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Abstract

Saliency maps have been widely used to inter-
pret the decisions of neural network classifiers
and discover phenomena from their learned
functions. However, standard gradient-based
maps are frequently observed to be highly
sensitive to the randomness of training data
and the stochasticity in the training process.
In this work, we study the role of Gaussian
smoothing in the well-known Smooth-Grad al-
gorithm in the stability of the gradient-based
maps to the randomness of training samples.
We extend the algorithmic stability frame-
work to gradient-based interpretation maps
and prove bounds on the stability error of stan-
dard Simple-Grad, Integrated-Gradients, and
Smooth-Grad saliency maps. Our theoretical
results suggest the role of Gaussian smooth-
ing in boosting the stability of gradient-based
maps to the randomness of training settings.
On the other hand, we analyze the faithful-
ness of the Smooth-Grad maps to the original
Simple-Grad and show the lower fidelity un-
der a more intense Gaussian smoothing. We
support our theoretical results by performing
several numerical experiments on standard
image datasets. Our empirical results confirm
our hypothesis on the fidelity-stability trade-
off in the application of Gaussian smoothing
to gradient-based interpretation maps.

1 INTRODUCTION

Deep learning models have attained state-of-the-art
results over a wide array of supervised learning tasks
including image classification (Krizhevsky et al., 2012),
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Figure 1: The stability-fidelity trade-off introduced
by Gaussian smoothing. We trained neural networks
on two disjoint training set splits of ImageNet, and
computed the Simple-Grad and Smooth-Grad maps for
the same test sample.

speech recognition (Graves et al., 2013), and text cate-
gorization (Minaee et al., 2021). The trained deep neu-
ral networks have been utilized not only to address the
target classification task but also to discover the under-
lying rules influencing the label assignment to a feature
vector. To this end, saliency maps, which highlight the
features influencing the neural network’s predictions,
have been widely used to gain an understanding of
phenomena from data-driven models (Freiesleben et al.,
2022) and further to find new discoveries and insights.
For example, Mitani et al. (2020) shows the application
of saliency maps to identify the region in fundus images
related to anemia, and Bien et al. (2018) demonstrates
that saliency maps can assist clinicians in diagnosing
knee injury from MRI scans.

Specifically, gradient-based maps have been widely ap-
plied to compute saliency maps for neural net classifiers.
Standard gradient-based saliency maps such as Simple-
Grad (Simonyan et al., 2013) and Integrated- Gradients
(Sundararajan et al., 2017), represent the input-based
gradient of a neural network at a test sample, which
reveals the input features with a higher local impact on
the neural network classifier’s output. Therefore, the
assignment of feature importance scores by a gradient-
based saliency map can be utilized to reveal the main
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features in�uencing the phenomenon.

However, a consideration for drawing conclusions from
gradient-based maps is their potential sensitivity to
the training algorithm of the neural network classi�er.
Arun et al. (2021); Woerl et al. (2023) have shown
that gradient maps could be signi�cantly di�erent for
independent yet identically distributed training sets, or
for a di�erent random initialization used for training
the classi�er. The sensitivity of the saliency maps is
indeed valuable in debugging applications, where the
map is used to identify potential reasons behind a mis-
classi�cation case. On the other hand, the instability
of gradient-based maps could hinder the applications
of Simple-Grad and Integrated-Gradients maps for phe-
nomena discovery (Arun et al., 2021), as for a gener-
alizable understanding of the underlying phenomenon,
the resulting saliency maps need to have limited de-
pendence on the stochasticity of training data sampled
from the underlying data distribution.

In this work, we speci�cally study the in�uence of
Gaussian smoothing used in the Smooth-Grad algo-
rithm (Smilkov et al., 2017) on the stability of a
gradient-based map. We provide theoretical and numer-
ical evidence that Gaussian smoothing could increase
the stability of saliency maps to the stochasticity of
the training setting, which can improve the reliability
of applying the gradient-based map for phenomena
understanding using the neural net classi�er.

