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Abstract

Remote physiological monitoring presents an
opportunity to enhance patient care, partic-
ularly in scenarios where traditional monitor-
ing methods are impractical or unavailable.
Heart rate, being a principal indicator of health,
has been a focal point of video-based moni-
toring systems. Despite significant advance-
ments in remote photoplethysmography tech-
nology, several challenges persist, including mo-
tion artifacts, data homogeneity and availabil-
ity, which impact the accuracy and reliability
of such solutions. In this work, we introduce
a novel framework aimed at addressing these
challenges, ST2S-rPPG. Our methodology in-
volves a stabilization method to mitigate mo-
tion artifacts. We propose a spatiotemporal
representation of video data, which captures
predictive available information in the video
and assists in transforming the input video. We
present a unique approach to ground truth rep-
resentation for capturing more informative fea-
tures. Finally, we incorporate a two-stage learn-
ing component into our framework to optimize
estimation accuracy. Through evaluations on
benchmark datasets, we demonstrate the effec-
tiveness of our contributions and their practical
relevance in healthcare applications.

Keywords: two-stage learning, remote photo-
plethysmography, rPPG, vital sign estimation,
spatiotemporal methods
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performance of our proposed framework on two
benchmark datasets, MMSE-HR Zhang et al. (2016)
and UBFC-rPPG Sabour et al. (2021). Both datasets
can be made available after contacting the authors
cited. Our code is available at: https://github.

com/eirkateri/ST2S-RPPG.
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1. Introduction

In an era characterised by the integration of tech-
nology into our daily lives, the intersection of com-
puter vision and remote physiological monitoring, has
captured research’s interest by promising to revolu-
tionize the way we view human health in both clin-
ical and non-clinical settings. Remote physiological
monitoring can have a positive effect on patient care,
especially in scenarios where traditional monitoring
methods are impractical or unavailable, thus can lead
to delays in diagnosis and sub-optimal management
of health conditions. The increased risk of infection
for healthcare workers and patients, the fragile skin
of newborn infants or the elderly, the importance of
continuous surveillance for chronic disease patients,
individuals in inaccessible locations, lack of mobility,
staff shortage, or financial constraints are some of
healthcare’s current barriers that could benefit from
remote monitoring solutions. Such approaches not
only enhance patient comfort and convenience, but
also have the potential to improve clinical outcomes
by allowing a continuous monitoring of vital signs,
facilitating early detection of abnormalities. Heart
rate in particular, being one of the principal indi-
cators of health problems, has been the main focus
of video-based monitoring systems since 2008 with
Verkruysse et al. (2008)’s work, using either signal
processing [Poh et al. (2010a,b)] or deep learning ap-
proaches [Chen and McDuff (2018); Liu et al. (2020)].

While remote photoplethysmography (rPPG) tech-
nology has made significant advancements in recent
decades, there are still several factors that limit its
effectiveness. Motion artifacts, illumination changes
and the lack of data diversity are among the key bar-
riers that have an effect on accuracy and reliability of
such solutions. Researchers have attempted to miti-
gate the effects of these factors in heart rate estima-
tion [Li et al. (2014); Feng et al. (2014); Wang et al.
(2014)], however this still remains an open problem.
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Such limitations significantly affect the adoption of
these technologies in clinical settings and raise con-
cerns about their impact on patient care.

Addressing these challenges requires innovative ap-
proaches that leverage the capabilities of computer
vision and machine learning. Researchers also need
to consider the significance and availability of existing
datasets, specifically their lack of accurate represen-
tation of real life scenarios and the natural diversity
in humans.

The proposed paper introduces several novel con-
tributions that address some of these problems and
hold significance for machine learning applications in
healthcare. By leveraging a spatiotemporal represen-
tation of data, we offer a unique approach to trans-
forming the input video in a spatiotemporal manner.
This methodology could be particularly valuable in
healthcare settings where data availability and re-
sources are often limited, allowing for more robust
training of machine learning algorithms. The pro-
posed stabilization method addresses the challenge of
motion artifacts in videos, a common issue in health-
care related video data, improving the accuracy and
reliability of machine learning models applied to such
data. Lastly, the incorporation of a two-stage learn-
ing component into the framework aims to optimize
estimation accuracy by selecting the best-performing
images for model training, a technique with broader
applicability beyond pulse estimation, particularly in
scenarios where selecting informative data samples is
crucial for model performance. The two-stage learn-
ing approach can lead to recommendations that are
more accurate and calibrated to each individual, ulti-
mately improving patient outcomes. Subsequent sec-
tions of the paper will provide evidence of the effec-
tiveness of these contributions through evaluations
on benchmark datasets, demonstrating their practi-
cal relevance and impact.

