scenarios, where client data often varies sig-
nificantly.

Client Fairness in FedMode: Since the
global model in FedMode is explicitly forced to lie at
or near the intersection of mode connections, it re-
sides near the low-loss regions of local models associ-
ated with every client. On the other hand, there are
no such constraints on the global model computed by
FedAvg, and it is quite likely that in non-IID settings,
the performance of global model gets skewed towards
some clients. As a result, the variance of local losses
computed for the global model generated by FedMode
is expected to be lesser than FedAvg:

Var
(
{ℓk(θMod

g )}Kk=1

)
≤ Var

(
{ℓk(θAvg

g )}Kk=1

)
, (7)

where θMod
g and θAvg

g represent the global models ob-
tained by FedMode and FedAvg, respectively, and

ℓk(θ) is the local loss function of client k evaluated
at the model θ.

The improved client fairness, reflected in reduced vari-
ance among client losses in FedMode, results from
its approach to constructing mode connections and
weighting models based on local losses in the global
objective. By assigning greater weight to models with
lower local losses, FedMode ensures that clients with
better local performance have a stronger influence on
the global model, thereby decreasing the overall vari-
ance in client losses. This is especially valuable in non-
IID settings, such as clinical applications, where client
data distributions are inherently heterogeneous. By
reducing disparities in client performance, FedMode
ensures more equitable outcomes.

5 EXPERIMENTS

5.1 Datasets used

The proposed framework is evaluated on the following
healthcare datasets:
• PhysioNet 2012 Challenge (Silva et al., 2012):

This dataset is for in-hospital mortality (IHM) pre-
diction, using the first 48 hours of ICU stay. It
includes 8,000 time-series examples, each with 48
hourly steps and 44 features. The data is parti-
tioned into 10 simulated clients in a non-IID man-
ner, suitable for federated learning.

• MIMIC-III (Johnson et al., 2016): This exten-
sive dataset from critical care units is processed
for IHM and phenotype classification. For IHM,
21, 156 time-series (48 time-steps, 76 features each)
are sampled. Phenotyping involves 41, 902 ICU
stays, classified into 25 categories with variable-
length time-series. The data is partitioned into 10
simulated clients in a non-IID manner for federated
learning.

• eICU Collaborative Research Database:
eICU (Pollard et al., 2018; Tang et al., 2020) is
a large multi-hospital dataset comprising 164, 333
ICU stays. We utilise a pre-processed version (Tang
et al., 2020) of eICU for predicting shock and acute
respiratory failure (ARF) within the first 4 hours of
ICU stay. Each stay is represented as a time series
with 4 time steps and 375 features for shock pre-
diction, and 345 features for ARF prediction (vital
signs and demographics). For federated settings,
we select the 100 hospitals with the most positive
examples as clients.

5.2 Experimental design

Comparative Methods: We evaluate the perfor-
mance of the proposed FedMod against several base-
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Table 1: Performance of comparative methods for in-hospital mortality prediction across 10 clients sampled from
(a) the MIMIC-III dataset and (b) the Physionet 2012 Challenge dataset.

(a) MIMIC-III

Methods AUROC AUPRC
FedAvg 0.781± 0.023 0.634± 0.019
Hnet-FL 0.805± 0.025 0.647± 0.024
FedProx 0.834± 0.013 0.677± 0.017
Scaffold 0.821± 0.011 0.659± 0.021
FedMARL 0.835± 0.022 0.679± 0.016
FedIMA 0.832± 0.022 0.657± 0.019
FedNP 0.837± 0.021 0.676± 0.012
moFedSAM 0.841± 0.012 0.673± 0.011
FedGuCci+ 0.845± 0.014 0.677± 0.013
Proposed 0.854 ± 0.019 0.688 ± 0.015

