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Abstract
Spatial transcriptomics (ST) technologies en-
able the mapping of gene and protein abun-
dance within specific tissue architectures, rep-
resenting a significant advancement over con-
ventional bulk analyses that can obscure criti-
cal prognostic markers tied to spatial contexts.
Expanding these analyses to three dimensions
(3D) can further uncover intricate biomolecular
phenomena that may be truncated or missed
in two-dimensional (2D) studies. However,
the widespread application of 3D ST profil-
ing is limited by high costs and logistical chal-
lenges. Deep learning-based inference of ST
data from routine histopathological staining of-
fers a cost-effective alternative, allowing for the
exploration of histologically associated biologi-
cal pathways in 3D and enhancing our ability
to detect structures linked to tumor progres-
sion. In this proof-of-concept study, we em-
ployed deep learning models to infer ST data
from routine histopathology for 10 colorectal
cancer patients, with 10 serial sections ana-
lyzed per patient. Our downstream analyses
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revealed several key instances where 3D ap-
proaches provided enhanced insights into cel-
lular phenomena compared to traditional 2D
methods. These findings lay the groundwork for
future research aimed at leveraging these meth-
ods to investigate subtle 3D biomarkers associ-
ated with tumor metastasis and recurrence.

Keywords: pathology, spatial transcrip-
tomics, deep learning, 3D spatial transcrip-
tomics, graph deep learning

Data and Code Availability Data utilized in
this study included: 1) Serial histopathological sec-
tions of colorectal cancer tissue specimens from the
*Dartmouth Hitchcock Medical Center. 2) 10x Ge-
nomics Visium Spatial Transcriptomics samples col-
lected and assayed from colorectal cancer patients
at the Dartmouth Hitchcock Medical Center. 3)
Single-cell RNA sequencing assayed at the Dart-
mouth Hitchcock Medical Center. We are unable to
make data immediately publicly accessible due to in-
stitutional restrictions surrounding patient data pri-
vacy, though anonymized access can be granted upon
reasonable request. The code used to perform anal-
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yses in this study is available on the study Github
repository.

Institutional Review Board (IRB) Human Re-
search Protection Program IRB of Dartmouth Health
gave ethical approval for this work.

1. Introduction

1.1. Spatial Profiling of the Tumor
Microenvironment

The highly heterogenous tumor microenvironment
(TME) represents a dynamic molecular landscape
which shapes tumorigenesis, progression, prognosis,
and treatment response (Dagogo-Jack and Shaw;
Lüönd et al.; Molinari et al.). Bulk tissue analysis
can often overlook relevant and crucial alterations
to specific TME components, warranting a spatial
analysis which can localize findings to specific tissue
architectures and lineages. In recent years, the ad-
vent and rising popularity of spatial transcriptomics
(ST), which can spatially map high dimensional gene
expression across tissue samples, has the potential
to significantly enhance our study of tumor hetero-
geneity by enhancing the scope and range of con-
sidered biological pathways. Thus, this technology
serves as a broad discovery tool that can facilitate fur-
ther research optimizing personalized medicine and
improved understanding of tumor pathology (Tian
et al.).

1.2. The Promise of 3D Pathology

Advances in computation – specifically deep learn-
ing approaches - and their application to histopathol-
ogy have greatly enabled the study of tumors within
complex 3D tissue volumes in contrast to traditional
pathology assessments conducted on 2D tissue slices
(Liu et al.). For instance, Xie et al. segmented
prostate glands from 3D biopsy imaging using deep
learning and extracted interpretable shape-based fea-
tures correlated with prognosis that were found to
be superior to typical 2D analysis. In a separate
work, Lin et al. found that histologic features com-
monly studied in 2D in fact form complex 3D struc-
tures with associated molecular gradients tied to spe-
cific tumor phenotypes. Application of these tech-
nologies to novel 3D open-top light-sheet microscopy
tools may further spur innovation in this field (Glaser
et al.).

