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Abstract
The automated generation of free-text radiology
reports is crucial for improving diagnosis and
treatment in clinical practice. The latest chest X-
ray report generation models utilize large vision
language model (LVLM) architectures, which
demand a higher level of interpretability for clin-
ical deployment. Uncertainty estimation scores
can assist clinicians in evaluating the reliability
of these model outputs and promoting broader
adoption of automated systems. In this paper,
we conduct a comprehensive evaluation of the
correlation between 16 LLM uncertainty scores
and 6 radiology report evaluation metrics across
4 state-of-the-art LVLMs for CXR report gen-
eration. Our findings show a strong Pearson
correlation, ranging from 0.4 to 0.6 on a scale
from -1 to 1, for several models. We provide a
detailed analysis of these uncertainty scores and
evaluation metrics, offering insights in applying
these methods in real clinical settings. This
study is the first to evaluate LLM-based uncer-
tainty estimation scores for X-ray report gener-
ation LVLM models, establishing a benchmark
and laying the groundwork for their adoption in
clinical practice.

Keywords: Uncertainty quantification, X-rays
report generation, large vision language model
(LVLM).

Data and Code Availability We use the MIMIC-
CXR-JPG database of chest radiographs (Johnson
et al., 2019), which is available on the PhysioNet
repository. The code is publicly available: Github
repo.

Institutional Review Board (IRB) This re-
search does not require IRB approval.

1. Introduction

The automated generation of free-text radiology re-
ports plays a pivotal role in diagnosis and treatment
in clinical practice. Automated chest X-ray (CXR)

report generation contributes to increased efficiency,
enhanced accuracy, and consistency when deployed to
support radiologists. Moreover, automated interpreta-
tion systems can be integrated into clinical workflows
to provide real-time monitoring of patients, particu-
larly in critical care settings. Pioneering radiology re-
port generation methods include CXR-RePaiR (Endo
et al., 2021), MedViLL (Moon et al., 2022), and Cls-
Gen (Nguyen et al., 2021). With the recent rise of
biomedical foundation models, the latest CXR report
generation models adopt a fully generative end-to-end
LVLM architecture. Notable works include MedVersa
(Zhou et al., 2024), LLaVA-Med (Li et al., 2024), and
CheXagent (Chen et al., 2024).

The deployment of automated radiology report gen-
eration faces several challenges. Radiology reports
often vary in format and structure across hospitals,
regions, and countries, which complicates the task.
Additionally, due to the limited availability of train-
ing data, models trained on one dataset may struggle
to perform consistently in real-world clinical settings,
leading to variability in the quality of generated re-
ports. Incorporating uncertainty quantification scores
can help clinicians assess the reliability of model out-
puts, enhancing trust and accelerating the adoption
of these automated technologies.

Previous uncertainty estimation models have been
developed for deep learning-based report generation
methods (Wang et al., 2024). With the rise of gen-
erative biomedical foundation models, it is essential
to develop accurate uncertainty quantification meth-
ods tailored to LVLMs for automated CXR report
generation.

In this paper, we conduct a comprehensive eval-
uation of the correlation between 16 LLM uncer-
tainty scores and 6 radiology report evaluation met-
rics across 4 state-of-the-art LVLMs for CXR report
generation. The uncertainty scores are divided into
single-inference methods and multi-inference meth-
ods, with further classification into sample-based and
perturbation-based approaches. The 6 evaluation met-
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rics, widely used to benchmark radiology report gen-
eration models, include domain-specific metrics such
as CheXbert, RadCliQ, and RadGraph, as well as
general LLM evaluation metrics like BLEU2, BLEU4,
and BERTScore (Yu et al., 2023).
Our experiments show that these uncertainty

estimation scores exhibit a strong correlation in
certain cases, ranging from 0.4 to 0.6 on a scale from
-1 to 1.

Our contributions are three-folds:

1. We establish a benchmark to evaluate the un-
certainty in LVLMs for CXR report generation.
We conduct a comprehensive evaluation of the
correlation between 16 LLM uncertainty scores
and 6 radiology report evaluation metrics across
4 state-of-the-art LVLMs for CXR report genera-
tion, namely MedVersa (Zhou et al., 2024), CheX-
agent (Chen et al., 2024), XrayGPT (Thawkar
et al., 2023), and LLaVA-Med (Li et al., 2024).

2. We observe a strong correlation, ranging from 0.4
to 0.6 on a scale from -1 to 1, in certain cases.
Although our correlation results are not perfect
(i.e., close to 1 or -1), they offer valuable insights
and highlight challenges. LLM-based evaluation
metrics contain inherent inaccuracies, and it may
be unrealistic to expect a high correlation, such
as 0.9, between uncertainty scores and evaluation
metrics.