(b) Physionet

Methods AUROC AUPRC
FedAvg 0.739± 0.038 0.409± 0.031
Hnet-FL 0.768± 0.031 0.413± 0.028
FedProx 0.79± 0.027 0.421± 0.026
Scaffold 0.791± 0.021 0.418± 0.019
FedMARL 0.793± 0.026 0.425± 0.021
FedIMA 0.778± 0.027 0.415± 0.016
FedNP 0.792± 0.023 0.426± 0.026
moFedSAM 0.798± 0.011 0.429± 0.018
FedGuCci+ 0.804± 0.016 0.43± 0.018
Proposed 0.811 ± 0.018 0.442 ± 0.019

lines, including (1) FedAvg (McMahan et al., 2017),
(2) Hypernetwork-based FL (Shamsian et al., 2021),
(3) SCAFFOLD (Karimireddy et al., 2020), (4) Fed-
Prox (Li et al., 2020), (5) FedMARL (Zhang et al.,
2022), (6) FedIMA (Zhou et al., 2024), (7) FedNP (Wu
et al., 2023), (8) FedGuCci+ Li et al. (2024) and (9)
moFedSAM (Qu et al., 2022).

For each client, the dataset is split into 60% for train-
ing, 15% for validation, and 25% for testing. Testing
is performed on each client using the global model,
except for the hypernetwork-based FL (HNet-FL).
In HNet-FL, the global model acts as a hypernet-
work that generates weights for the prediction models,
which are then used for evaluation.

We use the area under the ROC curve (AUROC) and
the area under the precision-recall curve (AUPRC) as
performance metrics in all experiments.

Models & Parameter Settings: For all prediction
tasks, we used LSTM-based models with a consistent
structure: an LSTM layer with N hidden nodes, fol-
lowed by a dense output layer with either 1 node (for
binary tasks) or 25 nodes (for phenotype classifica-
tion). The output layer is followed by a sigmoid ac-
tivation function. The value of N is set to 64 for the
MIMIC-III and PhysioNet datasets, and 128 for the
eICU dataset.

For all methods, local training at each client is con-
ducted using the Adam optimiser with a fixed learn-
ing rate of 0.001. During each training round, local
training is performed for a single epoch, meaning the
global model is updated once using every available
training batch. In FedMod, we sample 10 equidis-
tant points along each mode connection, represented
as τ =

{
i
9

}9
i=0

. At the server, optimisation is carried
out using the Adam optimiser with a learning rate of
0.001 for 200 iterations to determine the intersection
or update the global model.

FedAvg
Hnet-FL

FedProx
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FedIMA

FedNP
FedGuCci+

moFedSAM
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Figure 3: Comparative performance of various FL
Methods for phenotype prediction using the MIMIC-
III dataset.

More details about the parameter settings are provided
in the supplementary document.

6 RESULTS & DISCUSSION

6.1 MIMIC-III and Physionet results

Table 1 presents the performance of the proposed
FL framework compared to baseline methods for in-
hospital mortality prediction across 10 clients simu-
lated using the MIMIC-III and Physionet datasets.
These clients are simulated with a non-IID data parti-
tioning strategy, resulting in varying sample sizes and
differing degrees of class imbalance, as previously dis-
cussed. The analysis of this table highlights the fol-
lowing:

• FedMode consistently outperforms FedAvg across
both datasets, showing an average relative improve-
ment of 9.29% in AUROC and 9.61% in AUPRC
on the MIMIC-III and Physionet datasets, respec-
tively.

• As expected, all baselines designed to handle client
heterogeneity show noticeable improvement over
FedAvg across both datasets. On the MIMIC-
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Table 2: Performance of comparative methods for predicting (a) shock and (b) acute respiratory failure across
100 clients (hospitals) in the eICU-CRD dataset.