Our contributions can be summarized as follows:

• We develop a spatiotemporal representation
to transform input video into spatiotemporal im-
ages;

• We propose a stabilization method using the
Persistent Independent Particles algorithm to
combat motion artifacts;

• We design a two stage learning framework
to optimise estimation accuracy by selecting the
most informative spatiotemporal images

2. Related Work

Early work establishes the sufficiency of information
in video recordings of a person’s face under ambi-
ent light for pulse measurements [Verkruysse et al.
(2008)]. This is the first step in modeling how
light interacts with skin, using Blind Source Separa-
tion (BSS) techniques like Independent Component
Analysis (ICA) [Poh et al. (2010b,a)] and CHROM
[De Haan and Jeanne (2013), Wang et al. (2016)]
to extract pulse measurements. In 2013, research
begins to investigate the Newtonian reaction of the
face to the movement of blood. Balakrishnan et al.
(2013) suggests that displacement on the skin due
to the cardiac cycle could be employed for pulse cal-
culation. Other researchers propose that the choice
of region of interest (ROI) greatly influences rPPG
measurements, as the density distribution of blood
vessels varies in different facial regions [Lempe et al.
(2013); Li et al. (2014); Kumar et al. (2015)]. Some
experiments include attempts at noise reduction with
adaptive bandpass filters [Li et al. (2014); Feng et al.
(2014); Wang et al. (2014)], other color frequencies
(e.g., orange, cyan) [McDuff et al. (2014b,a)], and
different BSS methods [Lewandowska et al. (2011);
Kwon et al. (2012)]. These earlier studies help iden-
tify two main issues with rPPG: motion artifacts and
signal strength variation caused by illumination.

Despite the progress made by previously presented
methods, deep learning approaches are becoming in-
creasingly popular, making significant advancements
in the field of remote monitoring. DeepPhys [Chen
and McDuff (2018)] is the first system using a deep at-
tention CNN to calculate pulse and respiration rates.
It is based on the skin reflection model and has
an attention mechanism for robust estimation under
lighting changes and motion artifacts. In 2020, Liu
et al. (2020) base their work on DeepPhys, creating a
multitask temporal-shift convolutional attention net-
work (MTTS-CAN) for real-time heart and respira-
tory rate measurements. They employ temporal shift
modules to remove noise, an attention mechanism
to improve signal source separation, and a multitask
mechanism to estimate pulse and respiration rates
jointly. Even though such solutions moderately help
with the motion and light artifact issues, they also
introduce a number of constraints. Such deep com-
plex models lack interpretability, making it challeng-
ing to understand how the models make decisions.
This lack of transparency can be problematic, espe-
cially in healthcare applications where understanding
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the reasoning behind predictions is crucial for clinical
decision-making. Other issues include the need for
large labeled datasets, constraints in real-time pro-
cessing capabilities and lack of accounting for inter-
subject variability.

In contrast, hybrid methods have been developed
that first extract handcrafted features followed by a
deep learning network for pulse estimation. These
methods take advantage of spatiotemporal maps
which are subsequently fed through a machine or
deep learning framework to extract the pulse rate.
Qiu et al. (2018) employs the Eulerian Video Magni-
fication approach to extract spatiotemporal features
and Niu et al. (2018, 2019b,a) generates spatiotempo-
ral maps by aggregating signal from multiple ROIs.
Similarly Jaiswal and Meenpal (2022) generates spa-
tiotemporal maps of particular ROIs and creates a
compressed 2D representation of a video by decreas-
ing spatial data redundancy while maintaining tem-
poral dynamics of the original video. Finally, Shao
et al. (2023) designs a spatiotemporal transformer
module to extract physiological cues from facial re-
gions and aggregate them. The use of spatiotemporal
features as a means to estimate heart rate has many
benefits compared to the traditional use of videos as
highlighted by the research above. Such approaches
can result in higher temporal resolution compared
to video frames, providing more detailed information
about the skin changes over time and can help miti-
gate the impact of motion and light artifacts by inte-
grating information over time, leading to more robust
pulse estimation. These works have demonstrated
promising results, however there are still components
that have not been addressed. All above works rely
on pre-defined ROIs, which could neglect regions with
sufficient signal to assist in the increased accuracy of
pulse estimation. Additionally, averaging informa-
tion from multiple frames in a single image result in
significant signal variations being suppressed.

