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Abstract

Inference augmentation techniques such as Chain-of-Thought have already made their mark
in Large Language Models (LLMs). However, transferring these advances to Large Mul-
timodal Models (LMMs) presents greater challenges. Drawing inspiration from human
cognitive processes, this paper proposes a plug-and-play Dual Chain-of-Thought strategy,
a novel pipeline that combines visual and textual guidance to improve the performance
of LMMs in complex multimodal tasks. The DCoT strategy uses a dual guidance mech-
anism to use bounding box markers to guide the model’s attention to the image region
related to the query problem in the visual aspect, so as to achieve fine-grained image guid-
ance, and in the text aspect, we propose a Fast In-Context Retrieval Framework (FICRF)
dynamically and automatically obtains the most suitable examples from the well-built
demonstration example cluster as context guidance according to the current problem. This
bimodal approach that utilizes visual and textual guidance enhances the inference capa-
bilities of LMMs. Extensive experiments on different LMMs and benchmark datasets have
validated its effectiveness, opening up a new path in multimodal inference. Showcasing how
the synergistic combination of visual and textual instructions can take the performance of
these models to new heights, while demonstrating the potential of Chain-of-Thought and
In-Context Learning as a superior alternative to the fine-tuning of LMMs.

Keywords: Large Multimodal Models, Multimodal Chain-of-Thought, In-Context Learn-
ing

1. Introduction

With the rapid rise of Large Language Models (LLMs) such as GPT-4 Achiam et al. (2023)
and GLM-4 Zeng et al. (2024) heralding a new era of artificial intelligence, they have
demonstrated impressive capabilities in multiple fields and opened the way to higher forms
of intelligence. Recognize that language, while the fruit of human ingenuity, does not
exist in isolation. The real world is a multi-sensory, multi-dimensional interweaving of
information, and language models alone cannot fully capture all the information in the real
situation Roh et al. (2022). Therefore, the leap from LLMs to Large Multimodal Models
(LMMs) is an inevitable trend in the development of artificial intelligence, which prompts
researchers to develop LMMs. Recent works, such as LLaVA Liu et al. (2024b), Blip2 Li
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et al. (2023a), and Qwen VL Bai et al. (2023), are excellent exploratory works for LMMs
that utilize visual encoders and LLMs to train on large-scale image-text datasets to align the
output of the vision model with the input space of LLMs. However, frozen visual encoders
are often trained on low-resolution images, resulting in relatively weak fine-grained image
understanding of LMMs, which necessitates adjustments to improve their usefulness Li
et al. (2024b). Despite effective improvements, fine-tuning methods require high-quality
instruction datasets and independent training of each model, but the sheer size of these
models, often measured in billions or even hundreds of billions of parameters, makes fine-
tuning them computationally demanding and costly. In addition, fine-tuning can lead to
a decrease in generalization ability Zhai et al. (2024), severe hallucinatory phenomena Li
et al. (2023b). And since most of the state-of-the-art LMMs are closed-source, it is not
feasible to apply fine-tuning to these.

An emerging trend in AI research aims to unlock the potential of large multimodal mod-
els with cost-effective solutions. A key finding in this paradigm shift is the emergence of
remarkable capabilities Chain-of-Thought Wei et al. (2022) and In-Context Learning Coda-
Forno et al. (2023), as the parameter size of LMMs increases. These inference augmentation
techniques, which do not require additional training, have attracted a lot of attention be-
cause of their plug-and-play nature, which can enhance the performance of the task without
updating the pre-training parameters, and provide a simple and efficient way to customize
LMMs. The Chain-of-Thought approach enhances the interpretability of the model’s out-
put by simulating the step-by-step human thought process. Existing CoT prompts can
be divided into two paradigms: Zero-shot-CoT and Few-shot-CoT. Zero-shot-CoT directly
leverages a single prompt like “Let’s think step by step” Kojima et al. (2022) to generate
a chain of inference. For example, DDCoT Zheng et al. (2023) uses negative spatial cues
to explicitly point out uncertainties in the process of generating reasons for decomposing
sub-problems, reducing false reasoning or hallucinations. VoCoT Li et al. (2024a) visually
represents object concepts in a multimodal crossover and alignment manner using instruc-
tion optimized datasets, effectively bridging the modal differences of LMMs in long text
processes. Few-shot-CoT uses some inference examples as hints. In-Context Learning by
embedding examples in the input, enables the model to infer and generate appropriate re-
sponses based on the examples, demonstrating the amazing generalization power inherent
in language models. Therefore, we believe that for the future of the large models domain,
In-Context Learning with appropriate prompts may be a better solution than fine-tuning.