(a) Shock

Methods AUROC AUPRC
FedAvg 0.725± 0.017 0.278± 0.012
Hnet-FL 0.726± 0.021 0.279± 0.018
FedProx 0.731± 0.017 0.287± 0.016
Scaffold 0.732± 0.015 0.305 ± 0.017
FedMARL 0.73± 0.012 0.285± 0.016
FedIMA 0.728± 0.013 0.28± 0.014
FedNP 0.728± 0.018 0.281± 0.019
moFedSAM 0.734± 0.015 0.293± 0.017
FedGuCci+ 0.733± 0.016 0.292± 0.015
Proposed 0.739 ± 0.013 0.3± 0.011

(b) Acute Respiratory Failure

Methods AUROC AUPRC
FedAvg 0.648± 0.012 0.177± 0.031
Hnet-FL 0.656± 0.022 0.181± 0.019
FedProx 0.662± 0.017 0.184± 0.014
Scaffold 0.667± 0.021 0.186± 0.017
FedMARL 0.671± 0.01 0.189± 0.016
FedIMA 0.659± 0.015 0.182± 0.012
FedNP 0.669± 0.017 0.185± 0.011
moFedSAM 0.672± 0.017 0.189± 0.013
FedGuCci+ 0.673± 0.013 0.191± 0.014
Proposed 0.68 ± 0.018 0.193 ± 0.012
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Figure 4: Client fairness across different FL methods, measured by the Gini Coefficient and Theil Index, for
in-hospital mortality prediction using the Physionet and MIMIC-III datasets, and for shock and ARF prediction
using the eICU dataset. Lower values indicate better fairness.

III dataset, all baselines, except for Hnet-FL
and SCAFFOLD, demonstrate comparable perfor-
mances. Notably, moFedSAM and FedGuCci+ out-
perform prior methods like FedProx and FedNP,
with FedGuCci+ achieving the highest perfor-
mance among baselines. On the Physionet
dataset, SCAFFOLD, FedNP, FedMARL, moFed-
SAM, and FedGuCci+ exhibit similar levels of per-
formance, highlighting their effectiveness in miti-
gating heterogeneity-related performance degrada-
tion.

• The proposed FedMode consistently outperforms
all baselines. On the MIMIC-III dataset, it sur-
passes FedGuCci+, the best-performing baseline,
by 1.07% in AUROC and 1.62% in AUPRC. On
the Physionet dataset, it exceeds FedGuCci+ by
0.87% in AUROC and 2.79% in AUPRC, further
improving over moFedSAM by 1.63% in AUROC
and 3.03% in AUPRC. This superior performance is
attributed to FedMode’s ability to ensure the global
model resides near low-loss regions for all clients.

Figure 3 illustrates the performance of various meth-
ods for phenotype prediction. The trends are similar
to those observed in in-hospital mortality prediction.
moFedSAM and FedGuCci+ again exhibit strong per-
formance, often outperforming prior baselines like Fed-

Prox and FedMARL. However, the proposed method
still achieves the best results, with relative improve-
ments of up to 2% over FedGuCci+ and FedMARL,
and around 5% over FedAvg. This consistent improve-
ment across different prediction tasks underscores the
robustness and effectiveness of the proposed method
in handling client heterogeneity and ensuring optimal
model performance.

6.2 Performance on the eICU dataset

Table 2 presents the performance of different methods
for predicting shock and acute respiratory failure on
the eICU-CRD dataset. The results show that the
proposed method achieves either comparable or better
performance across both tasks.

• Shock Prediction: The proposed method shows
a relative improvement of 0.95% in AUROC over
moFedSAM, the best-performing baseline. While
Scaffold achieves the highest AUPRC, the differ-
ence with the proposed method is minimal. No-
tably, moFedSAM and FedGuCci+ outperform ear-
lier baselines like FedProx and FedMARL.

• Acute Respiratory Failure Prediction: The
proposed method outperforms all baselines, with
a relative improvement of 1.04% in AUROC over
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Figure 5: Impact of the number of local epochs on the performance of different FL methods on MIMIC-III
dataset.

FedGuCci+ and 1.19% over moFedSAM. Addition-
ally, it achieves a 1.05% improvement in AUPRC
over FedGuCci+, reinforcing its effectiveness in op-
timising predictive performance.

The performance improvements observed with
FedGuCci+, moFedSAM, and the proposed method
over FedAvg on the eICU dataset are relatively smaller
compared to those on the Physionet and MIMIC-III
datasets. This may be due to the preprocessing
applied to the eICU dataset, such as binarization
or binning of clinical features, which can reduce
the impact of distribution shifts and consequently
lessen client heterogeneity. Nonetheless, this also
highlights that the proposed framework maintains
its effectiveness under varying degrees of client
heterogeneity.