3. Methodology

The proposed ST2S-rPPG framework is divided into
four steps, face identification and stabilization, spa-
tiotemporal image generation, pulse estimation using
a regression CNN and a second learning component to
improve estimation. In the following sections, these
steps are described in detail.

3.1. Face Identification and Tracking

In the context of estimating pulse signals from fa-
cial video data, the identification of ROIs is a fun-
damental step. However, the accurate tracking of
these regions becomes challenging when confronted
with video instability. To address this concern, we
propose the application of the Persistent Independent
Particles (PIPs) algorithm for video stabilization.

The primary objective of this proposed approach
is to facilitate the tracking of the facial region within
video sequences. Our inspiration is drawn from the
work of [Sand and Teller (2008)] and the follow up
work of [Harley et al. (2022)], who introduced a novel
motion representation paradigm referred to as “par-
ticle video”. The fundamental concept underlying
particle video stems from particle filters and is the
representation of a video as an ensemble of particles,
each traversing multiple frames. The key advantage
lies in the utilization of long-range temporal priors
during the tracking of these particles.

Even within the same video, different segments
may exhibit unique physiological patterns, hence we
segment the original video V into discrete 10-second
segments. Equation 1 represents each of the 10-
second segments Vc. This spatiotemporal transfor-
mation enriches the existing dataset and reduces the
computational complexity in later stages.

Vc = ⌊ V
10

⌋ (1)

We isolate the first frame of each video and apply
the Viola-Jones algorithm [Viola and Jones (2001)] to
extract the precise facial location within the frame.
We assume the dimensions of the Viola Jones bound-
ing box are (h,w), where h is the box’s height and
w is its width in pixels. We then identify the box’s
central point (x0, y0):

(x0, y0) = (l +
h

2
, c+

w

2
) (2)

where (l, c) denote the pixel coordinates of the top-
right corner of the bounding box.

We employ the PIPs algorithm to track the trajec-
tory represented by (x0, y0) coordinates in conjunc-
tion with the video input. Once the central point’s
trajectory is obtained for every frame, we proceed to
extract a sub-frame from each original video frame
using the following formula:
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Icn(xn, yn, z) = Ion(xn−
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(3)
where Icn(xn, yn, z) represents the cropped frame at
index n, Ion represents the original frame, (xn, yn)
denote the x and y coordinates of the central point in
frame n and (w, h, z) represent the width, height and
color channel (RGB) dimensions of the desired crop
in pixels. The resulting stabilized video consists of
the concatenated frames with background removed.

3.2. Spatiotemporal Image Generation

Utilizing spatiotemporal images offers several advan-
tages over analyzing a single continuous video stream.
Firstly, it increases the dataset size, as each spa-
tiotemporal image encapsulates a temporal sequence
of a single facial region, since each facial region con-
sists of slightly distinct features. This spatiotempo-
ral transformation facilitates more robust training of
machine learning models, enhancing their ability to
distinguish subtle changes in pulse signals over time.
Additionally, the process of stabilizing the images en-
sures consistent tracking of specific facial areas across
the temporal sequence. By maintaining alignment
between consecutive frames, the analysis remains fo-
cused on the same regions, enabling more precise ex-
amination of physiological variations.

In order to generate spatiotemporal images we em-
ploy a technique that involves the division of the sta-
bilized videos into six equal vertical segments. Sub-
sequently, the first and last segments are discarded to
exclude any residual background or non-essential fa-
cial regions that may not have been adequately elim-
inated by the Viola-Jones algorithm. Then, we seg-
ment each remaining frame into L vertical segments
of three pixels:

L = ⌊w
3
⌋ (4)

where w represents the width of each frame in pixels.

Heuristically we find that three pixel wide slices
provide a balance between spatial resolution and
computational efficiency. At the same time, facial
features relevant to pulse estimation may exhibit vari-
ations on the order of a few pixels. By segmenting
the frames into three-pixel-wide segments, we aim to
capture these subtle variations more effectively.