Recently, methods to resolve ST in 3D have
emerged, such as Open-ST, a relatively low-cost se-
quencing technology tailored for 3D experimentation
(Schott et al.). Alternative approaches have applied
2D ST sequencing on serial slices using technologies
such as the 10x Genomics Visium Platform, followed
by slice integration to generate 3D gene expression
models (Vickovic et al.; Wang et al., b,c). These
works have demonstrated that ST can reconstruct 3D
histological structures and elucidate key molecular
underpinnings of relevant tissue morphology (Waylen
et al.). Further exploration of 3D ST has the poten-
tial to define clinically relevant cancer subtypes and
illuminate specific 3D biomolecular pathways that in-
fluence tumor progression and prognosis. This ap-
proach offers a novel avenue for cancer patient strat-
ification, enabling more precise phenotyping and the
identification of new therapeutic targets.

Existing 3D ST methods are typically limited by
their need for manual laboratory assaying which of-
ten requires high resource cost and processing time,
limiting the potential to perform 3D spatial molecu-
lar profiling at scale. To mitigate this issue for 2D
ST analysis, various works have successfully applied
deep learning to infer spatial gene expression from
routine histopathological tissue images (Fatemi et al.;
Levy-Jurgenson et al.; Zeng et al.). Although some
approaches have extended this inference to 3D by ex-
trapolating ST data to serially imaged tissue sections,
they still rely on initial ST profiling of the top section
and require hematoxylin and eosin (H&E) whole slide
images (WSI) taken with identical quality as the se-
rial sections, which has proven challenging. However,
to date, no published study has explored or compared
3D ST through the inference of gene expression solely
from imaging of underlying tissue collected from se-
rial deeper sections. Such efforts may provide a rapid
and low-cost method for researchers and clinicians to
assess tumors in high resolution with maximal tissue
and molecular context.

1.3. Contributions

Here, we apply a previously developed deep learning
model to infer spatial transcriptomics from routine
cancer histopathology to serial tissue slices. We use
the inferred gene expression profiles to create 3D ST
models of tumors, and demonstrate that considering
3D transcriptomic information yields richer under-
standing of the heterogeneous tumor microenviron-
ment compared to analyzing corresponding 2D slices.
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We conduct our study using samples from patients
diagnosed with colorectal cancer, a leading cancer
causing massive global burden with nearly 2 million
annual cases reported (Morgan et al.). Our results
suggest that deep learning-driven inference of spa-
tial transcriptomics can help facilitate the transition
toward a 3D comprehension of cancer tumors, en-
hancing both disease understanding and treatment
options.

2. Materials and Methods

2.1. Data Acquisition

2.1.1. ST Cohort for Model Training and
Internal Validation/Tuning

ST data was collected from 45 pT3 colorectal cancer
(CRC) tissue resection specimens using the 10X Ge-
nomics Visium CytAssist Platform. These patients
varied by their microsatellite instability and metas-
tasis (N/M-stage) status, age, sex, tumor location,
grade, and so forth. Visium data preprocessing and
quality control was conducted using the SpaceRanger
software, resulting in approximately 300,000 total ST
spots measuring expression for 17456 genes each. Due
to computational constraints and feasibility of this pi-
lot experiment, only the top 1000 most spatially vari-
able genes (SVG) were considered, as identified us-
ing the SpatialDE Python package (Svensson et al.).
H&E-stained WSI at 40x magnification was also ob-
tained for the same ST samples and co-registered via
the CytAssist platform.

2.1.2. Validation Cohort for 3D Inference

Separately, 10 independent CRC tissue specimens
were selected for 3D profiling – local/distant tumor
involvement was noted for half of these patients. A
total of 10 serial sections were performed from each
tissue block, with a vertical slice separation distance
of 5 microns. Tissue staining and imaging followed
the aforementioned protocol (automated tissue stain-
ing, imaging with 40X Leica Aperio GT450 scanner)
to ensure consistency with what was done for Vi-
sium profiling. An adjacent section placed above tis-
sue sections selected for genomics and imaging was
annotated by two board-certified pathologists, parti-
tioning the tissue into various histological architec-
tures (e.g., normal epithelium, tumor, tertiary lym-
phoid structures). WSI representing serial sections

from each tissue block were coregistered to form a 3D
structure using the VALIS software (Gatenbee et al.).