6.3 Evaluating client fairness

Client fairness refers to the equitable treatment and
consistent performance of the global model across all
participating clients, regardless of variations in data
distribution, computational resources, or other factors
(Mohri et al., 2019). In clinical FL, it is essential
not only to enhance the average performance across
clients but also to ensure that the global model serves
all clients effectively. In this work, we assess client
fairness using the Gini Coefficient and Theil Index
to measure performance inequality (in terms of AU-
ROC) across clients in each setting, as illustrated in
Figure 4. These results demonstrate that the proposed
method consistently achieves lower Gini and Theil val-
ues across datasets, indicating improved fairness and
more equitable performance distribution compared to
other FL methods. Hence, the proposed framework
results in better performance as well as improve client
fairness making it suitable for clinical applications.

6.4 Impact of local update frequency

In typical FL scenarios with similar client data, in-
creasing the number of local epochs in each training
round can lead to faster and more effective conver-
gence, as local models become more refined and their
updates align closely with the global objective. How-
ever, with data heterogeneity, increasing the number
of local epochs can cause local models to diverge, lead-
ing to a more suboptimal global model. This behaviour
is illustrated in Figure 5, which shows the impact of
increasing local epochs on the performance of different
methods.

As the number of epochs increases, FedAvg experi-
ences a significant performance drop on the MIMIC-
III and eICU (Shock & ARF) tasks, reflecting its in-
ability to handle data heterogeneity. In contrast, the
proposed framework (FedMode) and other baselines
maintain stable performance, with some methods—
including FedGuCci+ and moFedSAM—showing more
robustness to client drift. This can be attributed to
their ability to mitigate divergence across clients, a
capability that FedAvg lacks. However, despite these
improvements, FedMode consistently outperforms all
baselines across all settings, demonstrating its superior
handling of non-IID client distributions.

On the Physionet dataset, however, FedAvg, along
with all other methods, shows performance improve-
ment despite client heterogeneity. This may be due to
the smaller number of training samples per client com-
pared to other datasets, meaning that increasing local
epochs to 3 or 5 does not cause significant deviation,
unlike in larger datasets.

6.5 Regularisation in Global Objective

The regularisation term in the server’s objective func-
tion (Equation 5) guides the new global model along
mode connections between the current global model
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Table 3: Comparison of FedMode and FedMode-SAM across all datasets in terms of the AUROC.

Method MIMIC-III Phenotyping Physionet Shock Respiratory Failure
FedMode 0.854± 0.019 0.750± 0.003 0.811± 0.018 0.739± 0.013 0.680± 0.018
FedMode + SAM 0.855± 0.017 0.752± 0.002 0.815± 0.014 0.739± 0.012 0.683± 0.014

Figure 6: Impact of λ on the performance of the
proposed FedMod framework for in-hospital mortal-
ity prediction using (a) the Physionet dataset and (b)
the MIMIC-III dataset.

and clients’ local models. The regularisation coeffi-
cient λ controls this movement, balancing exploration
and stability. A high λ promotes exploration by en-
couraging the global model to move further from its
previous state, allowing it to shift toward an intersec-
tion of client-specific low-loss regions. However, this
exploration is constrained within the clients’ low-loss
regions, ensuring a safer pathway. If λ is too large,
the global model may deviate excessively, increasing
the risk of instability—particularly in highly non-IID
settings where client optima are far apart.

Conversely, a low λ maintains stability by limiting
movement away from the previous global model, lead-
ing to more conservative updates. While this can
help prevent instability, it may result in a suboptimal
model due to restricted exploration of the parameter
space.

The impact of λ on the performance of the proposed
framework on the MIMIC-III and PhysioNet datasets
is shown in Figure 6. This analysis reveals that per-
formance improves with increasing λ up to a certain
point, after which it begins to decline, validating the
exploration rationale discussed above. It is notewor-
thy that, across all parameter settings, the proposed
framework consistently outperforms FedAvg and is ei-
ther superior or comparable to other baselines.