We can represent each frame as:

Frame(k) =


S
(k)
0,0 S

(k)
0,1 . . . S

(k)
0,L−1

S
(k)
1,0 S

(k)
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(k)
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. . .
...
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(k)
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 (5)

for,

S
(k)
i,n = (P

(k)
i,3j , P

(k)
i,3j+1, P

(k)
i,3j+2) (6)

where k is the kth frame, (i,j) are the height and
width of the frame in pixels respectively, P represents
the pixel values and S each 3 pixel slice values. For
clarity, j refers to the width of the frame in terms of
pixel groups or slices and n is the time dimension or
different frames in the sequence.

In order to construct the spatiotemporal images,
we arrange the corresponding vertical segments from
each frame sequentially, frame by frame. The mth

spatiotemporal image, generated by the mth vertical
slice is represented by:

STm =


S
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i,m . . . S

(k)
i,m

 (7)

These resulting images provide a comprehensive
representation of the video’s content, with each image
capturing a distinct set of three-pixel-wide segments
spanning the entire duration of the video. It must
be noted that the number of images per subject can
vary, depending on their approximate location to the
camera or their facial size.

Figure 1: Example of a spatiotemporal image

3.3. Convolutional Neural Network

Let STm represent the input spatiotemporal image,
with dimensions w × h × z, where w is the width, h
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is the height, and z is the number of channels. The
CNN is designed to process the input spatiotemporal
image STm and predict the number of beats ŷ. The
architecture consists of three convolutional layers, a
flattening step, and fully connected layers, as summa-
rized in Table 1. During the forward pass, the input
STm is reshaped and passed through each layer of
the CNN in sequence, with ReLU activation functions
applied after each convolutional and fully connected
layer. The optimizer used is the Adam optimizer with
a learning rate of 0.001, and the loss function is the
L1 loss (Mean Absolute Error) between the predicted
number of beats ŷ and the ground truth number of
beats. A visual representation of the CNN can be
found in Figure 7 in the Appendix.

Table 1: Parameters of the CNN Architecture
Layer Input Parameters/Output
Conv1 STm Kernel: K1 = 3 × 3, Stride: S1 = 1,

Activation: ReLU, Output: O1

Conv2 O1 Kernel: K2 = 3 × 3, Stride: S2 = 3,
Activation: ReLU, Output: O2

Conv3 O2 Kernel: K3 = 3 × 3, Stride: S3 = 3,
Activation: ReLU, Output: O3

Flatten O3 Flattened Output: F
Fully Connected F Units: H1 = 128, Output: H1

Output Layer H1 Predicted Beats: ŷ
Optimizer Adam, Learning Rate: 0.001
Loss Function L1 Loss (Mean Absolute Error)

3.4. Two-stage learning

It is apparent that not all spatiotemporal images ex-
hibit similar performance, and certain regions within
them may contain significant noise. Rather than
making the assumption on which areas the CNN finds
the most informative based on convention, we have
implemented a second learning stage. Following the
CNN’s pulse prediction on individual images, we con-
struct a new binary dataset. This dataset is formed
based on the Mean Absolute Error (MAE) between
the CNN’s predictions and the ground truth on num-
ber of beats. Utilizing a predefined threshold, t=0.5,
corresponding to a MAE of 3 beats per minute (bpm),
we categorize the images into two classes according to
whether their MAE surpasses or remains below the
threshold. The 3 bpm criterion for categorizing im-
ages automatically distinguishes “good” images from
“bad” ones. This threshold was chosen as it repre-
sents an acceptable margin of error for pulse esti-
mation. A Multi-Layer Perceptron (MLP) is trained
to classify the images in the custom binary dataset,
ensuring that only the most informative “good” im-

ages are utilized for further analysis. This automated
selection process eliminates the need for subjective
assumptions about image quality, enhancing the ro-
bustness of the pipeline. A Multi-Layer Perceptron
(MLP) comprising of 5 layers with 200 neurons per
layer, is trained to classify the spatiotemporal images,
using the custom “good” and “bad” image dataset as
described above. A 10-fold cross-validation experi-
ment is conducted, selecting images that the classi-
fier categorizes as “good” 70% of the time. The eval-
uation metrics presented in the subsequent section
are estimated based on the MLP’s predictions for the
“good image” class.

