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Abstract

In healthcare and precision medicine, esti-
mating optimal treatment strategies for right-
censored data while ensuring fairness across
ethnic subgroups is crucial but remains un-
derexplored. The problem presents two key
challenges: measuring heterogeneous treat-
ment effects (HTE) under fairness constraints
and dealing with censoring mechanisms. We
propose a general framework for estimating
HTE using nonparametric methods and inte-
grating user-controllable fairness constraints
to address these problems. Under mild reg-
ularization assumptions, our method is theo-
retically grounded, demonstrating the double
robustness property of the HTE estimator.
Using this framework, we demonstrate that
optimal treatment strategies balance fairness
and utility. Using extensive simulations and
real-world data analysis, we uncovered the po-
tential of this method to guide the selection
of treatment methods that are equitable and
effective.

1 Introduction

1.1 Background

The development of optimal treatment strategies for
right-censored data is essential to advancing precision
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medicine and improving healthcare outcomes. These
treatment strategies are generally determined by esti-
mating survival times, with optimal treatments maxi-
mizing survival rates. Consequently, such policies are
highly relevant to real-world decision-making and have
significant implications at both the individual and soci-
etal levels. Nevertheless, increasing evidence indicates
that the algorithms used in policy-making can inherit
biases and injustices ingrained in historical data or pre-
vious algorithms. Therefore, specific populations may
be unfairly disadvantaged by discriminatory treatment
strategies. The process of establishing policy should
ensure that it is fair to all subgroups based on factors
such as race, gender and other demographic character-
istics. It is therefore essential to address algorithmic
bias in algorithmic fairness, as extensively reviewed in
del Barrio et al. (2020); Le Quy et al. (2022); Tang et al.
(2023). Although there has been growing attention to
fairness, more research is needed to estimate optimal
treatment strategies for right-censored data that ac-
count for fairness across subgroups simultaneously. To
address this issue, we propose a universal framework
for estimating HTE with user-controllable fairness con-
straints tailored specifically for right-censored survival
data. By taking this approach, we can ensure equitable
and effective treatment outcomes and optimize policies
to take subgroup differences into account, ultimately
advancing the practice of precision medicine equitably.

1.2 Related Works

Understanding treatment-effect heterogeneity and iden-
tifying subgroups that respond similarly to a given
treatment are critical tasks across various scientific
domains. A primary measure for analyzing this het-
erogeneity is the Conditional Average Treatment Ef-
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fect (CATE). Recent literature has explored numerous
methods for estimating HTE (e.g., (Hahn et al., 2020;
Kennedy, 2020; Künzel et al., 2019; Nie and Wager,
2021; Wager and Athey, 2018)). In particular, the
doubly robust estimator of HTE based on the uncen-
tered efficient influence function is widely used in prior
works. For example, this estimator is utilized in Mish-
ler et al. (2021), which presents a loss-optimal post-
processed predictor to ensure counterfactual equalized
odds. In the context of unobserved confounding in
covariates, Byun et al. (2024) uses this estimator to
audit the fairness of certain human policies, which can
be generalized to ML-based predictors. The estima-
tion of HTE is closely connected to the development
of optimal treatment strategies, also known as policy
learning (e.g., (Athey and Wager, 2021; Luedtke and
Van Der Laan, 2016; Murphy, 2003)). The primary
goal in policy learning is to identify subgroups with
CATE values that exceed a certain threshold, allowing
researchers to target the most promising subgroups
based on treatment efficacy (see (Ballarini et al., 2018;
Schnell et al., 2016; Zhao et al., 2013)).

When estimating optimal treatment strategies in the
presence of censoring, Zhao et al. (2012, 2015) intro-
duced techniques such as inverse censoring weighted
outcome-weighted learning and doubly robust outcome-
weighted learning. To further address censoring mech-
anisms, Cui et al. (2017) proposed a random forest
imputation approach specifically designed for right-
censored outcomes.

Incorporating fairness into treatment effect estimation
or policy design typically involves minimizing the loss
function between the target and its estimate while
imposing fairness constraints. This approach has led to
several pioneering studies on fair policy learning (Nabi
et al., 2019; Kim and Zubizarreta, 2023; Viviano and
Bradic, 2024). However, these studies do not address
the challenge of optimal policy learning for HTE in
censored survival data. Our framework seeks to fill
this gap by integrating fairness constraints into the
estimation of optimal treatment strategies for right-
censored data, ensuring that the resulting policies are
free from discrimination based on characteristics such
as gender or race.

1.3 Contributions

The paper presents an innovative approach to address-
ing critical gaps in precision medicine using censored
survival data. This work’s contributions are novel and
impactful, laying the groundwork for future advances
in algorithmic fairness. Here are the key contributions:

1. This is the first framework for right-censored sur-
vival data that approximates the true heteroge-

neous treatment effects (HTE) under fairness con-
straints using a linear projection approach.

2. The framework allows practitioners to optimize
treatment strategies while carefully balancing fair-
ness and survival value function by providing a
flexible, user-adjustable fairness mechanism.

3. With robust theoretical foundations, such as dou-
ble robustness and asymptotic normality, the ap-
proach ensures its statistical reliability and instills
confidence in the rigorous inferences that can be
made.

4. With this framework, fairness would be embedded
in treatment decisions, preventing biases in treat-
ment allocation and improving health outcomes
for underrepresented groups.

The proposed framework 1 is designed to apply to
a wide range of domains where fairness in decision-
making is essential, such as finance, education, and
public policy. Consequently, its versatility enhances its
long-term significance.

2 Methodology

2.1 Motivating Example

The AIDS Clinical Trials Group Study 175 Dataset
(Hammer et al., 1996) evaluated treatment with either
a single nucleoside (treat = 0) or a combination of
two nucleosides (treat = 1) in adults infected with
human immunodeficiency virus type 1 (HIV-1). It
is concluded that treatment 1 is more effective when
intervention is needed for a patient, suggesting that the
optimal treatment policy during the intervention phase
is g∗(X, S) ∈ {0, 1} (see (5) for more details), where
X represents the covariate vector and S represents the
sensitive attributes. In Figure 1, it shows that the
proportion of males (S = 1) receiving treatment 1 (left
bar plot) is significantly lower than that of females
(S = 0), which suggests that the male group would be
unfairly treated under the optimal treatment policy.

There is a growing awareness that biases in data can
lead to unfair outcomes in predictive models (Mha-
sawade et al., 2021; Gervasi et al., 2022), particu-
larly in contexts involving life-saving decisions. For
example, when model-based predictions determine the
allocation of limited resources, such as organ trans-
plants, specialist referrals, or ICU services, disparities
in predictions can systematically disadvantage under-
represented groups (Paulus and Kent, 2020). This is

1The code can be found in https://github.com/
wangholly/FairHTEforCENSORED

https://github.com/wangholly/FairHTEforCENSORED
https://github.com/wangholly/FairHTEforCENSORED
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an urgent issue that must be addressed. Treatment
strategies are often based on HTE estimations, and any
bias in these estimates can greatly amplify social unfair-
ness, leading to unfair treatment. This unfairness also
exists in other policy-driven areas; for another exam-
ple, there is concern that automated decision-making
processes may result in unequal treatment and discrim-
inatory outcomes for certain groups when assessing
loan applicants’ credit worthiness (Moldovan, 2023).

Figure 1: Unfairness proportions with respect to gender
(S) for each treatment strategy in ACTG Dataset.