To theoretically analyze the stability properties of
saliency maps, we utilize the algorithmic stability frame-
work in Bousquet and Elissee� (2002) to quantify the
expected robustness of gradient maps to the stochastic-
ity of a randomized training algorithm, e.g. stochastic
gradient descent (SGD), and randomness of training
data drawn from the underlying distribution. Follow-
ing the analysis in Hardt et al. (2016), we de�ne the
stability error of a stochastic training algorithm and
bound the error in terms of the number of training
data and SGD training iterations for the Simple-Grad,
Integrated-Gradients, and Smooth-Grad. Our stabil-
ity error bounds suggest the improvement in stability
by applying the randomized smoothing mechanism in
Smooth-Grad. Speci�cally, our error bounds improve
by a factor 1=� under a standard deviation parameter
� of the Smooth-Grad's Gaussian noise.

In addition to the stability of gradient maps under
Gaussian smoothing, we also bound the faithfulness of
the Gaussian smoothed saliency maps to the original
Simple-Grad and Integrated-Gradients interpretation
maps, for which we de�ne �delity error 1. We show
that by increasing the standard deviation parameter

1 In this paper, the �delity term refers to the faithfulness
of the regularized saliency map to the original saliency map.

� , the �delity error grows proportionally to parameter
� . This relationship indicates the stabilization o�ered
by Gaussian smoothing at the price of a higher �delity
error compared to the original saliency map. As illus-
trated in Figure 1, the Smooth-Grad saliency maps
could be considerably more stable to the training set
of the neural network, while they could signi�cantly
di�er from the original Simple-Grad map. We note that
di�erent applications of saliency maps may prioritize
stability or �delity di�erently. For instance, debugging
misclassi�cations would require higher �delity, while
phenomena discovery would prioritize higher stability.
Therefore, understanding the stability-�delity prop-
erties of Smooth-Grad maps helps with a principled
application of the algorithm to di�erent tasks.

We perform numerical experiments to test our theo-
retical results on the algorithmic stability and �delity
of interpretation maps under Gaussian smoothing. In
the experiments, we tested several standard saliency
maps and image datasets. We empirically analyzed
a broader range of instability sources in the training
setting and demonstrated that Gaussian smoothing can
lead to higher stability to the changes in the training
algorithm and neural network architecture. The numer-
ical results indicate the impact of Gaussian smoothing
in reducing the sensitivity of the gradient-based in-
terpretation map to the stochasticity of the training
algorithm at the cost of a higher di�erence from the
original gradient map. We can summarize this work's
main contribution as:

ˆ Studying the algorithmic stability and generalization
properties of gradient-based saliency maps.

ˆ Proving bounds on the algorithmic stability error
of saliency maps under vanilla and noisy stochastic
gradient descent (SGD) training algorithms.

ˆ Analyzing the �delity of Smooth-Grad maps and
their faithfulness to the Simple-Grad map.

ˆ Providing numerical evidence on the stability-�delity
trade-o� of Smooth-Grad maps on standard image
datasets.

2 RELATED WORK

Gradient-based Interpretation A prevalent method
for generating saliency maps involves computing the
gradient of a deep neural network's output with re-
spect to an input image. This technique is extensively
utilized in numerous related studies, including Smooth-
Grad (Smilkov et al., 2017), Integrated-Gradients (Sun-
dararajan et al., 2017), DeepLIFT (Shrikumar et al.,
2017), Grad-CAM (Selvaraju et al., 2017), and Grad-
CAM++ (Chattopadhay et al., 2018). However,
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gradient-based saliency maps often exhibit considerable
noise. To address this, various methods have been pro-
posed to enhance the quality of these maps by reducing
noise. Common strategies include altering the gradient
�ow through activation functions (Zeiler and Fergus,
2014; Springenberg et al., 2014), eliminating negative
or minor activations (Springenberg et al., 2014; Kim
et al., 2019; Ismail et al., 2021), and integrating sparsity
priors (Levine et al., 2019; Zhang and Farnia, 2023).
Despite these advancements, these techniques do not
explicitly tackle the noise and variability in stochastic
optimization and the randomness of training data.