4. Results

4.1. Datasets and Ground Truth

We evaluate the performance of ST2S-rPPG on two
benchmark datasets, the Multimodal Spontaneous
Emotion database for heart rate estimation (MMSE-
HR) and the Université Bourgogne Franche-Comté
dataset for rPPG (UBFC-rPPG). These are datasets
widely used in the field of rPPG and allow us to
compare our methodology with state-of-the-art ap-
proaches. The two datasets have different baselines
due to their different characteristics (frame rate, reso-
lution, collection protocol). Our work uses subsets of
the original datasets, specifically formatted for rPPG.
Despite our continuous efforts to expand our study
with additional datasets such as PURE and VIPL-
HR— both of which are also commonly used in rPPG
research — we were unable to secure access to these
datasets. Despite this, the chosen MMSE-HR and
UBFC-rPPG datasets provide sufficient variability to
validate the generalizability of our approach.

MMSE-HR: [Zhang et al. (2016)] Comprising of
98 RGB videos and corresponding heart-rate data ob-
tained from 40 participants, each video is recorded at
a resolution of 1040x1392 pixels and a frame rate of
25 frames per second (fps). Video lengths are varying
from 30 seconds to 1 minute. We extract 48,415 spa-
tiotemporal images through the spatiotemporal im-
age generation process.

UBFC-rPPG: [Sabour et al. (2021)] Comprising
of 40 RGB videos and corresponding heart-rate data
obtained from 40 participants. Each video provided is
recorded at a resolution of 640x480 pixels and a frame
rate of 30fps. Video duration varies from 46 seconds
to 1 minute 8 seconds. Each video is synchronized
with a pulse oximeter finger clip sensor to collect the
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Figure 2: Overview of ST2S-rPPG for rPPG based remote HR measurement via spatiotemporal images.
Key steps include video stabilization using PIPs to reduce motion artifacts, spatiotemporal image
generation for capturing combined spatial and temporal features, and the second-stage learning
process for automated selection of high-quality, informative images. Each stage is designed to
optimize pulse estimation accuracy while minimizing computational complexity

ground truth. We extract 9,659 spatiotemporal im-
ages from the UBFC-rPPG database through the spa-
tiotemporal image generation process. Ground truth
measurements are provided for both datasets. We
convert the measurements provided to beats per 10
second segment using the procedure below:

For the MMSE-HR dataset, ground truth heart
rate data is acquired through a contact sensor oper-
ating at a sample rate of 1 KHz, providing pulse mea-
surements per frame. In MMSE-HR, the definition of
the heart rate ground truth data is that the measure-
ment changes every time there is a heartbeat. We
define each 10 second time segment as [tstart, tend],
where tstart is the starting time of the segment and
tend the ending time of the segment. To identify the
location of these segments we multiply the start and
end time with the sampling rate. Within each seg-
ment we count the number of changes in the provided
ground truth files, each change is a heartbeat.

For the UBFC-rPPG dataset, we use the raw sig-
nal data and the scipy library find peaks to identify
the beats. With the same process as above we count
the number of peaks per segment. This process pro-
vides granular information regarding the pulse vari-
ability within each 10 second segment, which is not
necessarily visible by using the average measurements
for the whole video. The idea behind this choice is
that the pulse estimation CNN will be able to dis-
tinguish beats easier than extrapolated bpm in each

10 second segment. After we compile our results we
multiply the predicted value by 6 to extract the BPM
measurement and compare performance with existing
methodologies.

4.2. Evaluation Metrics

We evaluate the performance of ST2S-rPPG using
five metric indicators commonly utilized to assess
rPPG regression approaches, namely Mean Absolute
Error (MAE), Mean Error (ME), Standard Devia-
tion (SD), Root Mean Squared Error (RMSE) and
Mean Absolute Percentage Error (MAPE) as defined
in Section A.1 in the Appendix. It is worth noting
that some entries in the comparison tables include
missing values due to the absence of reported met-
rics in the referenced literature. Our work provides a
comprehensive evaluation across all relevant metrics,
ensuring a complete and consistent comparison.