This study aims to explore ways to overcome the above challenges and develop a plug-
and-play method to improve LMMs’ inference performance on fine-grained image compre-
hension and complex question answering. To achieve this, we propose a Dual Chain-of-
Thought strategy that combines visual and textual guidance, which is a training-free guid-
ance method. DCoT strategy inspired by the way humans process signals, by mimicking
human vision and their thinking. For the image part, our strategy focuses on fine-grained
guidance, explicitly based on a specific image area, focusing on the important parts of the
image related to the question, reducing the interference of redundant information. For the
text part, We introduced In-Context Learning to retrieve the most similar questions to the
relevant question categories among the 80 examples of 8 different question types that we
carefully constructed as prompts to help the model better understand the questions to an-
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swer. To the best of our knowledge, this is the first work to merge image and text guidance,
and our contributions are as follows:

• We propose DCoT, a Chain-of-Thought method that combines image processing and
text guidance, which is training-free and plug-and-play, providing valuable insights
for future multimodal tasks.

• In the text guidance stage, we propose a Fast In-Context Retrieval Framework (FI-
CRF), which improves the retrieval efficiency, and can be dynamically and adaptively
retrieval according to the current questions.

• We conducted extensive experiments using multiple benchmark datasets on a series
of LMMs to verify the effectiveness of our method.

2. Related Work

2.1. Large Multimodal Models

The success of Large Language Models has laid the foundation for the development of
Large Multimodal models, which provide inference capabilities and a rich knowledge base
for visual tasks by integrating LLMs and visual encoders. LLaVA Liu et al. (2024b) uses
MLP as a visual-linguistic connector to map image features to the word embedding space
of a pre-trained LLM. BLIP-2 Li et al. (2023a) uses Q-Former, which uses a learnable query
to extract visual features from a frozen image encoder and align those features with the
language model. Qwen-VL Bai et al. (2023) introduces a location-aware adapter to compress
image features while retaining position information, which realizes the accurate alignment
of image features with the LLMs input space. MiniGPT4 Zhu et al. (2023) is trained on
visual language teaching data in the form of image subtitles. VistaLLM Pramanick et al.
(2024) proposes a unified framework for LMMs with single and multiple visual scene inputs,
and introduces an adaptive sampling algorithm to refine the NLP format mask of LMMs
output.

2.2. Multimodal In-Context Learning

Multimodal In-Context Learning essentially uses images and their task descriptions to guide
the model to generate more consistent answers. In-Context Learning is a new paradigm
that improves performance on downstream tasks without updating any parameters and
additional computational resources. Specifically, In-Context Learning utilizes the charac-
teristics of language models that enable learning in specific contexts, absorbing and adapting
new information from the context to output expected responses. However, this effectiveness
depends on the appropriate choice of contextual examples.

Flamingo Alayrac et al. (2022) trained on a large-scale multimodal web corpus containing
arbitrary interleaved text and images, showing that LMMs can also acquire such capabili-
ties, and Emu2 Sun et al. (2024) achieved superior capabilities in multimodal In-Context
Learning by training with unified autoregressive goals. Liu et al. (2023a) Multimodal In-
Context Learning in the form of image subtitles using heterogeneous data retrievers. Luo
et al. (2024) proposed a new multimodal unsupervised searcher MSIER to select context
samples, which have achieved remarkable results in multimodal tasks.
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2.3. Multimodal Chain-of-Thought

In the past, Multimodal Chain-of-Thought usually embeds visual information into the text
explicitly, for example, Wu et al. (2023) uses the strategy of describing first and then de-
ciding to obtain image information, and CCoT Mitra et al. (2024) describes the objects,
attributes, and relationships in the image in json format in the form of scene graphs. How-
ever, a significant challenge with this approach is the loss of image detail when describing
using natural language. Natural language is less precise than visual data when conveying
complex visual information, such as subtle shifts in color and light in natural landscapes
and artistic works, or the nuanced expressions in portraits, which are inherently challenging
to articulate due to linguistic bottlenecks.

Existing work uses methods such as magnification Cao et al. (2024), cropping Liu et al.
(2024c), masking Wan et al. (2024), and search localization Wu and Xie (2024) to focus
on the local information of the image, because highlighting particularly relevant regions of
the image can improve the performance of the model on various visual tasks by guiding the
model to focus more closely on these regions of interest. Despite its achievements, LMMs’
performance in visual question answering tasks is still limited by its lack of context and
detail capture of complex visual scenes. Therefore, We propose a Dual Chain-of-Thought
based on image and text, and our method not only captures fine-grained image features,
but also provides textual guidance through contextual examples.