Finally, we collected a reference single-cell RNA
sequencing dataset (scRNASeq) spanning approxi-
mately 115,000 cells across 10 patients at serial tissue
sections representative of our spatial cohort. Cell-
type annotation was performed using the scvi Python
package (Lopez et al.) and the Human Colorectal
Cancer Atlas (Pelka et al.) reference database for
the following types of cells: B cells, epithelial cells,
mast cells, myeloid cells, plasma cells, stromal cells,
and T cells, natural killer cells, and innate lymphoid
cells (TNKILC).

All samples were collected from the Dartmouth
Hitchcock Medical Center following appropriate IRB
approval. H&E images were stain-normalized using
the Macenko method (Macenko et al.). All WSI were
split into non-overlapping patches of 512x512 pixels
excluding image background. Patches from WSI with
corresponding ST available were spatially centered on
Visium ST spots.

2.2. Generation of Inferred 3D Spatial
Transcriptomics Information

The primary focus of this work is the innovative appli-
cation of a validated Swin Transformer model to 3D
histopathological data, with the goal of gaining new
insights into 3D spatial transcriptomics. The Swin
Transformer learns meaningful relationships across
scales within the input 512x512 images, which is ad-
vantageous due to the inherent multi-scale nature of
histopathology where macro and micro-architectural
features are observable at different levels. Building
on a previous study (Fatemi et al.), this new model
was designed to predict gene expression profiles from
histopathological image patches using a much larger
dataset of about 300,000 Visium spots, achieving
a median Spearman correlation of 0.55 across the
top 1000 SVG. While detailed model development
and performance statistics are discussed in a contem-
poraneous paper currently under review (Srinivasan
et al.), validation statistics were presented in this sec-
tion to demonstrate the model’s robustness and readi-
ness for this 3D application. This study leverages the
model’s capabilities, not as an end, but as a tool to
explore and understand the complexities of 3D tissue
architecture and gene expression.

The trained ST inference model was applied to tis-
sue image patches from all 2D serial sections. This
resulted in an Nx1000 dimensional gene expression
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Figure 1: Study workflow overview, including collection of serial 2D images from tumor resections, inference
of spatial transcriptomics profiles from image patches using deep learning, and 3D tissue models
for studying molecular heterogeneity.

array for each section from each tissue block, where
N is the number of patches in that section. For each
tissue block, the sections and corresponding inferred
ST spots were vertically stacked using VALIS to cre-
ate 3D ST data representing the captured tumor re-
gion. Mean neighborhood pooling on 2D sections
were used to average inferred expression from adja-
cent patches to address downstream computational
methods which were infeasible with the near-single
cell resolution of the inferred 3D ST data. To enrich
3D ST data with maximum molecular context, we ap-
plied the Stitch3D framework (Wang et al., a), which
uses graph neural networks (GNN) to learn informa-
tive representations of 3D ST where cross-slice infor-
mation is integrated and slice-wise batch effects are
removed. We ensured the removal of these batch ef-
fects by visualizing expression profiles colored by slice
number using UMAP (McInnes et al.) (Appendix
??).