6.6 Augmenting FedMode with SAM

Sharpness-Aware Minimization (SAM) has been
widely utilized to improve generalization by encourag-
ing flatter minima during optimization. To further en-
hance the effectiveness of FedMode, we integrate SAM

into local training, forming a new baseline, FedMode-
SAM.

Since FedMode primarily optimizes the global model,
its aggregation strategy remains unchanged, while lo-
cal updates leverage SAM to enhance generalization.
Notably, mode connection training does not interfere
with local learning, making SAM a natural comple-
ment to FedMode. We adopt the same local training
procedure as FedSAM, ensuring consistency while im-
proving local optima.

To assess its impact, we compare FedMode-SAM
against FedMode across all four datasets. Table 3
presents the results, demonstrating that FedMode-
SAM achieves moderate improvements over FedMode,
highlighting complementary nature of SAM and Fed-
Mode.

7 CONCLUSION & LIMITATIONS

In this paper, we introduced FedMod, a novel Fed-
erated Learning framework designed to address op-
timisation issues stemming from client heterogeneity.
By utilising mode connectivity, FedMode ensures the
global model remains in low-loss regions for all clients,
resulting in better convergence and performance com-
pared to traditional methods like FedAvg, particularly
in diverse and heterogeneous datasets.

While FedMode offers improvements in accuracy, con-
vergence, and fairness, it comes with increased com-
putational and communication overhead. Each client
must compute a Bézier curve, and the server solves
for intersections, which may limit its use in resource-
constrained environments. Despite these drawbacks,
the performance and fairness advantages of FedMode
makes it well-suited for critical applications such
as healthcare, where accuracy and client fairness is
paramount.

Future work will focus on reducing the computational
complexity of learning mode connections, making Fed-
Mode more feasible in resource-limited settings. We
also plan to deploy FedMode in real-world applica-
tions, such as across NHS Trusts, and explore integrat-
ing differential privacy to induce privacy preservation
while maintaining performance.
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Code

The implementation of the proposed method is avail-
able at https://github.com/AnshThakur/FedMode.
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A Dataset Details

Table A1 documents the details of the datasets used in this study.

As discussed in paper, for eICU-CRD dataset, we used available hospital information to simulate clients (each
hospital as one client). However, for MIMIC-III (mortality) and Physionet datasets, we manually divided each
dataset into 10 clients using a non-IID data partitioning process. First, a minimum number of samples per class
m were assigned to each client. After this, the remaining data was distributed across clients using a Dirichlet
distribution Dir(α1k), where α controls the degree of heterogeneity. This ensures that each client receives a non-
uniform and heterogeneous subset of the data, reflecting real-world federated learning scenarios where clients
possess different data distributions.

For both datasets, we use m = 10 (minimum number of samples per class) and α = 0.2 (lower values induce
heterogeneity).

The characteristics of resultant clients for both datasets are documented in Tables A2 and A3.

For Phenotyping experiment, we randomly divided the samples among 10 clients. These splits are inherently
non-IID, given the nature of phenotypes and multi-label multi-class classification.

Table A1: Nature of healthcare datasets used in the experimental analysis.

Dataset Task #Examples #Clients Nature of clients
PhysioNet Mortality Prediction 8000 10 Simulated Non-IID

eICU-CRD Shock Prediction 164,333 100 Multi-center, Hospitals
ARF Prediction 138,840

MIMIC-III Mortality Prediction 21,156 10 Simulated Non-IID
Phenotying 41,902 10

Table A2: Heterogeneity of clients in MIMIC-III (mortality).

Clients
1 2 3 4 5 6 7 8 9 10

Samples 558 5605 1141 2564 355 3382 349 3909 2187 1706
Positives (%) 35.5 30.9 12.3 13.4 13.8 11.6 68.1 1.5 4.5 11.6

Table A3: Heterogeneity of clients in Physionet dataset.

