
Proceedings of Machine Learning Research 259:490–501, 2024 Machine Learning for Health (ML4H) 2024

Enhancing 3D Cardiac CT Segmentation with
Latent Diffusion Model and Self-Supervised Learning

Quanqi Hu∗ quanqi-hu@tamu.edu

Ashok Vardhan Addala ashokvardhan.addala@gehealthcare.com

Masaki Ikuta† masaki.ikuta@gehealthcare.com

Ravi Soni ravi.soni@gehealthcare.com

Gopal Avinash gopal.avinash@gehealthcare.com

Texas A&M University and GE HealthCare

Abstract

CT cardiac imaging remains one of the most
challenging visualization techniques among nu-
merous CT organ imaging procedures. This is
because of the dynamic nature of human hearts,
constantly moving and pumping blood. Due to
cardiac motions, CT scanners need to be capa-
ble of taking fast scans to capture a “snapshot”
of a human heart. Other cardiac imaging chal-
lenges include contrast timing variations, radi-
ation dose to patient bodies, limited temporal
resolution, contrast agent allergies, and more.
In this paper, we present a new latent diffusion
model for 3D CT cardiac imaging where the
model produces both image volumes and seg-
mentation labels. The latent diffusion model is
trained with distinct data augmentation tech-
niques to enhance the variety of the generative
data. This helps capture the dynamic nature
of the cardiac images. The generative data are
used in our Self-Supervised Learning (SSL) to
pre-train our Deep Learning (DL) model. Fur-
thermore, because our latent diffusion model
produces both images and segmentation labels,
our fine-tuning process takes advantage of the
diffusion-generated images and labels in addi-
tion to the GT data. We run extensive exper-
iments to show that the latent diffusion model
and the SSL do help improve 3D CT cardiac
image segmentation performance.
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Data and Code Availability In this research, we
use one of our proprietary data sets of 3D CT cardiac
imaging. This data set has been collected from 32 dif-
ferent hospitals in 10 different countries worldwide.
These data are not publicly available due to the pro-
prietary nature of the medical data obtained from our
clinical partners. Researchers interested in accessing
the data may contact the corresponding author for
the possibility of data access under appropriate con-
ditions. Regarding code availability, due to our or-
ganizational proprietary constraints, the code imple-
mented in this study cannot be made publicly avail-
able. However, a detailed description of the methods
and algorithms employed in this study is provided
in the experimental method section of this article.
For further information or potential collaborations,
please contact the corresponding author.

Institutional Review Board (IRB) This study
is conducted in accordance with ethical standards.
Due to the nature of the study, which uses the exist-
ing data set mentioned above and does not contain
Personal Identifiable Information (PII), no Institu-
tional Review Board (IRB) review is required.

1. Introduction

Computed Tomography (CT) imaging has celebrated
its 50th anniversary recently. The technology is still
rapidly evolving as of this writing in 2024. With this
medical imaging technique, clinicians can have de-
tailed visualization of the internal structures of hu-
man bodies including bones, organs, blood vessels,
and soft tissues (Hsieh, 2009; Buzug, 2008; Ikuta and
Zhang, 2023a). CT imaging can be used to take scans
of many human organs. CT cardiac imaging remains
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one of the most challenging visualization techniques
among numerous CT organ imaging procedures. This
is because of the dynamic nature of human hearts,
constantly moving and pumping blood (Hsieh, 2009;
Buzug, 2008; Ikuta and Zhang, 2022). Organ seg-
mentation is a critical task in medical imaging. CT
cardiac image segmentation is to specify and clas-
sify different structures and parts of human hearts.
CT cardiac chamber image segmentation is one of
the most challenging tasks in medical image seman-
tic segmentation tasks due to the complex anatomy of
the human heart, variability in heart size among pa-
tients, difficulties with temporal resolution, and the
dynamic motions of the heart, among other factors.