Stability Analysis for Interpretation Maps Be-
yond visual quality, several studies have explored the
stability of interpretation methods. Arun et al. (2021)
examined the consistency within the same architecture
and across di�erent architectures for various interpreta-
tion methods on medical imaging datasets, discovering
that most methods failed in their tests. Woerl et al.
(2023) conducted experiments revealing that neural
networks with di�erent initializations produce distinct
saliency maps. Similarly, Fel et al. (2022) highlighted
the instability in interpretation maps and proposed a
metric to evaluate the generalizability of these maps.
To address this instability, Woerl et al. (2023) sug-
gested a Bayesian marginalization technique to elim-
inate noise from random initialization and stochastic
training, though it is computationally intensive due
to the need to train multiple networks. Furthermore,
Zhang and Farnia (2023) propose MoreauGrad which
is a robust and sparsi�ed version of the SimpleGrad
and SmoothGrad algorithms. The related works (Gong
et al., 2024a, 2025) develop adversarial training meth-
ods for improving the robustness and visual quality
of saliency maps, while Gong et al. (2024b) leverage
image super-pixels for enhanced stability. On the other
hand, our work focuses on the stability e�ects o�ered
by Gaussian smoothing applied in SmoothGrad.

Sanity checks for saliency maps Evaluating the
application of saliency maps has been studied in sev-
eral related works. The related work (Adebayo et al.,
2018) proposes sanity checks for interpretation maps,
where the saliency map is supposed to depend on the
characteristics of input data and how the label y is
determined by the input feature vector x. We note
that the algorithmic stability considered in our paper
is orthogonal to the sanity checks designed in Adebayo
et al. (2018), as the algorithmic stability analysis is per-
formed while leaving the distribution py jx of training
data unchanged. Similarly, the algorithmic stability
notion in our work is independent of the robustness
of interpretation maps to adversarial perturbations
studied by Ghorbani et al. (2019) and the insensitiv-
ity of the interpretation maps to unrelated features

discussed in Kindermans et al. (2019), as our de�ned
algorithmic stability implies neither robustness of the
map to adversarially-designed perturbations nor its
insensitivity to semantically unassociated features.

3 PRELIMINARIES

3.1 Supervised Learning and Neural Network
Optimization

In this work, we consider a classi�cation task with a
neural network classi�er. The supervised learner has
access to the training setS = f (x i ; yi )gn

i =1 containing
n samples, independently drawn from a population
distribution PX;Y . We usem to denote the dimension
of input feature vector x 2 X � Rm . Also, c denotes
the number of classes in the classi�cation task, i.e,
y 2 f 1; 2; : : : ; cg. We apply a gradient-based training
algorithm to learn the parameters of the neural network
with the training set S.

Our analysis focuses on a class ofk-layer neural net-
works. The prediction function can be represented by
f W (x) = Wk � (Wk � 1� (: : : � (W1x))) 2 Rc, with W de-
noting the vector containing all parameters. We assume
� (�) is 1-Lipschitz and � (0) = 0 . The neural network
parameters are learned by minimizing the loss function
de�ned over the training set, which is

min
W

1
n

nX

i =1

`(W; x i ; yi ) (1)

where the loss function computes the di�erence between
prediction logits and the ground-truth label. This
problem formulation is well-known as Empirical Risk
Minimization (ERM). We assume our network loss
function which takes as input the logit and a class label
`(o; y) : Rc � Y ! R to be 1-Lipschitz. The commonly
used cross-entropy loss function satis�es this property.

To train the neural network's parameters, we consider
the standard stochastic gradient descent (SGD) opti-
mizer that performs T iterations of uniformly selecting
a training data point (x i ; yi ) and using this rule:

Wt +1 = Wt � � t r W `(Wt ; x i ; yi ) (2)

We also consider the noisy stochastic gradient descent
(SGD) algorithm, with the following update rule at
iteration t:

Wt +1 = Wt � � t r W
è(Wt ; x i ; yi )

where è(W; x; y) := EV2 N (0 ;� 2 I ) [`(W + V; x; y)] (3)

In the following proposition, we show the noisy loss
function optimized in the above update rule is a smooth
function.
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Proposition 1. Suppose that for everyx; y the loss
function `(W; x; y) is L -Lipschitz with respect to W.
Then, the noisy loss function è(W; x; y) is L

� -smooth
with respect to W.