2.2 Problem Setup

Consider an i.i.d. sample (Z1, . . . , Zn) of n tuples Z =
(T, C, A, S, X) ∼ P for some distribution P, where T ∈
R+ is the survival time, C ∈ R+ is the censoring time,
A ∈ {0, 1} is the assigned treatment, S ∈ {0, 1} is
the sensitive attribute, and X ∈ X represents the
additional covariate feature vector for some compact
subset X . As commonly assumed in survival analysis,
we assume that the censoring time C is independent of
T given (X, S, A).

Goal Our goal is to estimate the treatment effect of
treatment A on survival time T , given variables X
and S, while adhering to fairness constraints related
to the sensitive attribute S. Such fair estimation of
treatment effect is then applied to learn an optimal
treatment strategy. This involves two challenges: (i)
estimating treatment effect heterogeneity under fairness
constraints and (ii) handling censoring mechanisms in
survival data.

Solution of Challenge (i) Assume that the survival
time, T (0), T (1), under treatment 0 and 1 are fully ob-
served. Using the standard potential outcomes frame-
work as outlined by Imbens and Rubin (2015):

• Consistency: T = T (a) if A = a

• No unmeasured confounding: A ⊥⊥ T (a) | X, S

• Positivity: P(A = a | X, S) > 0 a.s.

the conditional average treatment effect (CATE) on
survival time is

τ(X, S) = E (T (1) − T (0) | X, S)
= µ1(X, S) − µ0(X, S), (1)

where µa(X, S) = E[T | X, S, A = a], ∀a ∈ {0, 1}. In
this case, the challenge lies in estimating CATE under
fairness constraints. This challenge can be solved using
the CATE estimation introduced in Section 2.3.

Solution of Challenge (ii) In contrast to the typical
scenarios of estimating heterogeneous treatment effects
as explored in studies such as Künzel et al. (2019);
Nie and Wager (2021), the survival time T is not fully
observed due to censoring mechanism. Usually, we
observe U = min{T, C, e}, accompanied by a censoring
indicator ∆ = 1(T ≤ C), where e is the end time of
study. To avoid the non-identifiable problem when
T > e, we employee the finite horizon assumption in
Cui et al. (2023), i.e., the survival time T admits a
maximal time of study e such that T = e for all T > e.

A preliminary approach involves substituting survival
times with their conditional expected values, i.e., E(T |
X, S, A), estimated through regression or nonparamet-
ric techniques (Van Buuren, 2018; Little and Rubin,
2019). We consider the following general approach,

T imp = ∆U + (1 − ∆)Ê(T | X, S, A, T > U, U), (2)

where Ê(T | X, S, A, T > U, U) is an estimator of E(T |
X, S, A, T > U, U). That is, we set T̃ = T if the event
occurs, and set T̃ = T imp = Ê(T | X, S, A, T > U, U)
if this subject is censored.

The CATE (1) can then be expressed as:

τ̃(X, S) = E
(

T̃ (1) − T̃ (0) | X, S
)

= µ̃1(X, S) − µ̃0(X, S), (3)

where µ̃a(X, S) = E[T̃ | X, S, A = a], ∀a ∈ {0, 1}.
In what follows, we generally denote the condition-
ally expected error of the imputation as ϵ(X, S), e.g.,
ϵ(X, S) = τ(X, S) − τ̃(X, S).

One sufficient way2 to obtain the estimation Ê(T |
X, S, A, T > U, U) is through the random survival for-
est3 (Ishwaran et al., 2008), which can be used to
estimate the survival function S(u | X, S, A) = Pr(T >
u | X, S, A). We denote the estimated survival function

2One can apply other estimators or imputation methods.
3The corresponding R package is randomForestSRC.
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as Ŝ(u | X, S, A). Due to the relationship

E(T | X, S, A, T > U, U)
= U + E(T − U | X, S, A, T > U, U)

= U +
∫ e

U
S(u | X, S, A)du

S(U | X, S, A) ,

where E(T −U | X, S, A, T > U, U) is the mean residual
survival time. We can obtain estimation

Ê(T | X, S, A, T > U, U) = U +
∫ e

U
Ŝ(u | X, S, A)du

Ŝ(U | X, S, A)
,

with which, T imp in (2) can be obtained.

Learning an Optimal Treatment Strategy A treat-
ment strategy or policy, g : (X, S) → {0, 1}, is defined
as a function that maps pre-treatment variables to
treatment decisions. The CATE function, τ , is utilized
to derive optimal strategies or identify specific interest
subgroups. Hospitals typically suggest a treatment to
maximize the survival value function, which is defined
as:

V(g) = E{T (1)g(X, S) + T (0)(1 − g(X, S))}. (4)

The optimal treatment strategy g∗ is selected to
optimize the survival value function, i.e., g∗ =
arg maxg∈G V(g), where G = {g|g : (X, S) → {0, 1}}.

It can be readily demonstrated that the optimal policy
that maximizes V(g) is

g∗(X, S) = 1{τ(X, S) > 0}. (5)

The optimal strategy, g∗, targets individuals for whom
the treatment is given to produce a longer survival time.
In a broader context, one might also seek to develop
a targeting policy that identifies specific subgroups of
interest:

gI(X, S) = 1{τ(X, S) ∈ I},

where I is an interval specifying the interest subgroup.

2.3 Proposed Framework

In this section, we present a framework to estimate
CATE based on (T̃ , X, S, A), where T̃ = T if T is ob-
served, T̃ = T imp otherwise. Specifically, our goal is
to find the estimation of CATE, ̂̃τ(X, S), while satisfy-
ing fairness constraints, so that the optimal treatment
strategy g∗ can be estimated. Note that (T̃ , X, S, A) is
complete after the imputation.

Consider τ(X, S) ∈ span (b(X, S)), where b(X, S) :=
[b1(X, S), . . . , bk(X, S)]⊤ is a sequence of finite many
basis functions for some k ∈ Z+, and span (b(X, S)) is
the space spanned by b(X, S). To estimate τ(X, S) un-
der fairness constraints, we minimize the mean square

error (MSE) of ̂̃τ(X, S) subject to fairness constraints.
This can be formulated as the following constrained
stochastic optimization problem:

min
β∈Rk

E
[{

T̃ (1) − T̃ (0) + ϵ(X, S) − β⊤b(X, S)
}2
]

(P)

s.t.
∣∣E{UFj(Z)β⊤b(X, S)

}∣∣ ≤ δj , j ∈ |m|,

where |m| = {1, · · · , m}, UFj(Z) : R+ × (X, S) ×
{0, 1} → R+ represents unfairness measure described
later, and δj represents a predetermined tolerance
level for the maximum acceptable degree of unfair-
ness in the j-th criterion. When sensitive attributes
are multi-categorical, it is natural to consider using
pairwise unfairness constraints. For instance, when
S ∈ {s1, · · · , sL}, fairness constraints (as proposed in
(6), (7), (9) below) can be incorporated for each pair
(si, sl) with i ̸= l. If fairness is achieved between each
pair of variables, then overall fairness among all vari-
ables is ensured. For simplicity, this paper will focus on
implementing fairness between binary variables. The
solution to the program above provides the coefficients
of the best-fitting function for τ(X, S) within the finite-
dimensional model space spanned the basis functions
b(X, S) = (b1(X, S), . . . , bk(X, S))⊤, subject to the m
fairness constraints.

The unfairness measures UFj(Z) can be defined as fol-
lows to represent different fairness notions as described
in Mishler and Kennedy (2022).

(1)Demographic parity can be applied by defining

UFj(Z) = 1{S = s}
E(1{S = s}) − 1{S = s′}

E(1{S = s′}) , (6)

which leads to∣∣E{β⊤b(X, S) | S = s
}

− E
{

β⊤b(X, S) | S = s′}∣∣ ≤ δj ,

ensuring our fitted models are marginally independent
of the sensitive attribute.