Recently, there has been a substantial advance-
ment in the use of Deep Learning (DL) techniques
for medical image segmentation. The performance
of these models largely hinges on access to large,
high-quality annotated datasets (Hosseinzadeh Taher
et al., 2021; Ikuta and Zhang, 2023b). However,
obtaining such datasets, especially for 3D CT car-
diac image segmentation, is often expensive and time-
consuming due to the inherent challenges involved in
each image annotation process. A promising way to
overcome the shortage of annotated data in CT car-
diac imaging is the Self-Supervised Learning (SSL)
approach (Hosseinzadeh Taher et al., 2023, 2021),
which has achieved tremendous success in fields like
Natural Language Processing (NLP) (Ray, 2023;
Liu et al., 2023) and Computer Vision (CV) (Chen
et al., 2020b; Grill et al., 2020; Misra and Maaten,
2020). SSL techniques seek to derive general repre-
sentations from unlabeled data, which can then be
fine-tuned for various tasks, even when labeled data
is scarce (Haghighi et al., 2021). Despite the grow-
ing number of self-supervised algorithms in medical
imaging (Azizi et al., 2023; Haghighi et al., 2020;
Hosseinzadeh Taher et al., 2022), existing SSL meth-
ods struggle to capture meaningful representations
from 3D CT cardiac image volumes due to the lack
of consideration for the dynamic nature of the human
heart in the design of their pre-text tasks.

The latent Diffusion Model (LDM) (Jonathan Ho,
2022; Rombach et al., 2021) is a type of generative
model used in DL. It uses the concept of a diffu-
sion process (Jonathan Ho, 2022) to generate new
image data. This diffusion process is an image gener-
ation technique developed based on a stochastic pro-
cess that describes how data changes over time. It
gradually converts from a simple probability distri-
bution such as Gaussian noise to an image (or an

image volume if it is three-dimensional). While a
conventional diffusion process is performed on the
input image space, the LDM performs the diffusion
process in a latent space. There are a couple of ad-
vantages of using the LDM. The first advantage is
GPU (Graphical Processing Unit) memory efficiency.
By artificially introducing and removing noises in the
latent space, we can reduce the GPU memory con-
sumption required for training and validation. This
leads to faster training and validation or enables to
use a larger image matrix size. The second advantage
is image quality. We can generate visually salient im-
age samples from complex data distributions, espe-
cially those found in medical imaging. In its training
process, the LDM learns how to reverse the diffu-
sion process. In other words, it learns how to gradu-
ally recover original images from an artificially added
Gaussian noise in the latent space. Once training is
completed, a trained LDM can start generating im-
ages. Images can be generated by converting ran-
dom noise in the latent space into samples of the
learned data distribution through the learned de-
noising process. LDMs are currently used in many
computer vision and medical image processing appli-
cations, such as image synthesis, image restoration,
and super-resolution (Jonathan Ho, 2022; Rombach
et al., 2021). However, they have not yet been exten-
sively used in CT cardiac imaging applications.

In this paper, we propose a new SSL framework
with an LDM for CT cardiac imaging where the
model produces both images and segmentation labels.
In summary, the main contributions of this work are:

• We propose a new Self-Supervised Learning
(SSL) training framework with a Latent Dif-
fusion Model (LDM) for CT cardiac imag-
ing, where we have distinct data augmentation
techniques to enhance the variety of diffusion-
generated data. The generated images are used
along with Masked Image Modeling (MIM) as
part of SSL to help our semantic segmentation
model learn the visual representation of 3D car-
diac image volumes more efficiently.

• In addition, we present a fine-tuning framework
with the diffusion-generated data. We modify
our LDM so that it can generate both 3D im-
age volumes and the corresponding ground truth
labels. These data are mixed together with
the Ground-Truth (GT) data to significantly in-
crease training and validation data in the fine-
tuning phase, where we can enhance the effec-
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tiveness of learning for the cardiac image seman-
tic segmentation task.

• Furthermore, we conduct qualitative image anal-
ysis on diffusion-generated images and segmen-
tation labels and scrutinize the data for positives
and negatives in terms of CT cardiac imaging.

• Finally, we conduct extensive experiments to
verify the superior performance of our proposed
framework.