Clients
1 2 3 4 5 6 7 8 9 10

Samples 1077 1186 37 565 2120 723 2189 233 44 26
Positives (%) 0.75 1.85 65.5 65.5 0.47 1.1 31.5 19.7 61,3 38.5

B Implementation details

To learn the mode connections between the global model θg and local model θk, we use the same strategy used
in earlier works (Garipov et al., 2018; Thakur et al., 2023) on non-linear mode connections. In each training
round, we randomly sample t from a pre-defined set τ (containing values between 0 and 1). We use this value to
generate an interpolated model Φϕ(t) using Bezier curve:

Φϕ(t) = (1− t)2θg + 2t(1− t)ϕ+ t2θk, (8)

where ϕ are the control points or trainable parameters of this curve. Then, Φϕ(t) is used to compute loss for a



Optimising Clinical Federated Learning through Mode Connectivity-based Model Aggregation

training batch. This loss is then used to compute gradients and update ϕ:

ϕk = ϕk − η∇ϕk
ℓk(Φϕk

(t)). (9)

This process is repeated for N epochs to achieve the trained Bezier curve.

C Theorem 4.1 Proof

C.1 Assumptions

We make the following assumptions to facilitate the analysis:

Smoothness of Loss Functions: Each local loss function ℓk(θ) is L-smooth:

∥∇ℓk(θ)−∇ℓk(θ′)∥ ≤ L∥θ − θ′∥, ∀θ, θ′ ∈ Rd. (10)

Convexity of Loss Functions: Each ℓk(θ) is convex.

Bounded Variance of Stochastic Gradients: The stochastic gradients have bounded variance:

Eξk∼Dk

[
∥∇f(θ; ξk)−∇ℓk(θ)∥2

]
≤ σ2

k, ∀θ ∈ Rd. (11)

Bounded Heterogeneity (Gradient Dissimilarity): There exists δ ≥ 0 such that:

∥∇ℓk(θ)−∇ℓ(θ)∥ ≤ δ, ∀θ ∈ Rd, ∀k, (12)

where ℓ(θ) =
∑K
k=1 pkℓk(θ).

Lipschitz Continuity of Mode Connections: The Bézier curves Φϕk
(t) are Lipschitz continuous with

constant LΦ:
∥Φϕk

(t)− Φϕk
(t′)∥ ≤ LΦ|t− t′|, ∀t, t′ ∈ [0, 1]. (13)

Gradient Lipschitzness Along Mode Connections: The gradients along the mode connections satisfy:

∥∇ℓk(Φϕk
(t))−∇ℓk(Φϕk

(t′))∥ ≤ L′
Φ|t− t′|, ∀t, t′ ∈ [0, 1]. (14)

C.2 Convergence Proof

We will start with analysing the expected decrease in the global loss function ℓ(θ) over one communication round
of FedMode. The global objective J(Θ) minimised at the server is defined as:

J (Θ) =

K∑
k=1

S∑
i=1

wk,i∥Θ−Mk
i ∥2 − λ∥Θ− θtg∥2. (15)

We first compute the closed-form solution of this objective:

Compute the gradient of J (Θ) with respect to Θ and set it to zero:

∇ΘJ (Θ) = 2

K∑
k=1

S∑
i=1

wk,i(Θ−Mk
i )− 2λ(Θ− θtg) = 0, (16)

K∑
k=1

S∑
i=1

wk,i(Θ−Mk
i )− λ(Θ− θtg) = 0, (17)

(
K∑
k=1

S∑
i=1

wk,i + λ

)
Θ =

K∑
k=1

S∑
i=1

wk,iMk
i + λθtg, (18)
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Let us assume W =
∑K
k=1

∑S
i=1 wk,i and M̄ = 1

W

∑K
k=1

∑S
i=1 wk,iMk

i . Then, we arrive at:

(W + λ)Θ = WM̄+ λθtg, (19)

and by solving for Θ, we get:
Θ =

W

W + λ
M̄+

λ

W + λ
θtg. (20)

Hence, the global model update can be expressed as:

θt+1
g = Θ = γM̄+ (1− γ)θtg, (21)

where γ = W
W+λ .