3.2 Notations

Throughout the paper, the norm k � k refers to the
`2-norm for both vectors and matrices. We assume
that the `2-matrix norm of each weight matrix Wi

is bounded by B i , and the input image `2-norm or
kxk is upper bounded by C. We let xmin and xmax

denote the minimum and maximum possible values of
all pixels in x, respectively. Thus, xmax � xmin denotes
the pixel value range. To simplify our formula, we
use the notation � t;i as the sum of the product of all
(t � i )-subsets ofB1; : : : ; B t . In particular, we de�ne
� t; 0 =

Q t
i =1 B i ; � t; 1 =

P t
i =1

Q
j 6= i;j � t B j .

3.3 Saliency Maps

To interpret the classi�cation output of a trained neural
network for input x, we use the prediction logitsf W (x)
and are in particular interested in the value of the y-th
component, wheref W (x) is the neural network function
with parameters W and the input x. For the training
set S, we useW = A(S) to denote the output of a
randomized training algorithm A. Saldenotes a general
saliency map algorithm, which takesA(S) as input and
can output a gradient-based mapSalA (S) (x; y) at each
labeled data point (x; y). In this work, we analyze the
following standard gradient-based saliency maps:

Simple-Grad. Simple-Grad (Baehrens et al., 2010;
Simonyan et al., 2013) calculates the gradient of the
logit concerning each input pixel:

SimpleGradA (S) (x; y) = r x (f A (S) (x)) y : (4)

Smooth-Grad. Smooth-Grad (Smilkov et al., 2017)
calculates the mean of the Simple-Grad map evaluated
at a perturbed input data with a Gaussian noise

SmoothGradA (S) (x; y)

= Ez� N (0 ;� 2 I )
�
r x (f A (S) (x + z)) y

�
(5)

Integrated-Gradients. Integrated-Gradients (Sun-
dararajan et al., 2017) calculates the integral of the
scaled gradient map from a reference pointx0 to the
given data point x:

IntegratedGradA (S) (x; y)

= ( x � x0) �
Z 1

0
r x (f A (S) (x0 + � (x � x0))) y d�: (6)

4 ALGORITHMIC STABILITY OF
SALIENCY MAPS

In this work, we study the algorithmic stability of
saliency maps. To this end, we �rst de�ne a loss func-
tion for saliency maps

`0(A(S); x; y) = k SalA (S) (x; y) � SalA (D ) (x; y)k; (7)

where the reference saliency map is de�ned as
SalA (D ) (x; y) := ES;A [SalA (S) (x; y)], the expectation
of saliency maps across all training datasetsS of sizen
drawn from the underlying data distribution D . Then
we can de�ne the corresponding test loss and training
loss by

L 0
D (A(S)) = E(x;y ) � D [`0(A(S); x; y)] (8)

L 0
S (A(S)) = E(x;y ) � U (S) [`

0(A(S); x; y)] (9)

Intuitively, a more stable saliency map algorithm to the
stochasticity of training data would produce saliency
maps with higher similarity for two datasets with only
one di�erent sample. Formally, we de�ne the stability
error of a saliency map algorithmSal in the worst case
as follows, whereS and S0 are two datasets of sizen that
di�er in only one sample and we take the expectation
over the randomness of the training algorithmA:

� stability (Sal) := sup
S;S 0;x;y

EA

h
`0(A(S); x; y)

� `0(A(S0); x; y)
i

(10)

We recall the theorem stating that stability implies
generalization in expectation (Bousquet and Elissee�,
2002). In our setting, we extend the original statement
and demonstrate that the generalization error of a
saliency map is bounded by the stability error of the
saliency map algorithm. This indicates the importance
of providing theoretical guarantees for stability error.

Theorem 2. With our de�ned loss function, we can
upper bound the generalization error of the saliency
map algorithm by its stability error.

ES;A [L 0
D (A(S)) � L 0

S (A(S))] � � stability (Sal)

Proof. We defer the proof to the Appendix.