2. Related Work

In this section, we discuss related work and relevant
topics to our research.
CT Cardiac Image Segmentation is a challeng-

ing problem. Although deep learning techniques have
been widely applied to cardiac image segmentation in
MRI and ultrasound (Chen et al., 2020a), there has
been comparatively little research focused on CT im-
ages. Dormer et al. (2018) used a 2D CNN model to
segment four heart chambers from patches extracted
from 3D CT scans. Other methods (Tong et al.,
2018; Wang and Smedby, 2018) have integrated a
3D fully convolutional network (FCN) with a local-
ization network to first detect the region of interest
for whole heart segmentation in multi-modal settings.
Morris et al. (2020) proposed a 3D U-Net-based de-
sign with multiple enhancements to segment cardiac
substructures in MRI and CT pairs, while Harms
et al. (2021) developed a segmentation network lever-
aging regional convolutional neural networks. Wang
et al. (2022) introduced a hybrid model that com-
bines CNNs and transformers for cardiac segmenta-
tion, and Momin et al. (2022) designed a method us-
ing mutually enhancing networks to localize and seg-
ment cardiac substructures simultaneously in a boot-
strapping manner. A common issue across these stud-
ies is the limited availability of annotated data for
training deep models in cardiac chamber segmenta-
tion. Unlike previous work, our approach addresses
this challenge by introducing a self-supervised learn-
ing method with a latent diffusion model for 3D car-
diac CT image segmentation.
Self-supervised Learning (SSL) is a promising

approach. Given the limited availability of large-
scale annotated datasets, as discussed in the previ-
ous section, the SSL holds significant assurance for
medical imaging applications. In this framework,
a neural network is trained on a carefully designed
pre-text task using unlabeled data, and the learned

representations are later fine-tuned for specific tasks
with annotated data (Haghighi et al., 2021; Hos-
seinzadeh Taher et al., 2021). State-of-the-art SSL
approaches can be roughly divided into two cate-
gories: Instance Discrimination Learning (IDL) and
Masked Image Modeling (MIM). Instance discrimina-
tion methods (He et al., 2020; Azizi et al., 2023; Chen
et al., 2020c; Chaitanya et al., 2020; Haghighi et al.,
2023) treat each image as a unique class and aim to
learn image representations that are robust to image
distortions. In contrast, MIM methods (Xie et al.,
2022; He et al., 2022; Zhou et al., 2021) mask random
regions of an image and train a model to predict the
masked areas. Unlike these existing SSL techniques,
we introduce an SSL approach using a latent diffu-
sion model, where the diffusion process learns the
data distribution of GT images and generates new
synthetic data. Self-supervised learning is then ap-
plied using the synthetic data, enabling the model to
acquire general knowledge from a larger pool of gen-
erated images. This process provides valuable con-
textual information for tackling more complex tasks
and results in more generalizable features for cardiac
CT imaging.

Latent Diffusion Model is an active research
area in recent years. Jonathan Ho (2022) proposed
a novel high-quality image synthesis technique us-
ing diffusion probabilistic models. Their diffusion
process is conducted in the image space. The tar-
get applications are computer vision sample genera-
tions. Therefore, the method is limited to 2D image
generation. Rombach et al. (2021) proposed a new
high-quality image synthesis technique using diffu-
sion models. Their method is to conduct the diffusion
process in the latent space rather than in the image
space for computational efficiency. It turns out that
the latent diffusion model can create more prominent
image quality than the ones using the image space.
This technique again targets computer vision applica-
tions. Therefore, the method is limited to 2D image
generation as well. Txurio et al. (2023) applied the
latent diffusion models to CT imaging applications.
While the method is proven effective in generating
high-quality CT images, it is limited to 2D image gen-
eration. Nor the method cannot create segmentation
labels. Khader et al. (2023) proposed a new latent
diffusion model for CT imaging applications where
their method creates 3D imaging volumes. These im-
ages are used in their self-supervised learning (SSL)
to increase their image segmentation performance.
However, their method only creates images and is
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not scalable to create segmentation labels. In this
paper, we propose a new latent diffusion model for
CT cardiac imaging where the model produces both
images and labels. It learns a complex data distri-
bution from ground truth images and labels. These
generated data are supplement to ground truth data
to boost the amount of training and validation data.
CT cardiac imaging is three-dimensional in nature,
thus, we create the latent diffusion model as a 3D
image generator.