3. We perform ablation studies on using the
RadGraph-extracted clinical entities and rela-
tions in the computation of single-inference un-
certainty scores.

Since our work is the first to evaluate LLM-based
uncertainty quantification scores on LVLMs for X-ray
report generation, there are no prior benchmarks to
compare against. To our knowledge, our work is also
the first to establish a benchmark by correlating these
uncertainty scores with evaluation metrics. We hope
this study establishes a benchmark that motivates
the medical AI research community to further explore
uncertainty quantification for LVLM models in X-ray
report generation and to translate these methods into
real clinical practice.

2. Related Works

Uncertainty estimation for LLM and VLM.
Uncertainty estimation methods in natural language

processing can be broadly classified into calibration
confidence-based methods, sampling-based methods,
and distribution-based methods (Hu et al., 2023).
One widely used technique is conformal prediction,
which converts tasks into multi-choice problems and
quantifies uncertainty by considering the size of
the subset of potential labels (Ye et al., 2024). For
instance, (Kostumov et al., 2024) employs conformal
prediction to assess over 20 VLMs, focusing on
multiple-choice visual question answering (VQA)
tasks. In the realm of large language models
that generate free-form text, recent approaches to
uncertainty estimation directly utilize token-level
probability distributions from the outputs (Ahdritz
et al., 2024; Huang et al., 2023; Fadeeva et al., 2024).
(Kuhn et al., 2023) introduces semantic entropy which
incorporates linguistic invariances created by shared
meanings.

CXR report generation and uncertainty es-
timation. Earlier CXR report generation models
frequently utilized pathology classifications within the
vision module, as seen in RepsNet (Tanwani et al.,
2022) and RaDialog (Pellegrini et al., 2023). Some
pioneering models also incorporated image-report re-
trieval techniques, such as MedViLL (Moon et al.,
2022) and CXR-RePaiR (Endo et al., 2021). The
latest advancements in medical report generation in-
volve foundation biomedical models that employ fully
generative end-to-end LVLM architectures, including
MedVersa (Zhou et al., 2024) and CheXagent (Chen
et al., 2024). While previous studies on uncertainty-
aware report generation for chest X-rays have focused
on deep learning-based models (Najdenkoska et al.,
2022; Wang et al., 2024), there has been limited re-
search on uncertainty estimation methods for LVLMs
in the context of chest X-ray report generation.

3. Methods

3.1. Problem Setup

For each radiographic study, the model inputs are the
CXR images associated with the study and a prompt
that tells the model to generate a complete radiology
report. The LVLM generates the radiology report
with a sequence of tokens Y = [y1, y2, ...., ym]. For
each token, we obtain their probability distribution
over the vocabulary. Each of the 16 uncertainty esti-
mation methods aims to calculate a score u regarding
the uncertainty of Y . Given the ground truth re-
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port G, each of the evaluation metrics calculates a
score s to measure the correctness of the generated
report. Pearson, Spearman and Kendall’s tau correla-
tion coefficients are computed across all 16 uncertainty
estimation scores and all 6 evaluation metrics. These
correlations vary between -1 and +1 with 0 imply-
ing no correlation. A larger absolute value indicates
stronger correlation, reflecting the relevancy of the
uncertainty estimation score.
Default two-sided test is used in the computation

of Pearson, Kendall’s Tau and Spearman correlations.
Bonferroni correction for multiple comparison tests
is used: 0.05 ÷ (n models × n scores × n metrics) =
0.05 ÷ (4 × 16 × 6) = 1.3 × 10−4. The significance
level is 1.3× 10−4 after Bonferroni correction.

3.2. Uncertainty Estimation Scores

The 16 uncertainty estimation scores are categorized
into three types: single-inference, sample-based, and
perturbation-based. An illustration is provided in
Appendix A.

Single-inference category The single-inference un-
certainty estimation scores are MaxProb, AvgProb,
MaxEntropy and AvgEntropy. Higher scores indicate
higher uncertainty.

Each token generated by the model can be viewed as
a classification problem across the entire vocabulary,
prompting us to examine the probability distribu-
tion of each token over this vocabulary. To calculate
uncertainty scores at both the sentence and report
levels, we use the four metrics proposed in (Manakul
et al., 2023). The LLM generation process employs a
greedy strategy with a temperature setting of 0. Let
pij represent the probability of a token at position j
in sentence i; the sentence-level uncertainty score is
derived by taking either the maximum or average of
these probabilities.