2.3. Investigation of Tumor Heterogeneity in
3D

To assess how our 3D ST models enable the inves-
tigation of tumor heterogeneity, we first applied the
Leiden community detection algorithm (Traag et al.)
to the 3D gene expression graphs for spatial domain
identification, revealing spatially defined biologically
meaningful and coherent regions. Leiden clustering
was done at varying resolutions to determine increas-
ingly nuanced and granular clusters. 3D models of
identified clusters were visualized for assessment of

spatial coherency. Separately, we applied the same al-
gorithm to the ST profile of the tissue slice at the top
of each 3D model, both with and without enrichment
by Stitch3D (described in previous section). This al-
lowed us to compare detected heterogeneity when full
3D information is used with across all tissue sections
within a sample, when 2D analyses are performed af-
ter enrichment with 3D information (“2.5D”), and
when solely “raw” 2D ST data is used. The consid-
eration of these settings facilitates the nuanced un-
derstanding of benefits and drawbacks of typical 2D
ST (“Raw 2D”), enriching 2D sections with informa-
tion from neighboring sections (“2.5D”), and enrich-
ing 2D sections with neighboring information while
considering all sections together (“3D”). At each res-
olution, the average number of spatial domains iden-
tified by each method across specimens were assessed
and compared through calculating a 95% confidence
interval.

Next, we used the popular Calinski-Harabasz score
(Calinski and Harabasz) (CH score) to compare the
clustering quality of 2D vs 3D spatial domains. This
metric was selected because it balances cluster sep-
aration and distance to assign higher values to well-
defined and distinct clusters. The mean CH score
across samples was measured and plotted for spatial
domains with Leiden resolution ranging from 0.05 to
0.95. Similarly, agreement with ground truth pathol-
ogy annotations was assessed by measuring and plot-
ting the Fowlkes-Mallow Index (Fowlkes and Mal-
lows) across the same range of Leiden resolutions.
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Here, the comparison was between “2.5D” and “Raw
2D ” samples, as groundtruth pathology annotations
were performed on single 2D image slices.

Finally, we utilized the ability of Stitch3D to
estimate spot-level cell-type proportions. Briefly,
Stitch3D utilizes the scRNA reference dataset to
identify marker genes for each cell-type, and scores
the presence of these marker genes in ST spots to
deconvolve the relative abundance of each cell-type.
Cell-type distributions were visualized in 3D mod-
els and qualitatively analyzed for concordance with
identified 3D spatial domains. We hypothesized that
3D spatial domains would partially reflect local cel-
lular aggregates of specific lineages, such as tertiary
lymphoid structures. To test this hypothesis, we se-
lected example spatial domains which appeared vi-
sually concordant with tested cell-types, and deter-
mined their top 50 marker genes using Wilcoxon
tests. We then used the Enrichr (Kuleshov et al.)
tool to explore biological pathways associated with
these genes, aiming to determine whether the identi-
fied spatial domains correspond to functionally spe-
cific cell subtypes. Given the expectation that 2D
spatial domains are likely to be more non-specific, we
anticipated that these domains would further subdi-
vide in 3D, revealing more nuanced biological path-
ways. The Reactome Pathway Database (Milacic
et al.) was used for the pathway analysis. We also
conducted a comparative analysis between broader
2D ST domains and the pathways identified within
corresponding subdivisions of these domains based
on 3D projections into 2D. This comparison allowed
us to evaluate whether the added dimensionality in
3D provides more biologically salient insights into the
underlying cellular and molecular structures.

3. Results

3.1. 3D Spatial Transcriptomics Enriches
Coherent Spatial Domain Identification

Using the Leiden algorithm, we compared the average
number of spatial domains identified when consider-
ing corresponding 2D slices (“Raw 2D”), 2D slices
enriched with information from 3D models (“2.5D”),
and full 3D ST models (“3D”). Consideration of full
3D ST information consistently yielded the greatest
number of identified spatial domains across tested
resolutions (Table 1) – different domains were rele-
vant to different subsets of 2D serial sections. For
each Leiden clustering resolution (0.2, 0.5, 0.8), 3D

ST models yielded an average increase in spatial do-
main count of 71.1%, 92.4%, and 99%, respectively,
compared to the top 2D method.

Next, we visualized 3D spatial domains across sam-
ples to ensure their histological coherency and qual-
itative clustering quality. Examples of this analysis
are presented in Figure 4. A certified pathologist con-
firmed that 3D spatial domains were consistent with
histological structures of representative section.