3. Method

In this section, we discuss our data preparation
followed by our method in three parts, synthetic
data generation by the latent diffusion model, self-
supervised learning as a pre-training, and finally our
fine-tuning process for the 3D image segmentation.

3.1. Data preparation

In the 3D CT cardiac data set, there are eight heart
substructures, that are Left Atrium (LA), Left Ven-
tricle (LV), Right Atrium (RA), Right Ventricle (RV),
Myocardium (MYO), Aorta (AO), Pulmonary Artery
(PA), and Left Atrial Appendage, (LAA) which were
manually annotated by clinical experts on 262 cardiac
CT Angiography series. The total number of images
in the data set is 65418. The size of each 3D image
volume is 512x512 matrix size with different numbers
of images in the z-direction. The z size varies from
a minimum of 140 to a maximum of 560 where the
median number of images is 224. Among them, 168
series were used for training, and 43 series were used
as the validation data set for saving the best check-
point models. In addition, a separate, fully annotated
set of 51 cases served as an independent test data set
for a model evaluation.

3.2. Latent Diffusion Model

We consider the well-known latent diffusion model
(LDM) (Rombach et al., 2021) for the data genera-
tion due to its efficiency in terms of computational
resources and high quality of generative images. The
training of LDM has two phases. First, we train a
Variational Autoencoder (VAE) to encode the origi-
nal input images onto a lower-dimensional represen-
tative space, which is a latent representation of the
pixel space. Then, we train a diffusion model on the
learned latent space. As a result, LDM is much more

Figure 1: Three Dimensional Latent Diffusion Model
Training and Image Generation Process for
3D CT Cardiac Chamber Image Segmenta-
tion.

efficient than training diffusion models directly on the
pixel space. However, the original LDM we use is
designed for generating 2D images. To adapt it to
3D image volumes, we add the depth dimension to
the model so that, during the training process, the
output of the encoder has the shape of (width=256,
length=256, depth=Z, channels=3) where Z is the
number of images in the z-direction and we set it to
160 in our case. The original number of channels in
segmentation labels is eight. To reduce the memory
footprint and GPU memory usage, we encode eight
channels into three channels (RGB) without compro-
mising the VAE performance. These dimension data
are encoded into the latent space, and they are the
input to the diffusion model.

Moreover, to better assist the segmentation train-
ing, we modify the architecture of the VAE so that
the LDM can generate a 3D image volume with its
corresponding segmentation mask volumes simulta-
neously. Figure 1 shows our three-dimensional la-
tent diffusion model architecture for the 3D CT car-
diac chamber image segmentation. During training,
we first convert the image xi and the mask xm into
vectors x̃i, x̃m of the same shape by two one-layer en-
coders (i.e., εi and εm) separately. Then we take the
summation of the encoded image and mask and en-
code it onto the latent space, i.e., z = ε0(x̃i + x̃m).
As part of the architecture design, we also explore
both an addition and a concatenation to get the uni-
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Figure 2: Zero masking process in SSL (pre-train).

fied z vector, however, both produce the same level
of final reconstruction performances in the 3D VAE.
Thus, we choose the addition over the concatenation
for, again, GPU memory efficiency.
Finally, conditioning the latent diffusion model

(LDM) on factors such as patient gender, scan loca-
tion, and presence of metal implants could enhance
the diversity of generated data. However, in this
study, we employ an unconditional LDM without in-
corporating any conditioning factors. As discussed
earlier, the dataset is significantly imbalanced, which
limits the model’s accuracy in segmenting certain car-
diac chambers. We anticipate that using a condi-
tioned LDM could help address this data imbalance,
and we plan to investigate this approach in future
work.