MaxProbi = max
j

(− log(pij))

AvgProbi =
1

J

∑
j

(− log(pij))

The entropy Hij for the token at position j in
sentence i is calculated based on its distribution over
W , where W is a subset of the vocabulary consisting
of the top 50 tokens with the highest probabilities.

Hij = −
∑
w̃∈W

pij(w̃) log[pij(w̃)]

pij(w̃) is the probability of the word w̃ being gener-
ated at the j-th position in i-th sentence. The sentence-
level entropy based uncertainty estimation scores are
calculated as:

MaxEntropyi = max
j

(Hij)

AvgEntropyi =
1

J

∑
j

(Hij)

To determine the report-level uncertainty scores, we
explore two approaches: calculating the average and
themaximum of all sentence-level uncertainty scores.

Sample-based category Sample-based uncertainty
estimation scores utilize the stochastic nature of the
generative model, estimating uncertainty based on the
divergence among different predictions.

In LLMs, the temperature parameter controls the
randomness of the generated output by adjusting the
probabilities of various token choices. Lower tempera-
tures make the model more deterministic by favoring
high-probability tokens, whereas higher temperatures
promote diversity and creativity by allowing less likely
tokens to be selected.

As detailed in Appendix A, we perform three
stochastic model inferences with a temperature t > 0.
The Sentence Transformers library (Reimers and
Gurevych, 2019) is used to generate vector embed-
dings for all inference outputs and calculate the cosine
similarities for each pair of outputs. Text pairs with
higher similarity scores are more semantically related.

We follow (Gal and Ghahramani, 2016), and adapt
the variation ratio (VR) and variation ratio for origi-
nal prediction (VRO) uncertainty estimation metrics
to compute SampleVR and SampleVRO. Let dist()
denote the cosine distance between the embeddings
of two outputs, pi be a stochastic inference output,
and po represent the original report generated without
stochasticity.

SampleV R =
dist(p1, p2) + dist(p2, p3) + dist(p1, p3)

3

SampleV RO =
dist(po, p1) + dist(po, p2) + dist(po, p3)

3

Perturbation-based category The stochastic na-
ture of LVLMs can also be activated by altering a
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generated token, a process known as test-time aug-
mentation. (Huang et al., 2023) Intuitively, any distur-
bance in the chain of token generation can influence
the following tokens and potentially result in two se-
mantically distinct outputs. We perturb three key
points: 1) the token with the highest entropy, 2) the
token with the lowest entropy and 3) the token show-
ing the greatest entropy gain from the previous token
in the sequence.

As shown in Appendix A, to calculate MaxVR and
MaxVRO, we run three model inferences with a tem-
perature of 0. In the first inference, we replace the
token with the highest entropy with the next most
probable token among the top 50. In the second infer-
ence, we substitute this token with the third highest
probability token among the top 50, and in the third
inference, we use the fourth highest probability token
from the top 50. We then apply the VR and VRO
calculations to obtain MaxVR and MaxVRO.

MinVR, MinVRO, MaxDiff VR, MaxDiff VRO are
calculated in a similar manner with different points
of perturbation.

Please note that expected calibrated error (ECE)
is outside of the scope of this study, since it involves
training an auxiliary model to cast the free-form text
generation into a binary prediction task.

4. Experiments

4.1. Dataset

We use the MIMIC-CXR dataset (Johnson et al.,
2019), a large and publicly accessible dataset collected
at the Beth Israel Deaconess Medical Center in
Boston, MA. It comprises 377,110 chest X-rays
corresponding to 227,835 radiology studies. The
dataset was fully deidentified, and the protected
health information was removed. Since we take the
pre-trained weights for the four large vision language
models and since they haven’t been trained on the
official test split, we only utilize the official test split
in our experiments. The free-text radiology report
preprocessing followed the steps in CXR-RePair
(Endo et al., 2021). Further, we remove indication,
comparison and any information related to patient
history from the ground truth reports. Our final test
set includes 1000 studies and corresponding reports.
We evaluate the model output at the study level and
each study contains one or multiple chest X-rays.
These 1000 studies include in total 1592 chest X-ray

Table 1: Large vision language models in our study.

Models Vision Module Language Module

MedVersa Swin Transformer Custom LLM
CheXagent EVA-CLIP-g Mistral
XrayGPT MedClip Vicuna
LLaVA-Med LLaVA LLaVA

images.

4.2. Large Vision Language Models

The four models in our study are listed in Table 1.