3. Method

In this section, we will first briefly introduce some preliminary knowledge about visual ques-
tion answering tasks and LMMs, and then elaborate on the framework and implementation
of our DCoT in detail.

3.1. Preliminaries

Generally speaking, for a visual question answering task T , given an image I and a related
question Q in task T , the purpose of LMMs is to capture the information of the input
image I and question Q to predict the answer A. This task requires not only the ability of
the system to understand complex visual information, but also the flexibility and depth of
natural language, which is highly dependent on the model’s ability to integrate cross-modal
information.

Therefore, the model first needs to understand and relate the content of the image
modality and the question of the text modality interactively, and we need to find a mapping
function from the image i ∈ I, the question q ∈ Q to the answer a ∈ A, described as:

f(t) : (I,Q)→ A

Predict the best answer a ∈ A, and complete the conversion of multimodal input to textual
answer. In general, this process uses a visual encoder vϕ(·) (parameterized by ϕ) to efficiently
encode image I to obtain the corresponding feature Fx, and then project the other modal
feature Fx into the embedding space shared with question Q through the projector to obtain
the aligned feature Px.
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Finally, use the elaborate prompt P to elicit the desired response from the LMMs. The
LMMs thus generates a response as follows:

ŷa = argmax
a

P
(
y | P(c, i, q); θLMMs

)
where P(·) denotes the combination of the prompt template c with the chain of thought
and the input (i, q) as the input of the language model using a template that conforms to
the θLMMs parameter heuristic.

3.2. Overall framework of DCoT

An overview of our approach is shown in Figure 1, which is a strategy formed by two-turn
dialogue pipelines, the primary objective of the initial dialogue round is to concurrently
analyze the original image and question input through a dual-pronged approach, obtaining
the fine-grained image and ascertaining the categorical domain to which the posed query
pertains, respectively, and before the second round of dialogue, the FICRF framework is
used to retrieve the topK optimal examples as the context, and the time and computing
resources consumed are almost negligible due to the retrieval in a fixed category and a
small range. The purpose of the second round of dialogue is to obtain the final answer,
and the fine-grained images obtained from the first round of dialogue and the topk context
examples obtained by FICRF are used as new inputs for the LMMs to obtain the final
response. DCoT consists primarily of visual guidance utilizing bounding box prompts and
contextual text guidance implemented by a fast in-context retrieval framework, both of
which are described in detail in Sections 3.3 and 3.4. The overall algorithm framework
of DCoT is simplified to Algorithm 1. Among them, BBC represents the bounding box
coordinates, Qc represents the problem category, FGI represents fine-grained images, Ci

represents the examples in the current problem category C, and TopK represents the K
most similar contextual examples finally retrieved.

It is worth noting that, since virtually all LMMs, such as Llava and Qwen-vl, acquire
robust instruction-following and visual grounding capabilities upon training with large-scale
image-text datasets, our proposed method does not necessitate additional training efforts.

Algorithm 1 Dual Chain-of-Thought

Input : question Q, image I, Image Prompt IP , Question Classification Prompt QCP ,
Text Prompt TP

Output: Final Answer FA
BBC,QC ← LMM(Q, I, IP,QCP ) // Generate coordinates and question category

FGI ← draw rectangle(I,BBC) // Generate Fine-Grained Image

for each Ci in QC // Retrieve top-K similar examples using FICRF

TopK← Sim(Q,Ci) do

end
FA← LMM(Q,FGI,TopK, TP ) // Generate final answer using DCoT

return FA
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Figure 1: An overview of our Dual Chain-of-Thought (DCoT) method. Our DCoT method
consists of two steps: (1) Firstly, obtaining fine-grained images through bounding
box prompts. (2) Subsequently, obtain the k most relevant demonstration exam-
ples as context to generate responses.

3.3. Fine-Grained Images

For the image processing component of the input data, we employ a fine-grained guidance
strategy. Central to this methodology is the directive for the model to concentrate on
the most salient portions of the image pertinent to the question, achieved by explicitly
delineating key areas within the image. We complete the acquisition of fine-grained images
in the form of dialogues, specifically, we first add bounding box prompts to the question,
which is a clear signal that the model is required to identify and focus on specific areas of
the image that are directly related to the question. Specifically, we employ the instruction
“Please analyze the provided image and focus on the specific area related to the question.
Generate bounding box coordinates:[x1, y1, x2, y2]”, where x1, y1 represents the coordinate
coordinates of the upper left corner of the bounding box in the image, x2, y2 represents
the coordinates of the upper right corner, and the value range is 0 to 1, representing the
proportion of the bounding box occupying the width and height of the image, based on
the left and upper boundaries of the original image. These coordinates are represented as
numerical values embedded in natural language, with no additional formatting or special
tokens, to maintain the convenience of natural interaction with humans.