In this section, we then focus on the stability of some
commonly used saliency map algorithms, aiming to
discover what factors make a saliency map algorithm
more stable.

4.1 Stability of Simple-Grad

To prove a saliency map algorithm is stable, we consider
the `2 di�erence of the predicted saliency maps when
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the two training sets S and S0 only di�er at one data
point. To upper bound the stability error, we analyze
that di�erent loss functions of saliency maps, `0(�), are
bounded and Lipschitz.

Similar to Hardt et al. (2016), we consider using the
stochastic gradient descent (SGD) algorithm (can be
vanilla or noisy version) and need some assumptions
for the training loss function.

Assumption 3. (a) The loss function `(�; x; y) is L -
Lipschitz for all x; y, that is, for any V; W we have

k`(V; x; y) � `(W; x; y)k � LkV � Wk

(b) The loss function `(�; x; y) is � -smooth for all x; y,
that is, for any V; W we have

kr V `(V; x; y) � r W `(W; x; y)k � � kV � Wk

Remark 4. (1) For noisy SGD introduced in Equation
3, we can upper boundL � � k; 1C due to lemma D.8,
and upper bound � � L

� according to Proposition 1.

(2) For regular SGD, the upper bound for L still holds.
However, based on lemma D.8, we need to additionally
assume both the activation function � (�) and the loss
function which takes as input the logit `(�; y) for any y
are 1-smooth to show� � (3k + 1)� 2

k; 1C2.

The following theorem upper bounds the stability error
of Simple-Grad in terms of parameters of the SGD
algorithm ( T and c), the Lipschitz and smoothness con-
stants of the loss function (L and � ), and the quantity
related to the neural network (� ). Here we refer to both
the vanilla and noisy versions as the SGD algorithm.

Theorem 5. Suppose Assumption 3(a) and 3(b)
hold. If we run SGD for T steps with a decay-
ing step size � t � c=t in iteration t, by de�ning
� = (2� k; 0

P k � 1
i =1 � i; 1C)1=( �c +1) (2� k; 0) �c= ( �c +1) , we

can bound the stability error of Simple-Grad by

� stability (SimpleGrad) � Up(SimpleGrad)

:=
1 + �c
n � 1

(2cL)
1

�c +1 T
�c

�c +1 �

Proof. We defer the proof to the Appendix.

4.2 Stability of Smooth-Grad

For Smooth-Grad with a simple adjustment where we
perform normalization to ensure the input to the neural
network has an`2 norm not exceedingC, we can prove
the following upper bound.

Theorem 6. Suppose Assumption 3(a) and 3(b) hold.
If we run SGD for T steps with a decaying step size

� t � c=t in iteration t, we can bound the stability error
of Smooth-Grad by

� stability (SmoothGrad) � Up(SimpleGrad)

�

 
� k; 1

2� � k; 0
P k � 1

i =1 � i; 1

! 1
�c +1

Proof. We defer the proof to the Appendix.

Comparing Theorem 5 and Theorem 6, we observe
that Smooth-Grad exhibits a lower stability error by
multiplying a dimension-free constant smaller than 1.
Theorem 6 also provides a non-asymptotic dimension-
free guarantee that as the� value becomes larger, the
stability error vanishes to 0. This suggests that the
smoothing �lter enhances the algorithmic stability of
high-dimensional saliency maps.

4.3 Fidelity of Gaussian Smoothed Saliency
Maps

We then illustrate that this stability improvement
comes at the expense of �delity. As� increases, the
Gaussian-smoothed saliency map diverges further from
the ground-truth map.

First, we formally de�ne the �delity error � �delity (Sal; � )
of the � -smoothed saliency map algorithm Sal as
the largest possible expected̀2-distance between the
smoothed and unsmoothed saliency maps for any train-
ing set S, labeled data samplex; y, where the expecta-
tion is over the randomness of the algorithm. Speci�-
cally, �delity error is de�ned as:

sup
S;x;y

EA

h

 Ez� N (0 ;� 2 I )

�
SalA (S) (x + z; y)

�

� SalA (S) (x; y)



i

(11)

We present the following proposition to upper bound
the �delity error of Smooth-Grad and the smoothed
version of Integrated-Grad, indicating the �delity error
grows with the Gaussian smooth factor� .