1. MedVersa (Zhou et al., 2024) is a state-of-the-
art GMAI model that supports multimodal out-
puts, inputs and on-the-fly task specification for 9
different medical image interpretation tasks. On
the radiology report generation task, MedVersa is
the top on the ReXrank leaderboard (Lab, 2024).

2. CheXagent (Chen et al., 2024) is an instruction-
tuned Foundation Model capable of analyzing
and summarizing CXRs. The model also places
among the top models on the ReXrank leader-
board.

3. LLaVA-Med (Li et al., 2024) is a vision-
language conversational assistant that can answer
open-ended research questions of biomedical im-
ages. The model is built by adapting LLaVA to
the biomedical domain.

4. XrayGPT (Thawkar et al., 2023) is a conver-
sational medical vision-language model that can
analyze and answer open-ended questions about
CXRs.

4.3. Evaluation Metrics

Generated reports are evaluated against the MIMIC-
CXR ground-truth reports on the study level using
the following evaluation metrics. (Yu et al., 2023)

1. BLEU2, BLEU4: Computes n-gram overlap
with brevity penalty.

2. BERTScore: Uses the contextual embeddings
from a BERT model to compute the similarity of
two text sequences.

3. CheXbert: CheXbert automatic labeler is
used to predict the presence or absence of 14
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pathologies from machine-generated and human-
generated radiology reports. CheXbert vector
similarity computes the cosine similarity between
these indicator vectors of 14 pathologies.

4. RadGraph F1: Computes the overlap in clinical
entities and relations that RadGraph extracts
from machine- and human-generated reports.

5. RadCliQ: This composite metric combines eval-
uations of BLEU and RadGraph F1.

BLEU and BERTScore are general natural lan-
guage metrics for measuring the similarity between
machine-generated and human-generated texts.
CheXbert vector similarity and RadGraph F1 are
metrics designed to measure the correctness of clinical
information. (Yu et al., 2023) finds that BERTScore
and RadGraph F1 are the metrics with the two
highest alignments with radiologists.

4.4. Correlation Experiment with Filtering

In this experiment, for each combination of evaluation
metric and uncertainty score, the 1000 data points are
sorted based on their evaluation metric. The correla-
tions are calculated between each evaluation metric
and uncertainty score by progressively removing x% of
data points from the median evaluation metric, where
x ranges from 0 to 90. The results of this experiment
are presented in Section 5.2 and Fig. 1. The results
are not presented in Table 2.
Motivation for this experiment: For each pair of

evaluation score and uncertainty score, we made a
scatter plot and observed that most of the 1000 data
samples are concentrated in the middle range in terms
of evaluation scores, as shown in Appendix D. They
are also concentrated in the middle range in terms
of uncertainty scores. Thus, our motivation for the
experiments in this section is about calculating the
correlations if we only retain samples with more ex-
treme evaluation scores (Fig. 1) or uncertainty scores
(Fig. 2).

5. Results and Analysis

5.1. Analysis across Models and Evaluation
Metrics

We present the Pearson correlation coefficients
between uncertainty scores and the evaluation metrics
for the CXR report generation models in Table.

2. For RadCliQ evaluation metric, a lower metric
score is better. For all other evaluation metrics,
a higher metric score is better. Thus, we present
results for -RadCliQ in order to standardize the
direction of the correlation coefficients. The Pearson
correlation ranges from -1 to +1, with 0 indicating no
correlation. Positive correlations show that a higher
uncertainty score correlates with better evaluation
score, while negative correlations show that a lower
uncertainty score correlates with better evaluation
score. The absolute value shows the strength of
correlation, which helps determine whether the
uncertainty estimation can effectively predict the
model’s performance on a specific evaluation metric.
For each evaluation metric and model, we analyze
the strength of the correlations across all uncertainty
scores.

The strength of correlations. Table 2 shows
that most p-values are below 1.3× 10−4 which is the
significance level after Bonferroni correction, demon-
strating statistical significance. For MedVersa, the
strongest correlation is 0.38 between SampleVRO and
BertScore. For CheXagent, the highest correlation
is 0.49 between MaxVRO and -RadCliQ. XrayGPT
shows its strongest correlation at 0.20 between
BertScore and SampleVRO, while LLaVA-Med
has its highest correlation of 0.28 between BLEU4
and MaxEntropy. Although our correlation results
are not perfect (i.e., close to 1 or -1), they offer
valuable insights and highlight challenges. Since our
work is the first to evaluate LLM-based uncertainty
quantification scores on LVLMs for X-ray report
generation, there are no prior benchmarks to compare
against. LLM-based evaluation metrics contain
inherent inaccuracies, and it may be unrealistic
to expect a high correlation, such as 0.9, between
uncertainty scores and evaluation metrics.