3.3. Self-supervised Learning as a
Pre-training

Given generative images and masks sampled from
the LDM, we conduct self-supervised learning to pre-
train our model before fine-tuning it for the 3D im-
age segmentation task. Recently, Taher et al. (2023)
has shown that the SSL pretraining on ground truth
images can greatly improve the segmentation perfor-
mance on 3D cardiac CT images. Moreover, Khader
et al. (2023) mentioned that the SSL on synthetic im-
ages can also improve segmentation performance on
3D medical images in general. However, since there
is no implementation nor results for CT images avail-
able in Khader et al. (2023), we are motivated to
explore a better way to leverage the generative data
for SSL pretraining and segmentation finetuning on
3D cardiac CT images.
For the SSL pretraining, following the work of

Taher et al. (2023), we first mask a portion of the orig-
inal image with zeros, and then we train the model
to reconstruct the original image. The zero mask-
ing process is illustrated in Figure 2. The model
is trained by minimizing the L2 norm of pixel value

difference between the original image and the recon-
structed image, i.e.,

LSSL = Ex∼X∥x− f(x̃)∥2
where x is an image from the dataset X, x̃ is the
image x with zero masks, and f is the model we aim
to train.

Following the method Khader et al. (2023), we
conduct the self-supervised learning with diffusion-
generated data. Specifically, we employ a 3D U-
Net (Ronneberger et al., 2015) as the primary ar-
chitecture of our proxy model; nevertheless, alterna-
tive architectures, such as vision transformers (Tang
et al., 2022), can also be used seamlessly. We mask
out 25 blocks with a probability of 0.8. We utilize the
minimum of 8x8 pixels, and the maximum of 16x16
pixels for the block’s spatial sizes. The masking block
sizes and locations are randomly selected. We use the
AdamW optimizer with a learning rate of 0.001. We
use the early-stopping technique with a patience of
50 using 10% of training data as the validation set.
We save the best model based on the validation loss
and transfer the best model to the target task.

3.4. Three Dimensional Image Segmentation
as a Fine-tuning process

In the fine-tuning phase (the target task), we mix
the diffusion-generated data with the ground truth
data and train the segmentation model, where we
keep the encoder weights and randomize the de-coder
weights from the pre-training phase. In this phase, all
the downstream model’s parameters are fine-tuned.
This mixed dataset is distinct from the state-of-the-
art method (Khader et al., 2023), where they use
the ground truth dataset in the fine-tuning phase.
Our fine-tuning with the mixed dataset only becomes
possible because our latent diffusion model generates
both image volumes and segmentation masks while
their method (Khader et al., 2023) only produces im-
age volumes. We again use the AdamW with a learn-
ing rate of 0.001. To prevent over-fitting, we employ
an early-stopping technique with a patience of 10 us-
ing 10% of the training data as the validation set.
We evaluate the segmentation performance using the
Dice coefficient.

4. Experiments

In this section, we present our experimental results,
where we show some example images and labels from
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our latent diffusion model followed by example results
of our data augmentation strategies, some observa-
tions on them, and finally our quantitative results
compared to our baseline methods.

First of all, figure 3 shows examples of diffusion-
generated images and the corresponding segmenta-
tion labels. The generated images demonstrate the
strong capability of the latent diffusion model for pro-
ducing high-quality, realistic outputs, highlighting its
potential in advancing generative image synthesis.

Second, in the latent diffusion model, we use some
data augmentation techniques to increase the vari-
eties of the dataset so that the model can produce
more diverse data rather than creating replicas of
the GT data. We perform a center crop on each
image volume and resize them back to the original
sizes in the xy-axis. The location of the center crop
is randomized. In addition, we conduct a horizontal
and vertical flip on input data with a probability of
20%. Furthermore, we boost pixel values by about
50 Hounsfield Units (HU) with a probability of 5%.
Figure 4 shows examples of shifted contrast. The left-
hand side of the figure shows some ground truth im-
ages. The right-hand side shows diffusion-generated
images. They are the results of our contrast boosts.
These contrast boosts only happen on 5% of gener-
ative images because the data augmentation is used
with 5% probability. They are great additions to our
dataset for the following reasons. In real clinical set-
tings, clinicians often use contrast agents (chemical
liquid injected into blood vessels) to create contrasts
in blood flows from surrounding soft tissues. This
makes it easier for clinicians to visualize blood flow
in cardiac chambers. However, some patients are al-
lergic to these chemical agents, and clinicians choose
not to inject the chemical liquid. As a result, blood
vessels in these patients do not have contrast boosts.
Therefore, it is hard to visualize their blood vessels.
Usually, many cardiac images have contrast boosts,
but some of them do not have the boosts. Thus, using
such a data augmentation technique will help increase
the variety of diffusion-generated cardiac datasets.