Proposition 7. The �delity error of both Smooth-Grad
and the smoothed version of Integrated-Grad increase
accordingly with the Guassian smoothing factor� . In
particular, by de�ning � = � k; 0

P k � 1
i =1 � i; 0, we have

� �delity (SimpleGrad; � ) � � �
p

m

� �delity (IntegratedGrad; � ) � �(3 C + 1) �
p

m

Proof. We defer the proof to the Appendix.
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Figure 2: Relationship between stability error of saliency maps and sigma, evaluated on the CIFAR10 test set.
The shaded region indicates one standard deviation from the mean value. Here noise levelxmax � xmin represents
the largest value range for all pixels, following the practice of Smilkov et al. (2017).

Figure 3: Relationship between stability error of saliency maps and sigma, evaluated on the ImageNet test set.
The shaded region indicates one standard deviation from the mean value.

5 NUMERICAL EXPERIMENTS

The goal of our numerical experiments is to validate
the stability-�delity tradeo� incurred by choosing dif-
ferent smoothing factors � . We evaluated di�erent
neural network architectures and di�erent training set
sizes on CIFAR10 (Krizhevsky and Hinton, 2009) and
ImageNet (Deng et al., 2009) datasets. We trained
ResNet34 (He et al., 2015) for CIFAR10 and ResNet50
for ImageNet, due to di�erent dataset scales. More
detailed experiment con�gurations are in Appendix C.

5.1 Saliency Map Stability and Fidelity
Numerical Results

To evaluate the algorithmic stability of saliency maps,
we need to perturb one training sample multiple times
and train a neural network from scratch for each per-
turbed training set S0. However, this approach is
computationally prohibitive. As an alternative, we
randomly divide the original training set S into two
disjoint subsetsS1 and S2 so that the two training sub-

sets can be regarded as independently sampled from
the test distribution, and train two neural networks
A(S1) and A(S2) on them. We then use the average
`2-di�erence between two predicted saliency maps as a
proxy for stability error, formulated as

E(x;y ) � D k SalA (S1 ) (x; y) � SalA (S2 ) (x; y)k (12)

We conducted experiments on CIFAR10 in Figure 2
and ImageNet in Figure 3 for di�erent saliency map
algorithms as the smoothing factor � changes. Our
results con�rm that increasing � consistently decreases
the stability error of the saliency maps.

To evaluate the �delity error of a � -smoothed saliency
map, we similarly calculate

E(x;y ) � D E2
i =1


 Ez� N (0 ;� 2 I ) [SalA (Si ) (x + z; y)]

� SalA (Si ) (x; y)

 (13)

as a proxy, where SalA (S) (x; y) represents a non-
smoothed saliency map.

We also performed experiments on CIFAR10 in Figure
4 and ImageNet in Figure 5 to evaluate the �delity of
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Figure 4: The relation between the saliency map �delity error and sigma. This experiment is conducted on the
test set of CIFAR10. The shaded area represents one standard deviation.

Figure 5: The relation between the saliency map �delity error and sigma. This experiment is conducted on the
test set of ImageNet. The shaded area represents one standard deviation.

the saliency maps for di�erent saliency map algorithms
as the smoothing factor� varies. The results show that
the �delity error increases consistently as � increases,
supporting our theoretical �ndings.

5.2 Visualizations of Saliency Map Stability
and Fidelity

We visualize the di�erences between two saliency maps
when training two neural networks on di�erent training
sets. From the results of two neural networks trained on
disjoint training subsets of 500; 000 samples from Ima-
geNet in Figure 7, we observe that Gaussian smoothing
makes the saliency maps more similar and thus more
stable to the randomness of training samples.

Additionally, we visualize the trend that a larger �
results in a smoothed saliency map that is less similar
to the vanilla version, as demonstrated in Figure 8 for
Simple-Grad and in Figure 9 for Integrated-Grad.