(2) Conditional statistical parity can be attained
by defining

UFj(Z) = (1{S = s})1{C(X, S) ∈ I}
E [(1{S = s})1{C(X, S) ∈ I}]

− 1{S = s′}1{C(X, S) ∈ I}
E [1{S = s′}1{C(X, S) ∈ I}] , (7)

which implies

|E
{

β⊤b(X, S) | S = s, C(X, S) ∈ I
}

−
E
{

β⊤b(X, S) | S = s′, C(X, S) ∈ I
}

| ≤ δj . (8)

Here, C : X × {0, 1} represents the legitimate factor
used to specify the condition under which the esti-
mated treatment effect should remain independent of
the sensitive attribute.
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(3) Equal opportunity, which ensures demographic
parity concerning the treatment effect, can be applied
by defining

UFj(Z) = (1{S = s})1{τ̃(X, S) > 0}
E[(1{S = s})1{τ̃(X, S) > 0}]−

1{S = s′}1{τ̃(X, S) > 0}
E[1{S = s′}1{τ̃(X, S) > 0}] , (9)

which leads to

| E
{

β⊤b(X, S) | S = s, τ̃(X, S) > 0
}

−
E
{

β⊤b(X, S) | S = s′, τ̃(X, S) > 0
}

|≤ δj . (10)

One can trivially generalize τ̃(X, S) > 0 to τ̃(X, S) ∈ I
for some interval I in a boarder context.

2.4 Estimation

To solve the problem (P), we need to estimate (P)
using suitable data-driven estimations. Based on the
identification assumptions (Imbens and Rubin (2015)),
we can derive the following identity:

E
[
T̃ (a)b(X, S)

]
= E [µ̃a(X, S)b(X, S)]

= E

[
1{A = a}T̃

πa(X, S) b(X, S)
]

,

where πa(X, S) = P[A = a | X, S] is the propensity
score. Then one may estimate the counterfac-
tual parameter E

[
T̃ (a)b(X, S)

]
using either the

plug-in (PI) estimator Pn

{̂̃µa(X, S)b(X, S)
}

or the inverse-probability-weighted estimator
Pn

{
AT̃/π̂a(X, S)b(X, S)

}
depending on the quality

of information to model the observational outcome
or treatment process. Here ̂̃µa and π̂a are some
estimators of µ̃a and πa, respectively.

To solve the optimal problem (P), we introduce a more
efficient semiparametric estimation method to estimate
the components in (P). Let φa denote the uncentered
efficient influence function (EIF) for the parameter
E
[
T̃ (a)

]
= E{E[T̃ | X, S, A = a]}, which is defined by

φa(Z; η) = 1(A = a)
πa(X, S)

{
T̃ − µ̃A(X, S)

}
+ µ̃a(X, S),

with a set of the nuisance components η = {πa, µ̃a}
(Kennedy (2017, 2022)).

Next, we use cross-fitting to allow for arbitrarily com-
plex nuisance estimators η̂. Specifically, we split the
data into K disjoint groups, each with size n/K approx-
imately, by drawing variables (B1, . . . , Bn) independent

of the data, with Bi = b indicating that subject i was
split into group b ∈ {1, . . . , K}. Then the semipara-
metric estimator for E

[
T̃ (a)b(X, S)

]
based on the EIF

and sample splitting are given by

1
K

K∑
b=1

Pb
n {φa (Z; η̂−b) b(X, S)}

≡ Pn {φa (Z; η̂−B) b(X, S)} ,

where we let Pb
n denote empirical averages only over the

set of units in group b {i : Bi = b} and let η̂−b denote
the nuisance estimator constructed only using those
units {i : Bi ̸= b}. This suggests

Pn {φ1 (Z; η̂−B) − φ0 (Z; η̂−B) b(X, S)} (11)

as our estimator for E
[(

T̃ (1) − T̃ (0)
)

b(X, S)
]

=
E[τ̃(X, S)b(X, S)]. Under weak regularity conditions,
this cross-fitting-based semiparametric estimator at-
tains the efficiency bound with the double robustness
property and thus allows us to employ flexible ma-
chine learning methods while achieving the

√
n-rate of

convergence and valid inference (Kennedy (2017)).

The estimation of the fairness constraints in (P) relies
on the fairness notion. In what follows, we present the
estimation of UFjb(X, S) based on the fairness criterias
given in (6), (7) and (9).

To estimate the unfairness measure (6) corresponding
to demographic parity, one may simply use the following
sample-average estimator:

Pn

{
ÛFjb(X, S)

}
=

Pn

[{
(1 − 1{S = s})

Pn(1 − 1{S = s}) − 1{S = s}
Pn(1{S = s})

}
b(X, S)

]
,

which is naturally
√

n-consistent without any need for
nuisance estimation. Similarly, the empirical estimator
is used when conditional statistical parity in (7) is ued.
To estimate the unfairness measure (9) corresponding
to demographic parity with respect to treatment, we
will employ the margin condition to manage the non-
smooth component. In other words, we restrict the
closeness of µ̃1(X, S) and µ̃0(X, S) using their proba-
bility, which is imposed by the margin condition:
Definition 2.1. (Margin Condition). For any margin
exponent α > 0 and for all t ≥ 0,

P (|µ̃1(X, S) − µ̃0(X, S)| ≤ t) ≲ tα. (12)

This margin condition allows us to use the following
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plug-in type estimator with cross fitting:

Pn

{
ÛF jb(X, S)

}
=

1
K

K∑
b=1

Pb
n

(
b(X, S)

[
(1 − S)ϕ(X, S)

1
K

∑K
b=1 Pb

n [(1 − S)ϕ(X, S)]

− Sϕ(X, S)
1
K

∑K
b=1P

b
n [Sϕ(X, S)]

])
,

where ϕ(X, S) = 1
{̂̃µ1,−b(X, S) − ̂̃µ0,−b(X, S) > 0

}
.

The above estimator attains
√

n-consistency and
asymptotic normality if

P
[
1
{̂̃µ1 − ̂̃µ0 > 0

}
̸= 1 {µ̃1 − µ̃0 > 0}

]
= oP(1)

and maxa

∥∥∥̂̃µa − µa

∥∥∥α

∞,P
= oP

(
n− 1

2

)
as discussed in

Kennedy (2020, 2022).

Because our fairness function involves the potential
survival time, we can utilize estimators similar to those
employed for our objective function. Specifically, if
the fairness function UFj(T̃ (0), T̃ (1), X, S) is a smooth
function of T̃ (0), T̃ (1), then we can use the following
EIF-based semiparametric estimator:

Pn

{
ÛF jb(X, S)

}
=

Pn { UF j (φ0 (Z; η̂−B) , φ1 (Z; η̂−B) , X, S) b(X, S)} ,

which is asymptotically normal and efficient according
to the same logic as used for (11).

Consequently, our approximating program can be found
as the following convex quadratic program:

min
β∈Rk

1
2β⊤Pn

{
b(X, S)b(X, S)⊤}β

− β⊤Pn{b(X, S)ϵ(X, S)}
− β⊤Pn [{φ1 (Z; η̂−B) − φ0 (Z; η̂−B)} b(X, S)] (P̂ )

s.t.
∣∣∣β⊤Pn

{
ÛFjb(X, S)

}∣∣∣ ≤ δj , j ∈ J.

The above optimization can be readily solved using
off-the-shelf solvers. Let β̂ be an optimal solution
to (P̂ ). Our proposed estimator for τ(X, S) is then
given by ̂̃τ(X, S) = β̂⊤b(X, S), therefore, the optimal
treatment strategy g∗ can be estimated by ĝ(X, S) =
1{̂̃τ(X, S) > 0}.