Influence of models. Table 2 reveals that the uncer-
tainty scores showing the strongest correlation with
each evaluation metric vary across different models.
For instance, with -RadCliQ as the evaluation met-
ric, SampleVRO exhibits the highest correlation of
0.34 for MedVersa, while MaxVRO shows the highest
correlation of -0.49 for CheXagent.

Additionally, the direction of the correla-
tion—whether positive or negative—depends on the
model. In the single-inference categories, for Med-
Versa, all uncertainty scores demonstrate a negative
correlation with evaluation metrics, indicating that
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Table 2: Pearson correlation coefficients between uncertainty scores and evaluation metrics for X-ray report
generation performance across 4 models. The Pearson correlation varies beteween -1 and +1 with 0 implying
no correlation. For each pair of evaluation metric and report generation model, the strongest correlations
are ranked and highlighted as top-1 , top-2 and top-3 . To improve the readability of the table, only the
p-values of the top highlighted correlations are shown in parentheses. For all evaluation metrics, a higher
metric score is better. Note that we compare with the -RadCliQ because higher -RadCliQ is better. (Gray
shading is only for readability).

Model Uncertainty Category Uncertainty Scores
Evaluation Metrics

BERTScore CheXbert -RadCliQ RadGraph BLEU2 BLEU4

MedVersa

Single-inference (average)

MaxProb -0.20 -0.14 -0.22 -0.23 (1e-14) -0.15 -0.22

AvgProb -0.22 -0.12 -0.22 -0.22 -0.16 -0.26 (6e-18)

MaxEntropy -0.20 -0.15 (5e-5) -0.22 -0.25 (7e-16) -0.17 -0.24

AvgEntropy -0.21 -0.12 -0.21 -0.21 -0.17 -0.27 (5e-18)

Single-inference (max)

MaxProb -0.34 (2e-28) -0.13 -0.27 (3e-18) -0.18 -0.15 -0.20

AvgProb -0.34 -0.11 -0.25 -0.16 -0.15 -0.19

MaxEntropy -0.36 (2e-31) -0.15 (2e-6) -0.30 (5e-22) -0.23 -0.19 (2e-6) -0.24

AvgEntropy -0.34 (3e-28) -0.12 -0.26 -0.17 -0.16 -0.21

Sample-based
SampleVR 0.23 0.17 (2e-6) 0.22 0.19 0.21 (5e-11) 0.23

SampleVRO 0.38 (5e-35) 0.20 (4e-9) 0.34 (2e-27) 0.28 (1e-20) 0.29 (1e-20) 0.30 (1e-21)

Perturbation-based

MaxVR 0.09 0.05 0.08 0.07 0.11 0.08

MaxVRO 0.14 0.06 0.11 0.07 0.12 0.10

MinVR -0.10 0.01 -0.036 -0.01 -0.1 -0.12

MinVRO -0.07 0.002 -0.03 0.004 -0.08 -0.11

MaxDiffVR 0.10 0.09 0.11 0.09 0.10 0.09

MaxDiffVRO 0.11 0.06 0.09 0.07 0.10 0.07

CheXagent

Single-inference (average)

MaxProb 0.09 -0.03 0.05 0.08 -0.02 -0.08

AvgProb 0.14 0.06 0.145 0.22 0.02 -0.04

MaxEntropy 0.08 -0.07 0.01 0.003 -0.05 -0.11

AvgEntropy 0.18 0.09 0.18 0.25 0.05 -0.01

Single-inference (max)

MaxProb 0.10 0.12 0.15 0.28 0.26 0.12

AvgProb 0.24 0.22 0.29 0.40 0.32 0.19

MaxEntropy 0.07 0.08 0.11 0.23 0.21 0.08

AvgEntropy 0.27 0.24 0.32 0.43 (2e-45) 0.34 0.21

Sample-based
SampleVR 0.11 0.13 0.13 0.08 0.07 0.08

SampleVRO 0.12 0.12 0.13 0.11 0.11 0.10

Perturbation-based

MaxVR 0.28 0.27 0.33 0.37 0.29 0.19

MaxVRO 0.45 (4e-51) 0.37 (4e-34) 0.49 (5e-60) 0.48 (2e-59) 0.41 (1e-41) 0.29 (3e-20)