The visualization results, along with our theoretical
�ndings, indicate that Gaussian smoothing enhances
the stability of saliency maps at the expense of �-

delity. Therefore, the choice of � in practical appli-
cations should be carefully determined by considering
this trade-o�, since applications of saliency maps could
require di�erent levels of the two factors.

5.3 Empirical Results on Generalized Settings

Beyond the randomness of training settings, we further
examine other sources that could cause instability in
interpretation: di�erent training recipes and model
architectures. Extensive experiments across various
settings, as shown in Table 1, empirically indicate that
the stabilizing e�ect of Gaussian smoothing also holds
in di�erent scenarios. We use the structural similarity
index measure SSIM (Wang et al., 2004) to evaluate
the similarity of two saliency maps and a larger SSIM
value indicates that the two maps are more perceptually
similar. We additionally use top-k mIoU to evaluate
the similarity by calculating mIoU between the most
salient k = 500 pixels of two maps.

In the top four rows, we train two ResNet50 models
on two disjoint ImageNet training subsets of 500,000
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Table 1: Average SSIM and top-k mIoU scores for saliency maps from two neural networks evaluated on a random
subset of the ImageNet test set. Smoothed scores are computed after applying Gaussian smoothing to both
saliency maps. We consider various settings including di�erent training sets (DT), di�erent recipes for training
(DR), di�erent architectures of neural networks (DA). We use �= (xmax � xmin ) = 0 :15 and draw 100 samples to
calculate smoothed saliency maps in all settings.Bold represents the better score.

Setting Algorithm Architecture SSIM Smoothed SSIM top-k mIoU Smoothed top-k mIoU

DT Simple-Grad ResNet50 0.163 0.227 0.061 0.122
DT Integrated-Grad ResNet50 0.270 0.326 0.085 0.163
DT Grad-CAM ResNet50 0.872 0.846 0.110 0.158
DT Grad-CAM++ ResNet50 0.874 0.886 0.127 0.221

DR Simple-Grad ResNet50 0.150 0.179 0.050 0.092
DR Integrated-Grad ResNet50 0.259 0.294 0.072 0.141
DR Grad-CAM ResNet50 0.729 0.754 0.070 0.165
DR Grad-CAM++ ResNet50 0.725 0.743 0.047 0.174

DA Simple-Grad ResNet34 & ResNet50 0.141 0.180 0.053 0.112
DA Integrated-Grad ResNet34 & ResNet50 0.249 0.279 0.064 0.150
DA Simple-Grad ResNet50 & Swin-T 0.095 0.140 0.025 0.068
DA Integrated-Grad ResNet50 & Swin-T 0.172 0.202 0.031 0.088
DA Simple-Grad ResNet50 & ConvNeXt-T 0.102 0.167 0.035 0.079
DA Integrated-Grad ResNet50 & ConvNeXt-T 0.208 0.258 0.041 0.109
DA Simple-Grad Swin-T & ConvNeXt-T 0.201 0.201 0.047 0.100
DA Integrated-Grad Swin-T & ConvNeXt-T 0.268 0.242 0.053 0.121

Figure 6: The e�ect of Gaussian smoothing with di�erent � choices on SSIM and top-k mIoU for Simple-Grad
and Integrated-Grad, where the two neural networks are trained on two splits of the ImageNet training set.

samples each. For all other rows, we use pre-trained
checkpoints provided by TorchVision (maintainers and
contributors, 2016). Since TorchVision provides two
ResNet50 checkpoints trained with di�erent schemes,
we use this pair for the middle four rows of our table.
For the ResNet50 models in the bottom rows, we use
the checkpoint version 1 .

First, when networks are trained on di�erent train-
ing sets, Gaussian smoothing makes the resulting
saliency maps more similar for both Simple-Grad and
Integrated-Grad. For advanced saliency map algo-
rithms such as Grad-CAM (Selvaraju et al., 2017) and
Grad-CAM++ (Chattopadhay et al., 2018), the vanilla
maps have high SSIM values due to the concentrated
and block-like patterns, yet their top-k mIoU are still
modest. Applying Gaussian smoothing occasionally
causes signi�cant visual changes in one saliency map

but not the other, resulting in a slightly lower SSIM
value for Grad-CAM. Second, the instability caused
by di�erent training recipes can be largely mitigated
by Gaussian smoothing, with better SSIM and top-k
mIoU scores. See the corresponding visualization for
Simple-Grad in Figure 10 in Appendix A.