3 Theoretical Properties

3.1 Inferences of Estimation β̂

Let β∗ and β̂ be the solutions to the optimal prob-
lems (P) and (P̂ ), respectively. One advantage of the

proposed method is the ability to conduct statistical
inference on β̂. Based on the proposed estimator, we
introduce the following assumptions to state the asymp-
totic properties of β̂.

(A1) E[b(X, S)b(X, S)⊤] is positive definite.

(A2) There exists some ϵ > 0 such that π̂a ∈ [ϵ, 1 − ϵ]
with probability one.

(A3) ||π̂a − πa||2,P = oP(1) or ||̂̃µa − µ̃a||2,P = oP(1).

(A4) ||π̂a − πa||2,P||̂̃µa − µ̃a||2,P = oP( 1√
n

).

(A5) Pn

(
ÛFjb(X, S)

)
− E[UFjb(X, S)] = OP( 1√

n
).

(A6)
√

n
(
Pn

(
ÛFjb(X, S)

)
− E[UFjb(X, S)]

)
is

asymptotically normal N(0, σ2) for some σ2 < ∞.

Assumption (A1) ensures the uniqueness of optimal
solution of (P) and the quadratic growth condition
holds at the optimal solution in (P), such assumption
can be replaced by a weaker second-order condition4

(see e.g., Section 2.4 in Still (2018) for more details.).
Assumptions (A2)-(A4) are commonly used conditions
in causal inference. It is worth pointing out that as-
sumptions (A2)-(A4) do not include the imputation
error. Assumptions (A5)-(A6) are guarantees of con-
vergence of the estimations of fairness constraints at a
proper rate.
Theorem 3.1. Let β∗ and β̂ be the solutions to the
optimal problems (P) and (P̂ ), respectively.

(i) Under Assumptions (A1)-(A3), and (A5),

||β̂ − β∗||2 =

OP

(
max

a
||π̂a − πa||2,P||̂̃µa − µ̃a||2,P + 1√

n

)
(13)

(ii) Under addition Assumptions (A4) and (A6), and
assuming Linear Independence Constraint Qualification
(LICQ) and Strict Complementarity (SC)5 hold at β∗,

||β̂ − β∗||2 = OP

(
1√
n

)
, (14)

√
n(β̂ − β∗) d→ N(0, σ2

0) , where σ2
0 < ∞. (15)

Result (i) in Theorem 3.1 provides doubly robust prop-
erty of β̂, implying accuracy of the fair estimator β̂ if
either πa or µa is accurately estimated. Furthermore,
result (ii) in Theorem 3.1 provides asymptotically nor-
mality of β̂, which provides ability of giving statistical

4See the condition in Appendix E.
5See definitions of LICQ and SC assumptions in Ap-

pendix D.



Hongni Wang*, Junxi Zhang*, Na Li, Linglong Kong, Bei Jiang†, Xiaodong Yan†

inferences with respect to β̂ via bootstrap. It is worth
pointing out that the imputation error does not af-
fect the estimation error of β∗. Therefore, Theorem
3.1 provides a solid theoretical guarantee of using the
proposed estimations in Section 2.4.

3.2 Properties of Estimated Survival Value
Function Ṽ(ĝ(X, S))

With the proposed estimation of CATE, β̂⊤b(X, S),
one can estimate the optimal treatment rule g∗ in (5)
by

ĝ(X, S) = 1{β̂⊤b(X, S) > 0}. (16)

The performance of the estimated survival value func-
tion Ṽ(ĝ) = E[T̃ (1)ĝ(X, S) + T̃ (0)(1 − ĝ(X, S))] can be
evaluated, under the margin condition, using the Lq

loss of the proposed CATE estimator and the imputa-
tion error in the following lemma.
Lemma 3.2. Assuming the margin condition holds
with margin exponent α ∈ (0, ∞). Then

|V(g∗(X, S)) − Ṽ(ĝ(X, S))|
≲∥ β̂⊤b(X, S) − τ̃(X, S) ∥γ

q,P + ∥ ϵ(X, S) ∥1,P ,

where γ = α + 1 if q = ∞, γ = q(α+1)
q+α if q ∈ [1, ∞).

3.3 Trade-off between Fairness and Survival
Value Function

We first introduce the following notations to charac-
terize the trade-off between fairness and the survival
value function.

• Estimation error of τ̃ : β̃ is

arg min
β∈Rk

E
[{

T̃ (1) − T̃ (0) + ϵ(X, S)

− β⊤b(X, S)
}2]

is the unconstrained optimal parameter.

• Estimation error of β̂:
T1,n =
OP

(
maxa ||π̂a − πa||2,P||̂̃µa − µ̃a||2,P + 1√

n

)
.

• Cost due to fairness constraints:
T2 = O

(
∥
∑

j

√
λjUFj(Z) ∥2,P∥ b(X, S) ∥2,P

)
,

where λj is the Lagrange multiplier associated
with the j-th fairness constraint in (P).

Theorem 3.3. Under Assumptions (A1)-(A3), (A5)
and the margin condition with margin exponent α ∈
(0, ∞), we have

(i) |V(g∗(X, S))−Ṽ(ĝ(X, S))| ≲∥ ϵ(X, S) ∥1,P +T γ
1,n+

T γ
2 + ∥ β̃⊤b(X, S) − τ̃(X, S) ∥γ

q,P, where γ = α + 1
if q = ∞, and γ = q(α+1)

q+α if q ∈ [1, ∞).

(ii) P (g∗(X, S) ̸= ĝ(X, S)) ≲∥ ϵ(X, S) ∥1,P +T α
1,n +

T α
2 + ∥ β̃⊤b(X, S) − τ̃(X, S) ∥α

∞,P.

Theorem 3.3 presents upper bounds for the estimation
error of the optimal survival value function (result (i))
and the probability of g∗(X, S) ̸= ĝ(X, S) (result (ii)).
The upper bounds provide a clear trade-off between
fairness and estimation errors. For instance, the up-
per bounds involve four parts: the estimation error of
τ(X, S), the imputation error, the estimation error of
nuisance estimations T1,n, the unfairness constraints
T2 in terms of the Lagrange multipliers. Therefore,
the upper bounds will increase when fairness is increas-
ing (i.e., λj is increasing. Therefore T2 will increase),
or/and when the estimations of τ(X, S), the imputa-
tion method and nuisance parameters have decreasing
accuracy. Although the estimation error of τ(X, S) is
unavoidable (due to the modeling error and optimiza-
tion algorithm error), it may close to 0 when µa lies
in the function space spanned by basis functions b
and when the optimization algorithm is accurate. The
second term evaluates the imputation error, which can
be small with advanced imputation methods such as
the proposed random survival forest. The third term,
T1,n, in the upper bounds converges to 0 with rate√

n when either πa or µ̃a is estimated with an error
with order 1√

n
, or when both πa and µ̃a are estimated

with errors with order n− 1
4 . Importantly, the term T2

characterizes how much the cost of accuracy is due to
the fairness constraints involved in the optimal prob-
lem (P). The smaller the fairness tolerance level δj is,
the larger Lagrange multiplier λj should be selected,
therefore, the larger T2 becomes. On the other hand,
when the fairness tolerance level δj is very large, λj is
close to 0. Therefore, T2 is close to 0.