Furthermore, figure 5 shows some minor problems
on the diffusion-generated segmentation labels. As
we can see, some boundary pixels on segmentation
labels are not necessarily cut and clean. For exam-
ple, the boundary pixels of the purple (or blue) seg-
ment on the center image in figure 5 have many red
dots. We believe this may come from the fact that
there are always gaps among segmentation labels on
the GT data, and our latent diffusion model might

get confused about how to segment boundary pixels.
The examples in figure 5 show many red dots, how-
ever, we saw the problem is not limited to the red
label. This problem can happen with any segmen-
tation labels. While we do not believe this problem
influences our fine-tuning segmentation performance,
we want to make a note of this phenomenon in this
article.

Moreover, there are some more interesting observa-
tions on our diffusion-generated images, particularly
on soft tissues. In practice, the latent diffusion model
seems to be struggling to remove how much Gaussian
noise it should remove from images. The original
GT images already have some Gaussian noises due
to equipment electronic noise at the time of patient
scanning. The model needs to keep these Gaussian
noises and should only remove the Gaussian noises
we add as part of the diffusion process. However,
the model seems struggling with noise removal oper-
ations. Of course, we add noise not on images them-
selves, but on the latent embeddings. However, added
Gaussian noises on the latent space seem to influence
“look and feel” on image space, and the latent diffu-
sion model tends to get confused with Gaussian noises
that have different origins. As a result, diffusion-
generated images tend to have smoother surfaces on
soft tissues on images. Figure 6 shows some exam-
ples of such a problem. On the left-hand side, some
GT examples are shown where soft tissues have real-
istic noise characteristics. In contrast, the right-hand
side shows diffusion-generated images where soft tis-
sue pixels have smoother surfaces, and they are not
necessarily realistic look-and-feel. While it is hard to
know how this phenomenon influences our fine-tuning
phase, we want to look into this problem in the near
future.

Finally, we conduct a few experiments to demon-
strate the effectiveness of our method. The experi-
mental results are shown in Table 1. First, we trained
our network with only GT data. We set the maximum
epochs to be 300. However, our early-stopping crite-
ria met at the 25th epoch, and the best model was
picked from the 15th epoch, where the patience of
the early-stopping was set to 10 epochs. We use this
result as our baseline performance. Next, we try to
reproduce the state-of-the-art method called Medical
Diffusion (Khader et al., 2023). Because their dif-
fusion implementation is not available in the public
domain, we use our latent diffusion model to gen-
erate images. Our diffusion model does create the
corresponding segmentation labels as well. However,
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Figure 3: Examples of Ground Truth (GT) images, diffusion-generated images, and the corresponding seg-
mentation labels. The GT images and diffusion-generated images are not necessarily pairs in this
figure. There are three different GT image examples from different patients and different anatomy
locations. We pick four different diffusion-generated images from similar locations for each GT
example.

Figure 4: Data augmentation: generative images
with shifted contrast under soft tissue view.

medical diffusion is limited to producing only im-
ages. Thus, we throw away segmentation labels to
reproduce their method. In the fine-tuning process,
we only use the ground truth data for the medical
diffusion. In this fine-tuning phase, the training is
done with the 28th epoch, and the best model is
picked from the 18th epoch, where the patience of
the early stopping is again set to 10 epochs. We

Figure 5: In the generative masks, we observe bound-
ary mislabeling issues

use this result as our state-of-the-art baseline per-
formance. Now, regarding our method, we pre-train
our model with diffusion-generated data as the SSL.
In the fine-tuning phase, we use the mixed dataset,
including diffusion-generated images, and diffusion-
generated segmentation labels as well as the GT data.
Our ground truth (GT) dataset consists of 167 “3D”
image volumes, each containing approximately 200 to
300 images, resulting in a total of 65,418 images. We
generated three times more data by the latent diffu-
sion model. After incorporating diffusion-generated
data, the overall image count increases to 261,672. In
the fine-tuning phase, the training is done with the
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Figure 6: Example of smoother soft tissues on diffusion-generated images

35th epoch, and the best model is picked from the
25th epoch, where the patience of the early stopping
is again set to 10 epochs.