Table 1: Tumor heterogeneity measured by average
number of spatial domains identified from
corresponding 2D and 3D spatial transcrip-
tomics models.

Leiden
Resolution

Raw 2D 2.5D 3D

0.2 4.50 ± 0.77 4.40 ± 0.50 7.70 ± 1.88
0.5 7.30 ± 0.76 7.90 ± 0.98 15.20 ± 2.56
0.8 10.10 ± 0.98 10.60 ± 1.38 21.10 ± 3.73

Figure 2: Examples of spatial domains identified in
3D tumor models across tested clustering
resolutions.

Spatial domain quality measured by Calinski-
Harabasz (CH) scores and agreement with pathology
elucidated through Fowlkes-Mallows (FM) scores are
presented in Figure 3A. 3D spatial domain clusters
were found to be consistently more well-separated
and dense measured using CH score across Leiden
resolutions. Agreement with histological annotations
were similar for “2.5D” and “Raw 2D” samples, illus-
trating that a 3D GNN did not significantly enhance
clustering for the same section but rather clustering
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across multiple sections (3D) was more informative.
However, the peak FM score for “2.5D” samples was
markedly higher than that of “Raw 2D” (53.4 and
49.1, respectively), demonstrating that 3D GNN inte-
gration enhanced identification of broader tissue do-
mains.

3.2. Prognostic Cell-Types Localized in 3D
vs. 2D

Table 2: Pathway analysis results for 3D and 2D stro-
mal domains.

3D Stromal
Domain A

P-
value

2D Stromal
Domain A

P-
value

Metabolism
Of Lipids
(R-HSA-556833)

4.8e-3

Zinc Efflux And
Compartmen-
talization
By SLC30 Family
(R-HSA-435368)

3.5e-3

Cholesterol
Biosynthesis
(R-HSA-191273)

1.3e-2

Trafficking And
Processing Of
Endosomal TLR
(R-HSA-1679131)

6.5e-3

Molecules Associated
With Elastic Fibres
(R-HSA-2129379)

1.4e-2
Zinc Transporters
(R-HSA-435354)

8.5e-3

3D Stromal Domain B
Metal Ion SLC
Transporters
(R-HSA-425410)

1.3e-2

Signaling By
BMP
(R-HSA-201451)

1.3e-2

NOTCH3 Intracellular
Domain Regulates
Transcription
(R-HSA-9013508)

1.3e-2

Regulation Of
Necroptotic
Cell Death
(R-HSA-5675482)

1.4e-2
Insulin Processing
(R-HSA-264876)

1.3e-2

RIPK1-mediated
Regulated Necrosis
(R-HSA-5213460)

1.5e-2
Signaling By BMP
(R-HSA-201451)

1.3e-2

We visualized estimated relative abundances of
prognostic cell-types in our 3D and 2D tumor mod-
els from the same samples. Specifically, we investi-
gated T cells, NK cells, and innate lymphoid cells
(TNKILC), as well as stromal cell abundances as
their presence and spatial distributions were easier
to validate visually, and both immune infiltration
and collagen remodeling are highly relevant study-

Table 3: Pathway analysis results for 3D and 2D
TNKILC domains.

3D TNKILC
Domain A

P-
value

2D TNKILC
Domain A

P-
value

Scavenging By
Class F
Receptors
(R-HSA-3000484)

3.0e-3

Scavenging By
Class F
Receptors
(R-HSA-3000484)

3.0e-3

HSF1 Activation
(R-HSA-3371511)

1.4e-2
eNOS Activation
(R-HSA-203615)

5.5e-3

mRNA Capping
(R-HSA-72086)

1.6e-2
Attenuation Phase
(R-HSA-3371568)

1.3e-2

3D TNKILC
Domain B

2D TNKILC
Domain B

Cellular Response
To Chemical Stress
(R-HSA-9711123)

3.5e-3
Signaling By
Rho GTPases
(R-HSA-194315)

7.5e-6

Killing Mechanisms
(R-HSA-9664420)