Now, we will establish a relation between M̄ − θtg to the global gradient ∇ℓ(θtg).

We know that each client performs a local update: θtk = θtg − η∇ℓk(θtg). Then, it samples models Mk
i along the

mode connection between θtg and θtk. For small η and under Lipschitz continuity, we can approximate:

Mk
i ≈ θtg − ηi∇ℓk(θtg), (22)

where ηi is a small step size corresponding to the position along the mode connection. Then, the weighted
average M̄ becomes:

M̄ = θtg −
1

W

K∑
k=1

S∑
i=1

wk,iηi∇ℓk(θtg). (23)

Now, let us compute the change in global model i.e. θt+1
g − θtg:

θt+1
g − θtg = γ

(
M̄ − θtg

)
= −γ

(
1

W

K∑
k=1

S∑
i=1

wk,iηi∇ℓk(θtg)

)
. (24)

Assuming ηi = η for all i, we have: ηeff = η.

Then, Equation 24 becomes:

θt+1
g − θtg = −γηeff

K∑
k=1

p̃k∇ℓk(θtg), (25)

where p̃k =
∑S

i=1 wk,i

W .

Under the smoothness assumption, the expected decrease in global loss is given as:

ℓ(θt+1
g ) ≤ ℓ(θtg) +∇ℓ(θtg)⊤(θt+1

g − θtg) +
L

2
∥θt+1
g − θtg∥2. (26)

Also,

∇ℓ(θtg)⊤(θt+1
g − θtg) = −γηeff

K∑
k=1

p̃k∇ℓ(θtg)⊤∇ℓk(θtg). (27)

Using the bounded heterogeneity assumption, we get:

∇ℓ(θtg)⊤∇ℓk(θtg) ≥ ∥∇ℓ(θtg)∥2 − ∥∇ℓ(θtg)∥δ. (28)

∇ℓ(θtg)⊤(θt+1
g − θtg) ≤ −γηeff

(
∥∇ℓ(θtg)∥2 − ∥∇ℓ(θtg)∥δ

)
. (29)
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By bounding the gradient norm, we get:

∥θt+1
g − θtg∥2 ≤ (γηeffG)2, (30)

where G = maxk ∥∇ℓk(θtg)∥.

Substituting everything back in Equation 26, we get:

ℓ(θt+1
g ) ≤ ℓ(θtg)− γηeff

(
∥∇ℓ(θtg)∥2 − ∥∇ℓ(θtg)∥δ

)
+

L

2
(γηeffG)2. (31)

ℓ(θt+1
g ) ≤ ℓ(θtg)− γηeff∥∇ℓ(θtg)∥2 + γηeff∥∇ℓ(θtg)∥δ +

L

2
(γηeffG)2. (32)

Then, the expected decrease in global loss over T iterations is given as:

T−1∑
t=0

γηeff∥∇ℓ(θtg)∥2 ≤ ℓ(θ0g)− ℓ(θTg ) +

T−1∑
t=0

(
γηeff∥∇ℓ(θtg)∥δ +

L

2
(γηeffG)2

)
. (33)

Divide both sides by Tγηeff:

1

T

T−1∑
t=0

∥∇ℓ(θtg)∥2 ≤
ℓ(θ0g)− ℓ∗

Tγηeff
+ δ

1

T

T−1∑
t=0

∥∇ℓ(θtg)∥+
LγηeffG

2

2γηeff
. (34)

1

T

T−1∑
t=0

∥∇ℓ(θtg)∥2 ≤
ℓ(θ0g)− ℓ∗

Tγηeff
+ δa+

LG2

2
, (35)

where a = 1
T

∑T−1
t=0 ∥∇ℓ(θtg)∥.

Rewriting the inequality and solving for a:

a2 − δa−

(
ℓ(θ0g)− ℓ∗

Tγηeff
+

LG2

2

)
≤ 0. (36)

a ≤ δ

2
+

√(
δ

2

)2

+
ℓ(θ0g)− ℓ∗

Tγηeff
+

LG2

2
. (37)

For large T , the dominant term is 1
T , leading to:

a ≤ δ

2
+O

(
1√
T

)
. (38)

Therefore, the convergence rate is: 1
T

∑T−1
t=0 ∥∇ℓ(θtg)∥2 ≤ O

(
1√
T

)
+ δ.