Third, the e�ect of smoothing holds for most cross-
architecture experiments. Besides ResNet, we also
evaluated more recent architectures such as Swin Trans-
former (Liu et al., 2021) and ConvNeXt (Liu et al.,
2022). See Figures 11, 12, and 16 for corresponding
visualizations in Appendix A. Finally, saliency map
algorithms like Grad-CAM and Grad-CAM++ also
enjoy improved stability through Gaussian smoothing
in some scenarios according to Table 1. See Figures 13,
14, and 15 for visualizations of Integrated-Grad, Grad-
CAM, and Grad-CAM++ in Appendix A. Figure 6
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Figure 7: Visualization of saliency map di�erences for two ResNet50 models trained on disjoint subsets of the
ImageNet training set, each containing 500,000 random samples. The �rst row shows the input image. The second
and third rows display the Simple-Grad results. The fourth and �fth rows show the Smooth-Grad results with
�= (xmax � xmin ) = 0 :15.

Figure 8: Visualization of Simple-Grad becoming less similar to the original unsmoothed map with the Gaussian
smoothing as the factor�= (xmax � xmin ) increases.

shows that the highest stabilizing e�ect of Gaussian
smoothing can be achieved with a proper choice of� .

6 CONCLUSION

In this work, we analyzed the stability �delity trade-o�
in the widely-used Smooth-Grad interpretation map.
Our results indicate the impact of Gaussian smoothing
on the stability of saliency maps to the stochasticity
of the training setting. On the other hand, we show
Gaussian smoothing could lead to a higher discrepancy

with the original gradient map. Therefore, Gaussian
smoothing needs to be utilized properly, depending
on the target application's aimed stability and �delity
scores. Performing an analytical study of the e�ects of
Gaussian smoothing on the sanity checks in Adebayo
et al. (2018) is an interesting future direction to our
work. While Adebayo et al. (2018) numerically shows
that Smooth-Grad passes the sanity checks, an anal-
ysis of the � parameter in Gaussian smoothing and
Smooth-Grad's performance in the sanity checks will
be a relevant topic for future study.
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A More Results

Due to the space limit of the main text, we put more results here. Figure 9 visualizes the trend of less faithfulness
to the original saliency map with increasing � . Figure 10 displays two ResNet50 checkpoints trained with
di�erent recipes. Figure 11, 12, 16 show our �ndings extend to the case where two neural networks use di�erent
architectures (and naturally the training recipes also di�er). Figure 13, 14, 15 shows the stabilizing e�ect of
Gaussian smoothing for Integrated-Grad, Grad-CAM, and Grad-CAM++, respectively. These visualizations,
together with Table 1 in the main text, provide empirical evidence that Gaussian smoothing can generally stabilize
saliency maps across various settings.

Figure 9: Visualization of Integrated-Grad becoming less similar to the original unsmoothed map with the
Gaussian smoothing as the factor� increases.

Figure 10: Visualization of saliency maps of two pre-trained ResNet50 checkpoints provided by TorchVision (main-
tainers and contributors, 2016). The �rst row is the input image. The second and third rows are Simple-Grad
results. The fourth and �fth rows are Smooth-Grad with �= (xmax � xmin ) = 0 :15.
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Figure 11: Visualization of saliency maps of pre-trained ResNet50 and Swin-T checkpoints provided by TorchVi-
sion (maintainers and contributors, 2016). The �rst row is the input image. The second and third rows are
Simple-Grad results. The fourth and �fth rows are Smooth-Grad with �= (xmax � xmin ) = 0 :15.

Figure 12: Visualization of saliency maps di�erences of pre-trained ResNet50 and ConvNeXt-tiny checkpoints
provided by TorchVision (maintainers and contributors, 2016). The �rst row is the input image. The second and
third rows are Simple-Grad results. The fourth and �fth rows are Smooth-Grad with �= (xmax � xmin ) = 0 :15.
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