In short, there is a cost to accuracy associated with fair-
ness constraints when estimating the optimal treatment
rule at a specific level of fairness. Therefore, Theorem
3.3 characterizes the trade-off between fairness and the
accuracy of the estimation of the optimal survival value
function, V(g∗(X, S)). Specifically, when less fairness
is required (large δj and small λj), the estimation error
of V(g∗(X, S)) is smaller. On the other hand, when
more fairness is required (small δj and large λj), the
estimation error of V(g∗(X, S)) is larger according to
T2. This scenario aligns with the trade-off between
fairness and faithfulness discussed in the literature on
fairness learning. With the proposed framework, this
trade-off is quantified in analytic form in Theorem 3.3,
shedding light on fairness studies.
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4 Experiments

4.1 Real Data Analysis

We apply the proposed framework to the ACTG
Dataset mentioned in Section 2.1. To enhance the
illustration of the proposed framework, we run exper-
iment on another real data set, the HCC dataset, in
Appendix C. We further consider a simulation study in
Appendix A to explain our motivation and the proposed
method.

The ACTG dataset include 22 features and 1 sensi-
tive attribute, gender. The outcome of interest is the
survival time of the patients after receiving certain
treatments. The median duration of the experimental
follow-up was 143 weeks, and the censoring rate was
75.64%. As a preparation, we removed the multivari-
ate treatment indicator ‘trt’ and retained the binary
variable ‘treat’. Specifically, A = 0 refers the treatment
ZDV, and A = 1 refers other treatments (ZDV + ddI;
ZDV + Zal; ddI only).

Firstly6, we impute the censoring data as described in
Section 2.2 using the random survival forest. We use
roughly 75% of the data to estimate g∗ (and therefore
V(g∗)) using the proposed framework and the remain-
ing 25% as the testing set.

With the estimated optimal treatment strategy ĝ from
our method, Figure 2 shows that the proportions of
males and females in each treatment group are nearly
equal, demonstrating the fairness of the proposed es-
timation process. To further highlight the fairness
achieved by our framework, we compare the density
functions of the estimated treatment effect ̂̃τ(X, S) in
Figure 3 with fairness constraint when δ = 0 (bottom
plot) and without fairness constraint when δ = ∞ (top
plot). In this case, δ = 90 is equivalent to having no
fairness constraint (δ = ∞) since the constraint be-
comes inactive. Without fairness constraints, we can
see from the top plot, the center of the estimated treat-
ment effect for the male group (S = 1) is significantly
lower than that for the female group (S = 0), suggest-
ing that male patients are less likely to receive treat-
ment 1 compared to female patients. This imbalance
reflects an unfair treatment effect estimation, which
could lead to biased treatment decisions. Conversely,
in the bottom plot, the centers of the estimated treat-
ment effects for both groups coincide under the fairness
constraint (δ = 0), indicating an equitable distribution
of treatment effects between male and female groups.
Additionally, the centers of the estimated treatment
effects align with the center of the overall density of̂̃τ(X, S), further demonstrating the effectiveness of our

6Experimental details are presented in Appendix B.

proposed fair estimation method for treatment effects
τ(X, S).

To illustrate the theoretical findings in Section 3, which
demonstrate that fairness in optimal policies comes at
a cost, we estimate g∗(X, S) across different values of
δ ranging from 0 to 90. Simultaneously, we estimate
the survival value function V (g∗(X, S)) and the level
of unfairness for each δ. In Figure 4, we show how the
estimated survival value function changes as the level
of unfairness varies. The results clearly indicate that
the survival value function increases as we allow more
lenient fairness tolerance (δ), confirming that there is a
cost to achieving fairness in terms of reduced survival
time. As demonstrated in Theorem 3.3, a trade-off
exists between the estimation error of Ṽ (ĝ(X, S)) and
fairness. Figure 5 further verifies our theoretical find-
ings by showing the decreasing trend of the estimation
error of Ṽ (ĝ(X, S)) as unfairness increases. As the
fairness constraint loosens, the estimation error dimin-
ishes, eventually stabilizing at a low error level when δ
is sufficiently large.

The selection of δ in the fairness constraints depends
heavily on the specific requirements of users’ task. For
example, if fairness is the primary priority in the task,
δ should be close to 0. On the other hand, if accu-
racy is the primary priority in the task, one should
let δ increase. Interestingly, from Figure 4 and 5 on
real datasets and the results in simulation study in
Appendix A, we observe that the estimation error de-
creases rapidly as δ increases around 0, but then slows
down significantly as δ continues to increase. Therefore,
if fairness is not the primary priority but still required,
one may select δ at the point where the decay in esti-
mation error starts to slow down, optimizing accuracy
while ensuring a certain level of fairness. As discussed
in many prior works (Chzhen and Schreuder, 2022;
Feldman et al., 2015), a sustainable selection rule in-
volves accepting some degree of compromise on fairness
to preserve accuracy, allowing δ > 0 and preserving
significant accuracy. In specific contexts, when certain
unfairness rules-such as the 80% rule in Feldman et al.
(2015)-are applied, one may set δ = 0.2.

5 Conclusion

In this paper, we introduce a novel framework that in-
corporates fairness constraints into the estimation of op-
timal treatment strategies for right-censored data. Our
approach begins with the imputation of right-censored
data, followed by the estimation of heterogeneous treat-
ment effects using nonparametric methods under user-
controllable fairness constraints. This framework is
supported by strong theoretical guarantees, including
double robustness and the asymptotic normality of the
estimator, which enable valid statistical inference. Ad-
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Figure 2: Fairness proportions with respect to gender
(S) for each treatment strategy in ACTG Dataset.

Figure 3: Densities of ̂̃τ(X, S) without a fairness con-
straint (when δ = ∞) and with a fairness constraint
(when δ = 0) in the ACTG dataset. The two vertical
dashed lines correspond to Pn(̂̃τ(X, S) | S = 0) and
Pn(̂̃τ(X, S) | S = 1).

ditionally, we examine the trade-off between fairness
and the estimation error of the survival value function.

Looking ahead, we plan to extend this framework to
handle multiple treatment options beyond binary treat-
ments, while preserving fairness constraints within the
optimal treatment strategy. Furthermore, we aim to ex-
pand the data structure to address both right-censored
data and other forms of missing data. These enhance-
ments will be central to our future research endeavors.

Figure 4: The cost of Ṽ(ĝ(X, S)) with respect to the
unfairness in the ACTG dataset.

Figure 5: The estimation error of V(g∗(X, S)) with
respect to the unfairness in the ACTG dataset.
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Checklist

1. For all models and algorithms presented, check if
you include:
(a) A clear description of the mathematical set-

ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Not Applicable]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Not Applicable]

2. For any theoretical claim, check if you include:
(a) Statements of the full set of assumptions of

all theoretical results. [Yes] All statements of
the assumptions are included in Section 3 and
Appendix D

(b) Complete proofs of all theoretical results.
[Yes] All proofs are included in Appendix F.

(c) Clear explanations of any assumptions. [Yes]
All explanations of our assumptions are in-
cluded in Section 3 and Appendix E.

3. For all figures and tables that present empirical
results, check if you include:
(a) The code, data, and instructions needed to re-

produce the main experimental results (either
in the supplemental material or as a URL).
[Yes] Code and data are included in supple-
mentary materials.

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]
Training details are included in Appendix B.

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes] See Appendix B.

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes] Computational details
are included in Appendix B.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:
(a) Citations of the creator If your work uses

existing assets. [Yes]
(b) The license information of the assets, if appli-

cable. [Not Applicable]
(c) New assets either in the supplemental mate-

rial or as a URL, if applicable. [Yes] Code
and data are included in https://github.
com/wangholly/FairHTEforCENSORED.

(d) Information about consent from data
providers/curators. [Yes]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Yes] The sensitive attributes
in the dataset is explained in Section 4.