Table 1 shows our quantitative results compared
to our baseline methods. First, the medical diffusion
(Khader et al. (2023), the second row in the table)
produces a nice improvement of DICE 1.12% over the
baseline (the first row, trained from scratch). The
standard deviation of the baseline method is about
0.27%. Therefore, the medical diffusion has a statis-
tically significant improvement on the average DICE
score. This signifies the effectiveness of the pre-train
phase with diffusion-generated data. Now, regard-
ing our method, there is again a meaningful improve-
ment on the average DICE score over the medical
diffusion (Khader et al., 2023), where the average
DICE score improvement over the medical diffusion
is 0.53%. Thus, this is also a statistically significant
difference. This improvement comes from the fact
that our diffusion-generated data (both image vol-
umes as well as segmentation labels) are used along
with the GT data (we call them “mixed dataset”) in
the fine-tuning phase. This indicates the latent diffu-
sion model does create meaningful segmentation la-
bels in addition to images over the GT data. In addi-
tion, the medical diffusion approach does not employ
a wide range of data variety techniques. In medi-
cal imaging, we often face challenges due to limited
training and testing data, making data augmenta-
tion essential for improving test scores. In contrast
to the medical diffusion, which only applied vertical

image flipping during training, we implement several
data augmentation strategies, including 3D random
location cropping, 3D center cropping, horizontal flip-
ping, vertical flipping, and contrast agent data aug-
mentation. During our attempts to reproduce the
medical diffusion through an ablation study of our
method, we include all the aforementioned data vari-
ety schemes. If these techniques had been excluded,
the average DICE score improvement over the medi-
cal diffusion would have likely been even greater. Fur-
thermore, our implementation includes conditioning
capabilities, enabling the LDM to incorporate fac-
tors such as patient gender, scan location, and the
presence of metal implants. This approach could en-
hance the diversity of generated data. As noted pre-
viously, the dataset is considerably imbalanced, im-
pacting the model’s segmentation accuracy for cer-
tain cardiac chambers. We believe that a conditioned
LDM may help mitigate this imbalance, and we in-
tend to investigate this approach further in the near
future. Finally, one interesting observation is that the
primary improvement of our method over the medical
diffusion comes from two cardiac chambers, which are
the Left Atrium (LA) and the Right Atrium (RA).
They are two of the four biggest cardiac chambers,
and they are relatively easy to spot in images. On
the other hand, our method does not necessarily im-
prove the segmentation performance on minor cardiac
chambers such as Pulmonary Artery (PA) and Left
Atrial Appendage (LAA). This is in contrast to what
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Table 1: Segmentation model performance from

Method Average AO LAA LA LV MYO PA RA RV
Baseline 0.7743 0.9275 0.5790 0.8061 0.8298 0.8026 0.6888 0.7705 0.7902

Medical Diffusion 0.7855 0.9365 0.6093 0.8061 0.8278 0.8141 0.6976 0.7850 0.8078
Ours 0.7908 0.9396 0.6109 0.8288 0.8190 0.8094 0.7069 0.8021 0.8100

we have hoped, and we want to work on this area in
the future.

5. Conclusion

In this paper, we show the new latent diffusion model
for CT cardiac imaging where the model produces
both images and segmentation labels. The latent dif-
fusion model is trained with distinct data augmen-
tation techniques to enhance the variety of the gen-
erative data. These data are used in both the pre-
training and the fine-tuning phase. We use three
times more generative data than the GT data in
the fine-tuning, thus the mixed dataset becomes four
times as large as the original GT data in that train-
ing phase. In addition, we conduct qualitative im-
age analysis on diffusion-generated data for both im-
ages and segmentation labels and discuss about pos-
itives and negatives in terms of CT cardiac imag-
ing. The final segmentation performance improves by
1.65% average DICE score over the baseline (trained
from scratch), and 0.53% average DICE score over
the medical diffusion method (the state-of-the-art,
Khader et al. (2023)). We plan to apply this 3D la-
tent diffusion model to other CT organ data as well
as other medical imaging modalities such as MRI, X-
ray, Ultrasound, etc.
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