4.3. Implementation Details

We implement ST2S-rPPG on the PyTorch frame-
work and one NVIDIA GeForce GTX 1080 GPU. For
both datasets, during the CNN prediction, we imple-
ment the Leave One Subject Out (LOSO) method.
This is due to the fact that individual variability
is significant and LOSO ensures that the model is
trained on a wide variety of subjects and tested on
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a completely independent individual while prevent-
ing overfitting to individual characteristics. For the
second-stage learning component, we conduct three
distinct experiments: Blind Scenario: The classi-
fier is withheld samples of the individual it is pre-
dicting on (i.e. LOSO), ensuring no data leakage.
Few-Shot Scenario: The classifier is provided with
data from all participants and only 6 random samples
from the individual it is predicting on (3 per class).
Calibrated Scenario: The classifier is trained us-
ing data from one individual. We ensure a separate
training/test set within the individual’s data to pre-
vent data leakage; the training set is comprised of
80% of the balanced image dataset and the test set
20%.

4.4. Evaluation on MMSE-HR

We compare our proposed method with several state-
of-the-art methods, ranging from approaches mitigat-
ing motion artifacts [Li et al. (2014), Tulyakov et al.
(2016)] to other spatiotemporal approaches [Niu et al.
(2019a), Jaiswal and Meenpal (2022)]. To ensure the
validity of the comparison, we report on work that
has been evaluated on the same dataset. All related
results are presented in Table 2 and supporting vi-
sualisations can be found in section A.2. of the Ap-
pendix.

We decide to keep the calibrated results separate
from the evaluation as our classifier is trained with
personalised data and comparison would not be fair.
Our MAE excluding the second-stage learning high-
lights the challenges of rPPG without the selection
of informative data regions. Despite this, the stan-
dard deviation of the first-stage learning is favor-
able compared to literature, which indicates that our
approach produces more consistent predictions with
lower variability across individuals. We did not con-
duct experiments without the stabilisation, as the fa-
cial regions would not be consistently tracked, which
would make it impossible to generate the images re-
quired for our method. We can observe that ST2S-
rPPG achieves promising results on most commonly
used metrics. Specifically, both blind and few-shot
two-stage learning approaches achieve the best re-
sults in HRMAE , HRME , HRSD. The few shot two-
stage learning also achieves second best performance
in HRRMSE , HRMAPE . We demonstrate the most
significant improvement compared to Li et al. (2014)
and Tulyakov et al. (2016). These methods do not use
spatiotemporal representations, further proving their

efficiency. They also use adaptive band-pass filters for
noise reduction, proving our stabilization method’s
capability. Our advantage over Niu et al. (2019a,b)
is that instead of using an aggregate signal from mul-
tiple ROIs, we take advantage of all regions of the
face, do not aggregate the spatiotemporal signal and
do not choose the optimal images (ROIs) empirically.
Finally, compared to all spatiotemporal approaches
in Table 2, ST2S-rPPG does not perform any RGB
transformations, since the lighting in the MMSE-HR
database is not heterogeneous.

It’s important to mention that while HRME is pro-
vided by some papers, its informativeness can be mis-
leading, as the absolute value of error in not used.
In our analysis, we prioritize HRMAE as the most
informative metric, as it directly measures the aver-
age error without biasing negative or positive devi-
ations. Compared to Jaiswal and Meenpal (2022),
the HRMAE error was reduced by 13.64%. At the
same time we have achieved the lowest standard de-
viation, suggesting more consistent predictions across
individuals. Our calibrated two-stage learning exper-
iment achieves the best performance across all met-
rics, keeping in mind that the classifier is trained with
personalised data.

4.5. Evaluation on UBFC-rPPG

We compare ST2S-rPPG to several state-of-the-art
approaches that have been evaluated on the UBFC-
rPPG database. Supporting visualisations can be
found in section A.2. of the Appendix.

In Table 3, we observe a similar trend with Ta-
ble 2 regarding our results without the second-
stage learning. Our ST2S-rPPG blind and few-shot
method achieves the best results most reported met-
rics (HRME , HRSD, HRRMSE , HRMAPE) and the
second best results in HRMAE , demonstrating its ef-
ficiency in accurately estimating heart rate even with
limited training data. Additionally, ST2S-rPPG ex-
hibits improvements in HRSD, indicating more pre-
cise predictions and reduced variability in heart rate
estimations. Similarly to the previous database, we
demonstrate the most significant improvement of per-
formance against non spatiotemporal traditional ap-
proaches [Poh et al. (2010a); Wang et al. (2016)]
and 3D CNN approaches [Bousefsaf et al. (2019)].
TransPhys [Shao et al. (2023)] seems to be perform-
ing best in the HRMAE metric, suggesting that spa-
tiotemporal transformers show promising results, but
can be computationally expensive. Finally, Meta-
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Table 2: A summary of average HR estimation per video for ST2S-rPPG on the MMSE-HR dataset. Bold
numbers indicate best performance and underlined numbers indicate second best performance.