D Parameter Settings

Model Architecture:

In this work, we evaluate have used LSTM-based prediction models for all datasets. The architecture of these
models is as follows:

LSTM with N nodes→ ReLU Activation→ Dropout with 0.1 rate→

Dense layer with 1 node→ Sigmoid Activation
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The N is set to be 64 nodes for MIMIC-III and Physionet tasks, whereas N is set to be 128 nodes for eICU
tasks.

Generic parameters used in Federated baselines and the proposed method:

For all experiments, both the baseline methods and FedMode were executed for 200 communication rounds.
Client-side training was conducted for 1 epoch using the Adam optimiser with a fixed learning rate of 0.001 and
a batch size of 64 examples, ensuring consistent model updates across all datasets and tasks.

Parameters in FedMode:

To learn the mode connections, Bezier curve control points were trained for 1 epoch using an Adam optimiser
with a fixed learning of 0.001. Note than the training data to train local model and Bezier curve is same. For
server-side optimisation, as discussed in the main text, Adam optimiser with learning rate of 0.001 is used to
solve the global objective defined in Equation 5 for 200 iterations. Across all experiments, we use τ =

{
i
9

}9
i=0

.

Parameters in other baselines:

Hypernetwork is fully-connected DNN that is used to generated weights for DNN and LSTM models. Hypernet
used by (Shamsian et al., 2021) is also used in this work. Their implementation is available at https://github.
com/AvivSham/pFedHN. The input embedding of 32 dimensions, 2 shared hidden layers with 128 nodes and
spectral norm on initialised weights is used across all datasets in the hypernet.

In FedProx, the proximal regularisation coefficient (µ) is tuned to provide the best performance on the validation
examples across all clients. We defined the sample set of µ to be {0.001, 0.005, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1}.
Based on the validation performance, we selected 0.1, 0.25 and 0.1 for MIMIC-III, PhysioNet and eICU tasks.

For FedMARL, each MARL agent uses a two-layer fully-connected model with a hidden layer of 256 neurons.
The size of the historical information window used by the MARL agents is set to be 3 for training latencies and
5 for communication latencies. The reward weights w1 = 1, w2 = 0.2 and w3 = 0.1 were used in all experiments.
Also, to maintain consistency other baselines, all clients are involved in every training round.

For FedIMA, the Time Window (P ), which determines how many global models from previous rounds are
averaged to produce the IMA model, is set to be 3. Also, IMA begins at around 75% of the total training
rounds, as suggested by the authors.

For FedNP, the search space for λ and ϵ were fixed to be {0.001, 0.005, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1} and
{10−4, 10−5, 10−6, 10−7}. The values of 0.2, 0.25 and 0.05 for λ were used for MIMIC-III, Physionet and eICU
tasks. For all experiments, ϵ was set to be 10−5. These values provided the best validation performance.

For moFedSAM, we follow the implementation of (Qu et al., 2022), where the sharpness-aware minimization
(SAM) step is applied to local training. The perturbation magnitude ρ is selected from {0.01, 0.05, 0.1, 0.2}
based on validation performance, with ρ = 0.1 chosen for MIMIC-III and PhysioNet, and ρ = 0.05 for eICU
tasks. The learning rate and batch size remain consistent with other baselines.

For FedGuCci+, we adopt the group-wise connectivity strategy as proposed in (Li et al., 2024). The number
of anchor models per group is set to 3, and the transitivity-based group merging occurs every 5 communication
rounds. The weight regularization parameter γ is tuned from {0.1, 0.25, 0.5, 1}, with γ = 0.25 selected for
MIMIC-III and PhysioNet, and γ = 0.5 for eICU tasks.

Note that all experiments are run with 10 random seems to obtain the results presented in the main text.

https://github.com/AvivSham/pFedHN
https://github.com/AvivSham/pFedHN
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