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Not Applicable]

https://github.com/wangholly/FairHTEforCENSORED
https://github.com/wangholly/FairHTEforCENSORED
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Appendix

A Simulation Study
In this section, we conduct a simulation study to demonstrate the proposed estimators’ theoretical properties
and finite-sample performance when dealing with right-censored survival outcomes. We generate synthetic data
according to the following process:

S ∼ Bernoulli (0.5), [X1, X2]⊤ | S ∼ N
(
[0, 3S − 1]⊤, I2

)
,

P(A = 1 | X, S) = expit
(
W ⊤[1, 0, 0] + SX1

)
, A ∈ {0, 1},

µA(X, S) = AX3
2 /2 + log

(
SX2

1 + 10
)

+ exp (−SX2/5) + SX1,

T A = µA(X, S) + ϵ, ϵ ∼ N(0, 1), T = T (1)A + T (0)(1 − A)

where expit and I2 denote the inverse logit function and the 2 × 2 identity matrix, T A is potential survival time,
and the true survival time T using a Cox model with treatment-specific baseline hazard functions:

λ(u | A, X, S) = λ0(u | A) exp
(
T A
)

,

The end of the study is fixed to be 2.7, and the censoring time C is generated from an exponential distribution
with parameter 0.2 to induce a 17.7% censoring rate. We impute the censoring time using the random survival
forest as described in Section 2.2. Then, τ(X, S) = X3

2 /2 and g∗(X, S) = 1 (X2 > 0). Our results are presented
in Figure 6.

Figure 6: Densities (Left) and proportions for sensitive attribute S (Right) of the unfair data (when δ = ∞) fair
data (when δ = 0).
We first assess the effectiveness of the proposed estimators in mitigating unfairness in the estimated CATE. To
this end, we generate a sample of 2000 observations and estimate ̂̃τ with K = 2 splits under two conditions:
δ = ∞ (i.e., without fairness constraints) and δ = 0 (i.e., with exact fairness constraints). Then, we generate
a sample of 1000 observations as test set. In our simulation settings, setting δ = 90 effectively means having
no constraints, as it is equivalent to δ = ∞, rendering the fairness constraint inactive. We then compare the
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Figure 7: The cost of Ṽ(ĝ(X, S)) with respect to the unfairness in the simulation data.

Figure 8: The estimation error of V(g∗(X, S)) with respect to the unfairness in the simulation data.

densities of ̂̃τ for each value of δ and illustrate how individuals from different groups are distributed in terms of S
on the left of Figure 6. The right bar figures in Figure 6, we compute the proportions of S = 1 to S = 0 for each
decision of ĝ(X, S) = 1{̂̃τ(X, S) > 0} under both δ = ∞ and δ = 0 conditions.

The density plots in Figure 6, without fairness constraints, show a significant violation of the independence
criterion in ̂̃τ(X, S); individuals belonging to group S = 1 (or S = 0) are predominantly found in the treatment
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strategy where ̂̃τ(X, S) > 0 (or ̂̃τ(X, S) < 0). This results in disproportionate (unfair) policies, as shown at the
top of the bar plots in Figure 6, where individuals with S = 1 are more likely to be treated. However, this
issue is largely resolved when the fairness constraint is applied with δ = 0. In the lower-left corner of Figure 6,
we observe that the conditional sample means of ̂̃τ(X, S) for S = 0 and S = 1 are nearly identical, and many
individuals in the S = 1 (or S = 0) group are shifted to the left (or right) compared to the δ = ∞ scenario. The
results in policies where the treated and untreated groups are more balanced along the sensitive attribute, giving
individuals with S = 0 a greater chance to be treated, as shown in the lower right corner of Figure 6.

To demonstrate the theoretical findings in Section 3, which state that the fairness in optimal policies comes at a
price, we estimate g∗(X, S) across different values of δ ranging between 0 and 90. This time, we also estimate the
survival value function V (g∗(X, S)) and the unfairness for different δ.

In Figures 7 and 8, we present the estimated survival time function and its associated errors across varying
degrees of fairness constraints. The results show that the survival value function improves when we adopt a
more lenient fairness tolerance (δ), substantiating the cost associated with achieving fairness through diminished
survival time. This phenomenon aligns with Theorem 3.3, which articulates a trade-off between the accuracy of
the estimated survival value function Ṽ (ĝ(X, S)) and the degree of fairness enforced. This trade-off highlights
the intrinsic costs of incorporating fairness into treatment decisions.

B Experiment Details

In this section, we will present all the experimental details and some additional results to support the main text.

B.1 Data and algorithm details

We consider data from The AIDS Clinical Trials Group Study 175 Dataset (ACTG) which evaluated treatment
with either a single nucleoside or a combination of two nucleosides in adults infected with human immunodeficiency
virus type 1 (HIV-1), whose CD4 cell counts ranged from 200 to 500 cells per cubic millimeter. The dataset
contains 2,139 instances and 23 features. The covariates include age, weight, hemophilia, homosexual activity,
history of IV drug use, Karnofsky score, Non-ZDV antiretroviral therapy pre-175, ZDV in the 30 days prior to
175, ZDV prior to 175, days pre-175 anti-retroviral therapy, race, gender, antiretroviral history, antiretroviral
history stratification, symptomatic indicator, treatment indicator, censoring indicator, indicator of off-trt before
96+/-5 weeks, CD4, CD4 at 20+/-5 weeks, CD8, CD8 at 20+/-5 weeks. We use roughly 75% of the data to
estimate g∗ (and therefore V(g∗)), reserving the remaining 25% as a testing set.

We use the randomForestSRC package in R to impute censored data. For computing the convex quadratic
program, we employ the quadprog solver in R.

B.2 Additional results

To illustrate the normality convergence of β̂ in Theorem 3.1, we plot the density of some arbitrary linear
combination of β̂ in Figure 9.

B.3 Computational details

All experiments were performed using R version 2024.09.0+375 on a Mac with an Apple M2 Pro chip and 16 GB
of RAM. The average time spent for the training process to obtain an estimation of CATE is around 14 seconds
on the ACTG dataset.

C Experiment on HCC Data

Hepatocellular carcinoma (HCC), the most common form of liver cancer, accounts for approximately 75% of all
liver cancer cases. We analyzed data from an observational study of HCC that enrolled 537 patients who met
the Milan criteria between 2009 and 2019 in Tianjin, China (Zhang et al., 2020). The study investigated three
treatment modalities: liver transplantation (LT), liver resection (LR), and locoregional ablation (LA). Among
the patients, 172 underwent LT, 191 underwent LR, and 174 underwent LA. According to Li et al. (2023), LT
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Figure 9: Density functions of some arbitrary linear combinations of β̂.

is associated with the most favorable treatment effect, whereas LR is associated with the least favorable effect.
Consequently, we excluded data from patients treated with LA, resulting in a censoring rate of 73.46%. We then
recoded the treatment types, assigning LT as 1 and LR as 0. Next, we used the randomForestSRC package in R
to impute the censored data. We allocate approximately 75% of the data to estimate g∗, and use the remaining
portion as a testing set.

Figure 10 reveals that the proportion of males (S = 1) receiving treatment 1 (left bar plot) is significantly lower
than that of females (S = 0), indicating potential unfair treatment towards the male group under the optimal
treatment policy. In this scenario, setting δ = 90 is equivalent to having no fairness constraint (δ = ∞), as the
constraint becomes inactive. Using the estimated optimal treatment strategy ĝ from our method, Figure 11 shows
that the proportions of males and females in each treatment group are nearly equal, demonstrating the fairness
achieved through our estimation process.