MinVR 0.26 0.27 0.30 0.26 0.31 0.24

MinVRO 0.47 (6e-43) 0.36 (2e-32) 0.45 (8e-51) 0.44 (2e-48) 0.46 (1e-52) 0.34 (2e-28)

MaxDiffVR 0.31 (4e-24) 0.32 (1e-24) 0.36 (1e-32) 0.37 0.41 (1e-40) 0.31 (8e-23)

MaxDiffVRO 0.29 0.24 0.30 0.30 0.36 0.28

XrayGPT

Single-inference (average)

MaxProb -0.06 -0.15(3e-6) -0.14 -0.12 (2e-4) -0.02 -0.07

AvgProb -0.03 -0.14 -0.11 -0.08 -0.02 -0.08

MaxEntropy 0.01 -0.13 -0.09 -0.1 -0.01 -0.05

AvgEntropy -0.03 -0.13 (2e-5) -0.11 -0.09 -0.02 -0.08

Single-inference (max)

MaxProb -0.12 (1e-4) -0.13 -0.15(3e-6) 0.09 -0.04 -0.09 (4e-3)

AvgProb -0.02 -0.08 -0.06 -0.03 -0.03 -0.04

MaxEntropy -0.12(1e-4) -0.16 (2e-7) -0.17(1e-7) -0.11(7e-4) -0.07 (3e-2) -0.09 (4e-3)

AvgEntropy -0.03 -0.09 -0.07 -0.03 -0.03 -0.04

Sample-based
SampleVR 0.09 0.1 0.12 0.08 0.04 0.05

SampleVRO 0.20 (2e-10) 0.12 0.18 (1e-8) 0.13 (5e-5) 0.10 (2e-3) 0.10 (9e-4)

Perturbation-based

MaxVR 0.02 0.02 0.03 0.02 -0.03 -0.02

MaxVRO 0.04 0.02 0.04 0.03 -0.01 -0.01

MinVR -0.05 -0.05 -0.07 -0.1 -0.04 -0.05

MinVRO -0.01 -0.02 -0.03 -0.06 -0.04 -0.03

MaxDiffVR -0.02 -0.05 -0.04 -0.02 -0.03 -0.03

MaxDiffVRO -0.03 -0.02 -0.02 -0.01 -0.05 (1e-1) -0.06

LLaVA-Med

Single-inference (average)

MaxProb 0.16 0.07 (2e-2) 0.13 (5e-5) 0.11 (3e-4) 0.20 (1e-10) 0.22 (4e-12)

AvgProb -0.16 0.04 -0.05 -0.02 0.11 0.11

MaxEntropy 0.14 0.10 (2e-3) 0.13 (3e-5) 0.08 0.27 (6e-18) 0.28 (8e-19)

AvgEntropy -0.09 0.06 (5e-2) -0.01 -0.01 0.20 (6e-10) 0.19 (7e-10)

Single-inference (max)

MaxProb 0.19 (3e-9) -0.02 -0.09 0.14 (6e-6) 0.02 0.01

AvgProb -0.19 (1e-9) 0.03 -0.08 -0.05 0.12 0.12

MaxEntropy 0.27 (1e-17) 0.03 0.16 (1e-6) 0.09 (5e-3) -0.02 -0.04

AvgEntropy -0.14 0.04 -0.05 -0.06 0.17 0.18

Sample-based
Sample-VR 0.03 0.03 0.05 0.07 -0.02 -0.001

Sample-VRO 0.02 0.05 0.06 0.05 -0.06 -0.03

Perturbation-based

MaxVR 0.14 0.04 0.10 0.07 -0.08 -0.07

MaxVRO 0.05 0.02 0.06 0.07 -0.10 -0.13

MinVR -0.05 -0.03 -0.04 -0.02 -0.05 -0.10

MinVRO -0.04 0.002 -0.02 -0.01 -0.04 -0.07

MaxDiffVR 0.14 0.04 0.10 0.07 -0.08 -0.07

MaxDiffVRO 0.05 0.02 0.06 0.07 -0.10 -0.13
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higher uncertainty scores correspond to lower model
performance. However, for CheXagent, we observe a
majority of positive correlation.

Overall, we find that correlations are stronger for
MedVersa and CheXagent compared to LLaVA-Med
and XrayGPT. MedVersa and CheXagent are notably
high-ranked on the RexRank leaderboard.

Comparison across uncertainty score cate-
gories.

Sample-based and perturbation-based uncertainty
scores outperform single-inference scores in three
out of four LVLMs. For MedVersa and XrayGPT,
SampleVRO achieves the highest correlations across
nearly all six evaluation metrics, while for CheXagent,
MaxVRO and MinVRO lead in top correlations. For
LLaVA-Med, single-inference uncertainty scores lead
in top correlations.