Method HRMAE HRME HRSD HRRMSE HRMAPE

Li et al. (2014) - 11.56 20.02 19.95 14.64%
SAMC [Tulyakov et al. (2016)] - 7.61 12.24 11.37 10.84%
RythmNet [Niu et al. (2019a)] - -0.85 4.99 5.03 3.67%
Niu et al. (2019b) - -3.10 9.66 10.10 6.61%
Jaiswal and Meenpal (2022) 6.4 - 6.63 6.82 -

ST2S-rPPG - No second-stage learning 10.21 1.59 5.58 11.75 14.94%
ST2S-rPPG - Blind (ours) 5.94 0.65 4.78 7.67 7.66%
ST2S-rPPG - Few-shot (ours) 5.13 -0.39 4.11 6.57 6.16%
ST2S-rPPG - Calibrated (ours) 2.06 -0.23 2.35 3.11 2.88%

Table 3: A summary of average HR estimation per video for ST2S-rPPG on the UBFC-rPPG dataset. Bold
numbers indicate best performance and underlined numbers indicate second best performance

Method HRMAE HRME HRSD HRRMSE HRMAPE

ICA[Poh et al. (2010a)] 8.43 - 18.6 18.8 -
CHROM [Wang et al. (2016)] 10.6 6.78 19.1 20.3 -
3D CNN [Bousefsaf et al. (2019)] 5.45 -1.31 8.55 8.64 -
Meta-rPPG [Lee et al. (2020)] 5.97 - 7.12 7.42 -
TransPhys [Shao et al. (2023)] 4.66 - 7.22 7.36 -

ST2S-rPPG - No second-stage learning 8.51 -1.93 4.75 9.84 8.25%
ST2S-rPPG - Blind (ours) 5.62 0.04 4.76 7.24 5.6%
ST2S-rPPG - Few-shot (ours) 5.24 -0.02 3.81 6.36 5.21%
ST2S-rPPG - Calibrated (ours) 3.05 -1.04 2.82 3.98 2.95%

rPPG [Lee et al. (2020)], showcases slightly lower es-
timation accuracy, potentially indicating that a sec-
ond stage learning component, trained on predictions
captures more valuable information for estimation.

5. Discussion

Telehealth is a field continuously growing in popu-
larity, especially in the wake of the Covid-19 pan-
demic. Despite the increased adoption and improved
accuracy of telehealth systems, there is a preference
for complex deep learning methods, which might dis-
tance themselves from intuitive human understand-
ing. This research seeks to address this issue by
demonstrating the efficiency of spatiotemporal meth-
ods, which offer a more intuitive and comprehensive
approach compared to the increasingly complex end-
to-end deep learning methods. These spatiotemporal
approaches aim to make the process more accessi-

ble and understandable, as they can be visualized
(as in Figure 1) and further analyzed for signal vs.
noise (a topic for future work). However, current
spatiotemporal approaches often rely on pre-defined
ROIs, which could neglect regions containing suffi-
cient signal that could enhance pulse estimation accu-
racy. Additionally, aggregating multiple frames into
a single image can suppress significant signal varia-
tions.

We addresses these limitations through several key
contributions. By stabilizing original videos using
the PIPs algorithm [Harley et al. (2022)], we miti-
gate the effects of natural motion artifacts, enabling
the generation of more consistent spatiotemporal im-
ages. These images allow us to capture both spa-
tial and temporal information within video data, en-
riching datasets (especially those with limited sam-
ples). Compared to complex deep learning models
requiring continuous video processing, our methodol-
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ogy achieves significant computational efficiency by
using spatiotemporal images and a simpler CNN ar-
chitecture while maintaining high accuracy. This
balance makes it particularly suitable for real-time
healthcare applications. Finally, the integration of a
second-stage learning framework marks a significant
advancement by automating the selection of ROIs
rather than relying on predefined assumptions. This
approach enhances overall system efficiency by focus-
ing on the most informative data, a common practice
in real-world applications, particularly in clinical set-
tings where minimizing noise is essential for accurate
and reliable results. The calibrated two-stage learn-
ing method further enhances performance in both re-
search and real-world settings. For instance, in med-
ical consultations, collecting initial calibration data
during in-person visits can improve model accuracy
by accounting for individual variability in physiology
and behavior. This personalized approach leads to
more tailored recommendations, ultimately improv-
ing patient outcomes.