5.5e-3
Killing Mechanisms
(R-HSA-9664420)

1.2e-5

Innate
Immune System
(R-HSA-168249)

6.2e-3
Immune System
(R-HSA-168256)

1.2e-4

ing CRC progression (Zheng et al.; Zhou et al.). In
the tested examples, tissue regions with relatively
high abundances of these cell-types were observed to
be visually concordant with specific spatial domains
(Figure 3B, C). TNKILC and stromal cells were each
related to two different 3D spatial domains (4 total
spatial domains), while these same cell-types were as-
sociated with two (TNKILC) and one (stromal) 2D
spatial domains, respectively – thus the single 2D
stromal domain was subdivided into two 3D stromal
domains with different function. The top biological
function pathways associated with these spatial do-
mains elucidated through gene set enrichment anal-
ysis, are presented in Tables 2 and 3. The TNKILC
2D and 3D domains each represented similar phe-
nomenon.

4. Discussion

3D ST can herald the transition to a more com-
prehensive representation of complex tissue volumes
rather than 2D sections. We present the first study to
investigate tumor heterogeneity using 3D ST inferred
from routine histopathology with deep learning. Our
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Figure 3: A. Spatial domain clustering quality measured through cluster separation and density, as well as
agreement with groundtruth pathology annotations. B. Concordance of spatial domains with high
abundance of TNKILC and stroma cells in tested 2D examples, and C. in 3D examples, visualized
as complete 3D model as well as individual slices from the 3D model.

results demonstrate that inferred 3D ST can enhance
spatial domain identification compared to typical 2D
analyses, and that projection of this 3D information
is capable of rendering a more nuanced interpretation
of the TME through subdivision of cell-type associ-
ated domains.

In our experiments, 3D ST consistently identified a
higher number of spatial domains compared to 2D ap-
proaches. This outcome suggests that incorporating
multiple 2D transcriptomics sections to generate 3D
ST data does not result in merely redundant informa-
tion, even when the total sectioning depth is limited,
as was necessary in this study due to the clinical use
of tissue blocks. Unlike many other 3D studies that
fully deplete the tissue block, our approach demon-
strated that even with a shallower sectioning depth,
3D ST can reveal additional and distinct spatial do-
mains. This underscores its utility in capturing more
comprehensive and unique spatial information within
each section, which, in turn, leads to the identifica-
tion of a greater number of total biological domains.
3D spatial domain further resulted in greater cluster-
ing quality. These findings align with existing works
demonstrating that considering multiple stacked 2D
sections leads to superior spatial domain stratifica-
tion (Dong and Zhang). However, our work is the
first to demonstrate this premise using ST data gener-

ated through deep learning on routine imaging rather
than costly sequencing-based ST assays. Such an ap-
proach can facilitate rapid generation of 3D ST data
which may be used to inform selection of specimens
prior to further costly lab-based processing. Alter-
natively, deep learning-based 3D ST generation may
enable utilization of this data modality for biomarker
discovery in resource-constrained settings where lab-
oratory processing is infeasible.

Our results further showcase how 3D ST can eluci-
date prognostically relevant cell-type distribution in
tissue volumes. We demonstrated that spatial do-
mains captured further nuanced lineage specific path-
ways, hinting at potential for more granular molecu-
lar dissection of the tissue. For instance, in a prior
study which explored 3D reconstruction of the skin,
T cell distribution was found to be more proximal
to helper T-cells when considering 3D structure as
compared to 2D (Ghose et al.).