Within the multi-inference categories, including
sample-based and perturbation-based methods, VRO
uncertainty scores consistently outperform their VR
counterparts. This is evident from the performance
difference between SampleVR and SampleVRO for
MedVersa and XrayGPT. While VR (variation ra-
tio) scores utilize stochastic inference outputs, VRO
(variation ratio original) scores also incorporate the
original deterministic inference output. Our findings
suggest that combining stochastic inference outputs
with the original deterministic output provides a more
accurate prediction of uncertainty.

In the single-inference categories, MaxProb and
MaxEntropy generally perform better than AvgProb
and AvgEntropy, respectively, across all six evalua-
tion metrics. Specifically, for BERTScore, taking the
maximum of sentence-level uncertainty scores yields
better results than averaging these scores.

The sign of the correlation varies across cate-
gories. For single-inference categories, MedVersa and
XrayGPT show a negative correlation with evalua-
tion metrics, indicating that a lower uncertainty score
correlates with better model performance. For the
sample-based category, all four models show a major-
ity of positive correlations. For the perturbation-based
category, CheXagent shows a positive correlation with
evaluation metrics.

5.2. Achieving a strong correlation of 0.6

This experiment is described in Section 4.4 and the
results are presented in Fig. 1 for MedVersa. We
aim to convey that if the report has a high or low

evaluation score, the uncertainty score will be more
informative for the users.

We observe a notable increase in correlation
strength across Pearson, Spearman, and Kendall’s
Tau correlations, with MedVersa reaching a high cor-
relation of 0.6 in some cases. All Pearson, Spearman
and Kendall’s Tau coefficients increase in strength as
we compute with a more balanced dataset. Spearman
and Pearson correlations even reach 0.6 or -0.6 for
BERTScore, RadCliQ and BLEU2, while having a p-
value below 0.01, showing statistical significance. Ap-
pendix C shows the same experiment on CheXagent,
where Spearman correlations show greater strength
and achieves a correlation above 0.6 in some cases.

The data consistently indicates that Pearson cor-
relation is stronger than Kendall’s Tau correlation
across all evaluation scores. This suggests that for
MedVersa, a linear relationship model is more appro-
priate for assessing the performance of uncertainty
scores than a ranked data model.

We also assess whether a similar trend emerges
when removing data points based on their uncertainty
scores from the middle range. In Fig. 2, we present
results for MedVersa using BertScore as the evaluation
metric, with the X-axis representing the percentage
of data points removed. The correlation coefficients
consistently strengthen with this approach.

5.3. Ablation Studies

For single-inference scores, we conduct ablation stud-
ies on RadGraph-based uncertainty quantification
scores. These scores are calculated using only to-
kens related to clinical entities and relations extracted
from RadGraph.

RadGraph (Jain et al., 2021) provides a dataset of
clinical entity and relation annotations for radiology
reports, defining a novel schema for extracting clini-
cally relevant information. We apply single-inference
uncertainty estimation methods to the clinical entities
and relations extracted from the RadGraph Bench-
mark (Jain et al., 2021), a Deep Learning model de-
signed for this purpose. We investigate whether the
token probabilities associated with clinical entities
and relations exhibit a stronger correlation with un-
certainty scores. As shown in Appendix A, we com-
pute uncertainty scores — such as MaxProb, AvgProb,
MaxEntropy, and AvgEntropy — using only tokens
like ”low,” ”lung,” and ”volumes,” which are extracted
clinical relations and entities. However, as detailed
in Appendix B, RadGraph-based uncertainty scores
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Figure 1: Experiments run on Medversa as described in Section 4.4 and 5.2.

Figure 2: Experiments run on MedVersa for BertScore as described in Section 5.2. The correlations are
calculated by progressively removing x% of data points from the median uncertainty scores.
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do not demonstrate improved correlation compared
to the original uncertainty scores.

6. Discussion: Clinical Impact

Since our work is the first to evaluate LLM-based
uncertainty quantification scores on LVLMs for X-ray
report generation, there are no prior benchmarks to
compare against. Our work is also the first to establish
a benchmark by correlating these uncertainty scores
with evaluation metrics. Although our correlation
results are not perfect (i.e., close to 1 or -1), they
offer valuable insights and highlight challenges. LLM-
based evaluation metrics contain inherent inaccuracies,
and it may be unrealistic to expect a high correlation,
such as 0.9, between uncertainty scores and evaluation
metrics.