The findings from this study contribute to the
broader telehealth landscape by demonstrating how
spatiotemporal approaches can balance efficiency and
accuracy. Compared to traditional end-to-end deep
learning methods, this framework offers a more in-
terpretable solution, which is particularly advanta-
geous in clinical settings where understanding the
rationale behind predictions is crucial. Integrating
clinical feedback to validate and refine these methods
further would strengthen their translational poten-
tial. Our approach is particularly relevant in scenar-
ios where traditional monitoring tools, such as wear-
able devices, are impractical or inaccessible. This in-
cludes settings like resource-limited healthcare envi-
ronments, monitoring fragile populations (e.g., new-
borns or elderly patients), and scenarios requiring
non-intrusive continuous surveillance. The intuitive
and computationally efficient design of our framework
facilitates its potential integration into telehealth ap-
plications, reducing the dependency on contact-based
systems and improving patient comfort and safety.

Limitations and Future Work

While the contributions of this work are significant,
we acknowledge several limitations that highlight op-
portunities for future research. A substantial gap
persists between research advancements and practi-
cal implementation in real-world scenarios.

One of the most pressing challenges is the signif-
icant lack of diverse and publicly available datasets.
Current datasets fail to represent the wide spectrum

of human characteristics, including variations in skin
tone, ethnicity, gender, age, general appearance, and
natural fluctuations in heart rate and medical condi-
tions. Moreover, they lack environmental diversity,
such as variations in motion and lighting, making
current approaches impractical for real-world appli-
cations. Addressing these gaps requires collaborative
efforts to access underrepresented populations and
leveraging synthetic data generation to simulate more
diverse scenarios.

While our proposed framework demonstrates ro-
bust performance across datasets with varying res-
olutions, its utility in scenarios with low-quality or
non-standardized video data remains uncertain. We
recognize that no rPPG method can reliably extract
pulse signals from extremely low-quality data. We
will explore techniques to mitigate this limitation,
such as adaptive preprocessing methods or enhanced
spatiotemporal transformations that emphasize ro-
bustness over fine detail resolution.

Another important consideration is the ethical im-
plications of video-based monitoring, particularly re-
garding privacy and consent. Future research should
prioritize strategies to address these challenges, in-
cluding anonymization techniques and clear protocols
for obtaining informed consent, ensuring compliance
with ethical standards in healthcare applications.

Future work will focus on understanding the “bad”
classifications in greater depth. Preliminary obser-
vations suggest that these include frames with poor
alignment, occlusions, or regions like the eyes, which
contribute less to accurate pulse estimation. An in-
depth analysis of these representations could inform
the design of adaptive and dynamic ROI selection
mechanisms or enhanced preprocessing strategies.

Despite these obstacles, incremental progress con-
tinues to bring research closer to real-world applica-
tions. By addressing the challenges outlined above,
future work can help bridge the gap between re-
search findings and practical implementation, ulti-
mately contributing to the advancement of telehealth
technologies.
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Appendix A. Appendix

A.1. Definition of evaluation metrics

MAE =
1

n

n∑
i=1

|yi − ŷi| (8)

ME =
1

n

n∑
i=1

(yi − ŷi) (9)

SD =

√√√√ 1

n

n∑
i=1

((yi − ŷi)−ME)
2

(10)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (11)

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100 (12)

A.2. Plots between ground truth beats and
predicted beats
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Figure 3: Scatter plot between ground truth HR and predicted HR for the MMSE-HR Dataset

Figure 4: Scatter plot between ground truth HR and predicted HR for the UBFC-rPPG Dataset

Figure 5: Bland-Altman plot with adjustments for ST2S-rPPG on the MMSE-HR Dataset, the black line
represents the mean and the red lines the 95% limits of agreement
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Figure 6: Bland-Altman plot with adjustments for ST2S-rPPG on the UBFC-rPPG Dataset, the black line
represents the mean and the red lines the 95% limits of agreement

Figure 7: Architecture Diagram for the CNN
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