In our study, for stromal cells, gene signatures
defining 3D Stromal Domain A appeared to related
to pathways attributed to cancer associated fibrob-
lasts (CAFs), evidenced by association with lipid re-
programing as colorectal cancer as CAFs undergo
metabolic reprogramming to accumulate and metab-
olize lipids (Gong et al.), cholesterol biosynthesis
as they activate higher cholesterol uptake (Neuwirt

79



3D Spatial Transcriptomics Inferred from Histopathology Through Deep Learning

et al.), and elastic fibres as these have been found
to be secreted by CAFs (Zhao et al.). 3D Stromal
Domain B appeared to reflect macrophage activity,
evidenced by consistent association with necrosis as
a key macrophage function (Brouckaert et al.). The
2D Stromal Domain was associated with more funda-
mental pathways tied to zinc transport (Chen et al.),
which have been hypothesized to be tied to chemore-
sistance mediated through stromal cells. Consis-
tent association with NOTCH3, and toll-like recep-
tors (TLRs) may indicate presence of macrophages
(Thomas et al.; Serra et al.; Huang et al.) just as 3D
Domain #2, though the single 2D Domain prevented
further delineation of these effects.

For TNKILC cells, 3D TNKILC Domain A may lo-
calize NK and T cells, as Class F receptors commonly
interact with NK cells (Goodridge et al.), and genes
responsible for mRNA capping are upregulated fol-
lowing T cell activation (Galloway and Cowling). 3D
TNKILC Domain B likely identified innate lymphoid
cells (ILCs), as stress signals are responsible for ILC
activation (Nagasawa et al.), and ILCs are part of
the innate immune system. 2D TNKILC Domain A
may localize NK and T cells through association with
Class F receptors and eNOS which regulates T cell ac-
tivation (Ibiza et al.). However, 2D TNKILC Domain
B may also localize T cells as Rho GTPases are active
in T cell regulation (Ahmad Mokhtar et al.). Thus,
2D domains are unable to pinpoint specific subtypes
of TNKILC cells with the same granularity as 3D.

Overall, we concluded that 3D spatial domain lo-
calization of prognostically relevant cell subtypes was
more granular and biologically significant than 2D
spatial domains. This underscores the potential of
3D ST to reveal a higher number of spatial domains
and provide a deeper understanding of tumor hetero-
geneity. While our study demonstrates the feasibility
of using image-based deep learning for this purpose,
future research can leverage 3D ST data to uncover
specific biological insights that remain hidden in 2D
analyses.

The primary limitation of this study was the re-
stricted depth to which 3D tissue blocks were profiled.
Due to institutional concerns about specimen preser-
vation—since these were clinical blocks—we were lim-
ited to cutting only 10 five-micron sections per block,
resulting in a total depth of approximately 70-100
microns. This constraint reduced the vertical resolu-
tion of our 3D models. Typically, blocks dedicated
to clinical research rather than clinical use allow for
more extensive sectioning, often involving bisecting

the tissue or dissecting adjacent tissue for research-
use biobanking. We anticipate that additional sec-
tioning to enable a more comprehensive 3D exami-
nation of the specimen, or the use of other nonde-
structive 3D pathology imaging methods, would fur-
ther elucidate the advantages of our approach. In
the future, it will be important to consider that the
optimal sectioning depth to maximize clinical rele-
vance depends on tissue type and tumor character-
istics such as invasive depth and section orientation.
Our study was also limited by the set of 1000 genes for
which we inferred ST expression. Sequencing-based
ST data can encompass expression levels for more
than 10,000 genes. While we anticipate that most
of the accurately predicted biological pathways will
be closely tied to histological features, we also expect
variability in the predictiveness of different pathways.
Understanding these differences will be an important
focus of future research, potentially enabling the lo-
calization of more granular cell types and histological
structures in 3D.

5. Conclusion

We present a proof-of-concept exploration of CRC
tumor heterogeneity using 3D ST inferred from rou-
tine tissue imaging as means to study biomolecular
structures reflecting the TME at scale. Our results
indicate that 3D ST can represent the molecular het-
erogeneity of tumors with improved power compared
to 2D analyses and may soon be used to facilitate
fine-grained investigation of prognostically relevant
biomarkers. This work opens the door to future ef-
forts to explore inferred 3D ST data from histopathol-
ogy with larger cohorts, with greater depth to re-
veal nuanced 3D architectures, which can be further
enhanced through development of computational ap-
proaches adapted to 3D.
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