Section 5.1 contains a comparison across uncertainty
score categories. Sample-based and perturbation-
based uncertainty scores outperform single-inference
scores in three out of four LVLMs. For MedVersa and
XrayGPT, SampleVRO achieves the highest correla-
tions across nearly all six evaluation metrics, while for
CheXagent, MaxVRO and MinVRO lead in top corre-
lations. For LLaVA-Med, single-inference uncertainty
scores lead in top correlations.

The adoption of the uncertainty quantification
methods outlined in this paper should follow a rigor-
ous calibration process for different models, such as
evaluating the correlations between the uncertainty
scores and evaluation metrics for each specific model
on a wide range of datasets. In the Results and
Analysis section, we discussed that the strength of
correlation varies across models. MedVersa and CheX-
agent are ranked higher on the RexRank leaderboard
(Lab, 2024). The correlations are overall stronger for
these models than LLaVA-Med and XrayGPT.

Our results show several insights related to clinical
deployment. Through Fig. 1, we aim to convey that
if the report has a high or low evaluation score, the
uncertainty score will be more informative for the
users. Upon calibration of the X-ray report generation
model, the results in Fig. 2 reveal that an AI system
could be set up so that it automatically generates a
draft report only if the uncertainty score is within
a threshold, thus avoiding disruption to clinicians’
workflows when the probability of the model failing is
higher, but helping when the model is correct.

Future steps: We think that evaluating more mod-
els, using additional X-ray report generation datasets

and computing uncertainty scores at clinical ”state-
ment level” are promising future directions.

7. Conclusion

Recent LVLM chest X-rays report generation models
achieved unprecedented accuracy (Zhou et al., 2024;
Chen et al., 2024). This work is the first to evalu-
ate LLM-based uncertainty quantification scores on
LVLMs for X-ray report generation, by correlating
these uncertainty scores with evaluation metrics. We
hope this study establishes a benchmark that moti-
vates the medical AI research community to further
explore uncertainty quantification for LVLM mod-
els in X-ray report generation and to translate these
methods into real clinical practice.
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Appendix A. Uncertainty Estimation Methods

Figure 3: An illustration of uncertainty estimation methods using the MedVersa model. Panel E illustrates
RadGraph-based uncertainty quantification scores using single-inference uncertainty scores, which is explained
in Section 5.3.
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Appendix B. Results for Ablation Studies

Table 3: A comparison of Pearson correlations between the original uncertainty quantification scores and
RadGraph-based uncertainty scores. Higher correlations are highlighted in red for each uncertainty score.

Model Uncertainty Score Radgraph
Evaluation Metrics

BERTscore CheXbert -RadCliQ RadGraph BlEU2 BLEU4

MedVersa

MaxProb
Baseline -0.339 -0.126 -0.27 -0.181 -0.149 -0.196

With Radgraph -0.317 -0.099 -0.244 -0.172 -0.129 -0.171

AvgProb
Baseline -0.335 -0.106 -0.253 -0.161 -0.148 -0.194

With Radgraph -0.267 -0.106 -0.206 -0.11 -0.126 -0.166

MaxEntropy
Baseline -0.357 -0.149 -0.298 -0.226 -0.191 -0.236

With Radgraph -0.323 -0.125 -0.265 -0.195 -0.141 -0.192

AvgEntropy
Baseline -0.339 -0.118 -0.262 -0.174 -0.162 -0.211

With Radgraph -0.261 -0.113 -0.206 -0.111 -0.134 -0.174

CheXagent

MaxProb
Baseline 0.104 0.119 0.152 0.276 0.26 0.117

With Radgraph 0.081 0.1 0.125 0.243 0.257 0.12

AvgProb
Baseline 0.237 0.215 0.289 0.399 0.315 0.185

With Radgraph 0.196 0.176 0.242 0.352 0.283 0.171

MaxEntropy
Baseline 0.073 0.083 0.113 0.228 0.207 0.081

With Radgraph 0.076 0.076 0.108 0.216 0.22 0.097

AvgEntropy
Baseline 0.268 0.241 0.322 0.426 0.339 0.21

With Radgraph 0.253 0.226 0.303 0.401 0.315 0.211

Appendix C. Additional Results

Figure 4: Experiments run on CheXagent as described in Section 4.4. and Section 5.2.
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Appendix D. Example Scatter Plots for Correlations

Figure 5: Scatter plot of the SampleVRO uncertainty scores against BertScore evaluation metric for MedVersa.

Figure 6: Scatter plot of the AvgEntropy uncertainty scores against CheXbert evaluation metric for XrayGPT.
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