To underscore this fairness, we compare the density functions of the estimated treatment effect ̂̃τ(X, S) in Figure
12. The bottom plot applies a fairness constraint (δ = 0), while the top plot does not (δ = ∞). In the top
plot, where no fairness constraint is applied, the center of the estimated treatment effect for males (S = 1) is
significantly lower than for females (S = 0), suggesting that male patients are less likely to receive treatment 1
compared to female patients. This disparity indicates an unfair estimation of treatment effects, which could lead
to biased treatment decisions. In contrast, in the bottom plot, where the fairness constraint (δ = 0) is enforced,
the centers of the estimated treatment effects for both genders align, demonstrating an equitable distribution of
treatment effects. Additionally, these centers align with the overall density center of ̂̃τ(X, S), further validating
the effectiveness of our proposed method in achieving fair treatment effect estimations for τ(X, S).

D Regularity Assumptions and Definitions

In this section, we will provide some common used regularities and definitions in constraint nonlinear optimization,
we refer Still (2018) for more details of these regularities and definitions.

Let Cfair := {β|E[UFj(Z)β⊤b(X, S)]| ≤ δj , j ∈ J}. Define a set of inequality constraints C = {β|gj(β) ≤ 0, 1 ≤
j ≤ M}. For some specific points β̄ ∈ C, we define the active index set as follows.
Definition D.1 (Active set). J0 is called an active index set if J0(β̄) = {1 ≤ j ≤ M |gj(β̄) = 0}.
Definition D.2 (LICQ). The condition, linear independent constraint qualification (LICQ) is satisfied with
respect to the optimal problem (P) at β̄ ∈ S if the vectors ∆βgj(β̄), j ∈ J0 are linear independent.
Definition D.3 (SC). Let L(β, γ) be the Lagrangian. The condition, strict complementarity (SC) is satisfied
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Figure 10: Unfairness proportions with respect to gender (S) for each treatment strategy in HCC Dataset.

with respect to the optimal problem (P) at β̄ ∈ S if, with multipliers γ̄j ≥ 0, j ∈ J0(β̄), the Karush-Kuhn-Tucker
(KKT) condition

∆βL(β̄, γ̄) = ∆βL(β̄) +
∑

j∈J0(β̄)

γ̄j∆βgj(β̄) = 0 ,

is satisfied.

LICQ is arguably one of the most widely-used constraint qualifications that admit the first-order necessary
conditions. SC means that if the j-th inequality constraint is active then the corresponding dual variable is strictly
positive, so exactly one of them is zero for each 1 ≤ j ≤ m.

E Discussion of assumption (A1)

Assumption (A1) can be replaced by the following weaker assumption with the second-order condition (Shapiro
et al., 2021):

(A1’) For each optimal solution β∗ of (P), η⊤E[b(X, S)⊤b(X, S)]η > 0, for

∀η ∈ {η ∈ Rk|b(X, S)⊤η ≤ 0, UFj(Z)b(X, S)⊤η ≤ 0, j ∈ J0(β∗)}\{0}.

Assumption (A’) implies β∗ is locally isolated and therefore the quadratic growth condition holds at β∗

(Shapiro et al., 2021).

F Proofs

This section includes all the proofs of the main results in the main text.
Lemma F.1. Under assumption (A1) or (A1’), we have

||β̂ − β∗|| = OP

(
max

{
||Ĉ − C||2, ||L̂ − L||F

})
, (17)
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Figure 11: Fairness proportions with respect to gender (S) for each treatment strategy in HCC Dataset.

where

(1). C =
{
E[b(X, S)b(X, S)⊤]i,l,E[(Y (1) − Y (0))b(X, S)]i,E[ϵ(X, S)b(X, S)]i

}k

i,j=1, and its estimator

Ĉ =
{
Pn[b(X, S)b(X, S)⊤]i,l,Pn {(φ1 (Z; η̂−B) − φ0 (Z; η̂−B)) b(X, S)} ,P[ϵ(X, S)b[W ]]

}k

i,j=1.

(2). L = [E [UF1b(X, S)] , · · · ,E [UFmb(X, S)]]⊤, and its estimator

L̂ =
[
Pn

[
ÛF1b(X, S)

]
, · · · ,Pn

[
ÛFmb(X, S)

]]⊤
.

Proof. First, we rewrite the original optimal problem (P) as

min
β∈Rk

f(β, C) s.t. Lβ ≤ δ , (18)

where δ = [δ1, · · · , δm]⊤. Similarly, the estimated optimal problem (P̂ ) can be rewritten as

min
β∈Rk

f(β, Ĉ) s.t. L̂β ≤ δ . (19)

Under assumption (A1) or (A1’), the second order condition holds for the optimal β∗ in (18), therefore, β∗ is
Lipschitz stable by Theorem 6.4 in Still (2018). This implies the result immediately.
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Figure 12: Densities of ̂̃τ(X, S) without a fairness constraint (when δ = ∞) and with a fairness constraint
(when δ = 0) in the HCC dataset. The two vertical dashed lines correspond to Pn(̂̃τ(X, S) | S = 0) and
Pn(̂̃τ(X, S) | S = 1).

To proof Theorem 3.1, we need to characterize the order of the right hand side in (17). This can be done by the
following lemma.

Lemma F.2. Under conditions (A1)-(A3) and (A5), we have

||Ĉ − C||2 = OP

(
max

a
||π̂a − πa||2,P||̂̃µa − µ̃a||2,P + 1√

n

)
||L̂ − L||F = OP

(
max

a
||π̂a − πa||2,P||̂̃µa − µ̃a||2,P + 1√

n

)
.

Proof. This proof follows directly from the doubly robust estimation of the expectation of potential outcome
using efficient influence function. For instance, by Section 4.4 in Kennedy (2016) and the fact that |Pn(h(X, S)) −



Advancing fairness for treatment strategy estimation on censored data

E[h(X, S)]| = OP( 1√
n

) (the central limit theorem) for any h(X, S),

||Ĉ − C||2 = (Pn − P)(φ(Z)) + OP

(
max

a
||π̂a − πa||2,P||̂̃µa − µ̃a||2,P + 1√

n

)
= OP

(
max

a
||π̂a − πa||2,P||̂̃µa − µ̃a||2,P + 1√

n

)
.

||L̂ − L||F = (Pn − P)(φ(Z)) + OP

(
max

a
||π̂a − πa||2,P||̂̃µa − µ̃a||2,P + 1√

n

)
= OP

(
max

a
||π̂a − πa||2,P||̂̃µa − µ̃a||2,P + 1√

n

)
.

The results in this lemma follows directly by the central limit theorem.

Proof of Theorem 3.1:

Proof. Result (i) in Theorem 3.1 follows from Lemma F.1 and F.2. Under additional assumption (A4), one has
β̂ is a

√
n−consistent estimator of β∗. With assumption (A6), LICQ and SC assumption, we have asymptotic

normality for both elements ||Ĉ − C||2 and ||L̂ − L||F , which implies the asymptotic normality of ||β̂ − β∗||2. The

variance is σ0 =
[
▽2

βL(β∗, λ∗) A⊤

A 0

]−1 [1
0

]⊤

γ. In this expression, γ ∼ N(0, σ2) is the limiting distribution of

assumption (A6) above Theorem 3.1. L(β, λ) is the Lagrangian associate with problem (P), β∗ and λ∗ are the
true solutions of L(β, λ). A = [▽βgj(β∗) : j ∈ J0(β∗)], where gj(β) = E

{
UFj(Z)β⊤b(X, S)

}
and J0(β) is the

active index set.

Proof of Proposition 3.2:

Proof. Let g̃(X, S) = 1{τ̃(X, S) > 0} to be the imputed optimal solution of the imputed value function
Ṽ(g(X, S)) = E[T̃ (1)g(X, S) + T̃ (0)(1 − g(X, S))]. The optimal value function is therefore denoted as V(g̃(X, S)).
Therefore,

|V(g∗(X, S)) − Ṽ(ĝ(X, S))| ≤ |V(g∗(X, S)) − Ṽ(g∗(X, S))| + |Ṽ(g∗(X, S)) − Ṽ(ĝ(X, S))|. (20)

For the first part in (20), we have

|V(g∗(X, S)) − Ṽ(g∗(X, S))| = |E[(Y (1) − Ỹ (1))g∗(X, S) + (Y (0) − Ỹ (0))(1 − g∗(X, S))]|
≤ |E[ϵ(X, S)g∗(X, S)]| + |E[ϵ(X, S)g∗(X, S)]| ≤ 2||ϵ(X, S)||1,P .

For the second therm in (20), recall that

|Ṽ(g∗(X, S)) − V(ĝ(X, S))| = |E[τ̃(X, S)(1{̂̃τ(X, S) > 0} − 1{τ̃(X, S) > 0})]|

≤ E[|τ̃(X, S)|1{|τ̃(X, S)| ≤ |τ̃(X, S) − ̂̃τ(X, S)|}] ,

where the last inequality holds since |1{̂̃τ(X, S) > 0} − 1{τ̃(X, S) > 0}| ≤ 1{|τ̃(X, S)| ≤ |τ̃(X, S) − ̂̃τ(X, S)|}.
Therefore, by Lemma 5.1 in Audibert and Tsybakov (2007)

|Ṽ(g∗(X, S)) − V(ĝ(X, S))| ≤ ||τ̃(X, S) − ̂̃τ(X, S)||∞,PP({|τ̃(X, S)| ≤ |τ̃(X, S) − ̂̃τ(X, S)|})

≲ ||τ̃(X, S) − ̂̃τ(X, S)||α+1
∞,P .

This proof case when q = ∞ and γ = α + 1.

On the other hand, by Lemma 5.2 in Audibert and Tsybakov (2007), we have for any d > 0,

|Ṽ(g∗(X, S)) − V(ĝ(X, S))| ≤ E[|τ̃(X, S)|1{|τ̃(X, S)| ≤ |τ̃(X, S) − ̂̃τ(X, S)|}1{|τ̃(X, S)| ≤ d}]

+ E[|τ̃(X, S)|1{|τ̃(X, S)| ≤ |τ̃(X, S) − ̂̃τ(X, S)|}1{|τ̃(X, S)| > d}]

≤ E[|τ̃(X, S) − ̂̃τ(X, S)|1{|τ̃(X, S)| ≤ d] + E[|τ̃(X, S) − ̂̃τ(X, S)|1{|τ̃(X, S) − ̂̃τ(X, S)| > d] .
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Applying the Hölder inequality and the Markov inequality will lead to
|Ṽ(g∗(X, S)) − V(ĝ(X, S))|

≤ ||τ̃(X, S) − ̂̃τ(X, S)||q,PP(|τ̃(X, S)| ≤ d)
q−1

q + ||τ̃(X, S) − ̂̃τ(X, S)||q,P

(
P(|τ̃(X, S) − ̂̃τ(X, S)|)q

dq

) q−1
q

≲ ||τ̃(X, S) − ̂̃τ(X, S)||q,Pd
q−1

q + ||τ̃(X, S) − ̂̃τ(X, S)||qq,Pd1−q ,

which follows from the margin condition. The last expression attains its maximal at ||τ̃(X, S) − ̂̃τ(X, S)||
q(1+α)

q+α

q,P

when d = O(||τ̃(X, S) − ̂̃τ(X, S)||
q

q+α

q,P ). This proves the case when q ∈ [1, ∞) and γ = q(α+1)
q+α .

Proof of Theorem 3.3:

Proof. From the result of Proposition 3.2, we have
|V(g∗(X, S)) − Ṽ(ĝ(X, S))| ≲∥ β̂⊤b(X, S) − τ̃(X, S) ∥γ

q,P + ∥ ϵ(X, S) ∥1,P

≲∥ β̃⊤b(X, S) − τ̃(X, S) ∥γ
q,P + ∥ β̃⊤b(X, S) − β∗b(X, S) ∥γ

q,P + ∥ β̂⊤b(X, S) − β∗b(X, S) ∥γ
q,P + ∥ ϵ(X, S) ∥1,P ,

where the third term is less or equal to T α
1,n under the assumptions by Theorem 3.1 and the Minkowski’s inequality.

Therefore, we will focus on the second term ∥ β̃⊤b(X, S) − β∗b(X, S) ∥γ
q,P.

Recall that

β̃ = arg min
β∈Rk

E
[{

T̃ (1) − T̃ (0) + ϵ(X, S) − β⊤b(X, S)
}2
]

(21)

. On the other hand, since the constraint set in (P) includes only linear constraints, thus strong duality holds,
and there is a dual solution λ = (λj)m

j=1 to (P) such that any solution of (P) is also a solution of

arg min
β∈Rk

E
[{

T̃ (1) − T̃ (0) + ϵ(X, S) − β⊤b(X, S)
}2
]

+
m∑

j=1
λj [β⊤E[UFj(Z)b(X, S)]]2 .

Let F (β, θ) := E
[{

T̃ (1) − T̃ (0) + ϵ(X, S) − β⊤b(X, S)
}2
]

+
∑m

j=1(β⊤θj)2, and denote the solution of

arg minβ F (β, θ) as β(θ). Then, β̃ = β(0) and β∗ = β(θ∗), where θ∗
j =

√
λjE[UFj(Z)b(X, S)] for j = 1, · · · , m.

By assumption (A1), the optimization (21) is strongly convex, and thus the quadratic growth condition holds
at β̃. Therefore, for all β we have c||β̃ − β||22 ≤ F (β, 0) − F (β̃, 0), where c > 0 is some constant. We can take
β = β∗, which gives

c||β̃ − β∗||22 ≤ F (β∗, 0) − F (β̃, 0)
= F (β∗, 0) − F (β∗, θ∗) + F (β∗, θ∗) − F (β̃, θ∗) + F (β̃, θ∗) − F (β̃, 0)

≤
(

||β̃||22 + ||β||22
)

||θ∗||22 ,

where the last inequality follows from the definition of F and the fact that F (β∗, θ∗) ≤ F (β̃, θ∗). Then by the
Cauchy-Schwarz and the Jensen’s inequality, we have

||β̃ − β∗||22 ≲

∥∥∥∥∥∥E
 m∑

j=1

√
λjUFj(Z)

b(X, S)

∥∥∥∥∥∥
2

2

≤

∥∥∥∥∥∥
m∑

j=1

√
λjUFj(Z)

∥∥∥∥∥∥
2

2,P

∥E[b(X, S)]∥2
2

≤

∥∥∥∥∥∥
m∑

j=1

√
λjUFj(Z)

∥∥∥∥∥∥
2

2,P

∥b(X, S)∥2
2,P .
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This proves the form of T2, therefore proves result (i). The result (ii) can be proved by the same logic and Lemma
5.1 in Audibert and Tsybakov (2007), i.e.,

P (g∗(X, S) ̸= ĝ(X, S)) ≤∥ ϵ(X, S) ∥1,P + ∥ β̂⊤b(X, S) − τ̃(X, S) ∥α
∞,P ,

where the second term on the right hand side can be handled similarly as the proof of result (i).