The region coordinates are extracted from the response output of the first round of
dialogue via a regular expression, and then marked with a striking red box on the original
image as the picture input for the second round of dialogue. It’s important to note that we
didn’t use images that only contain specific regions as input for the second round of dialogue,
because we found that this approach relies heavily on the accuracy of the bounding box,
and some questions do not have a specific area corresponding to them, which will lose a
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Figure 2: Carefully constructed contextual examples, including 8 problem categories and
their descriptions and questions.

large part of the information from the original image and cause the model to not be able
to the correct response.

We use the LMMs own visual grounding capability to identify critical areas in the image
and generate bounding boxes. This fine-grained guidance method ensures that the model
can quickly locate the specific object or scene to which the question refers to, improving
the accuracy of the model’s understanding and analysis of the image content, resulting in
more accurate and targeted responses.

3.4. In-Context Learning

In order to further improve the logical reasoning ability of the model, we introduce con-
textual learning strategy Kossen et al. (2024). We use cosine similarity to retrieve, with
the aim of augmenting the CoT inference process with more relevant demo examples on
multimodal tasks. To this end, we used the GPT4-Turbo 128k with an ultra-long con-
text window to randomly select a large number of question and answer pairs from different
datasets for coarse-grained summary and example generation of question categories, and
then we manually carried out fine-grained secondary construction, and finally obtained 8
question types, 10 examples of each type, a total of 80 examples. As shown in Figure 2.

These Q&A pairs, while unrelated to the image content of the current query, have the
answer (“First... Then. . . Finally. . . So the answer is”) implicitly embeds logical rules for
the output, helping the model better understand and exploit the logical relationships in the
context. In this way, our model is able to identify the key points of the problem to generate
better answers. Compared with the method of using only sentence templates as supervised
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signals, our contextual learning strategy is able to provide rich logical clues for the output
of the model.

Our goal is to automatically select the most appropriate example for the current issue
Q from a well-constructed example. To this end, we propose a Fast In-Context Retrieval
Framework (FICRF). Specifically, in the first round of conversations, we responded by
prompting “There are now eight question categories that are: ... Please determine which
category the problem belongs to”, then measure the similarity between the feature vectors
of the current query problem xq and the feature vectors between the source domain c, and
calculate the similarity between the current problem Q and the category question Q′

S(Q,Q′
c) = Sim(V (Q), V (Q′

c))

Among them, The dataset S includes Sc = {(xcj , ycj)}
nc
j=1 where x represents the feature

vector and y represents the corresponding answer.

sim(xq, x
c
j) =

z(xq) · z(xcj)

∥z(xq)∥
∥∥∥z(xcj)∥∥∥

z(xcj) refers to the feature vector extracted by the encoder Recall K of the most relevant
contextual instances in the current question category c. When K = 1, we choose the opti-
mal example pair as the prompt, P = {x∗, y∗}.

x∗ = arg max
xn∈D

sin(xn, qn)

WhenK > 1, we sort the retrieved examples based on the score and select the top-k example
pair.

topK({sim(xq, x
i
j) : i = 1, . . . ,M ; j = 1, . . . ni})

FICRF determines the category to which the problem belongs first, rather than directly
searching for all the examples, which greatly reduces the time complexity. The selected
questions and their corresponding logical reasoning answers serve as contextual examples of
LMMs, designed to enhance their understanding and performance of similar tasks without
further training Zhang et al. (2024).

The specific case study is shown in Figure 3, for the question “What is the batsman’s
jersey number?”, the first round of dialogue answers “1.Object Recognition” and the bound-
ing box coordinates “[0.23, 0.34, 0.32, 0.46]” with a well-designed prompt guided model,
then uses a Python script to mark the rectangular boxes and retrieve the examples. In
the second round of dialogue, the image-guided and text-guided results serve as new inputs
to the LMMs, and finally a logical output can be obtained: “First, analyze the question,
mention the batter, jersey, and number. Then, we need to identify the characteristics of
the batsman. In the image, wear a black top, white pants and blue socks, wearing a helmet
and holding a bat. Finally, We need to find the number of the batsman’s jersey, based on
the fine image marking, although slightly obscured, it is not difficult to see that this is the
number 25, so the answer is 25.”

4. Experimental Results

In this section, we have conducted extensive experiments on a range of benchmark datasets
using three types of LMMs, and in the following sections, we first describe these involved
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Figure 3: Case study when using DCoT.

LMMs and benchmark datasets. The results of the experiment and the ablation study are
then discussed in detail. All experiments were conducted on a server with 8 NVIDIA RTX
3090 GPUs and performed using LLaVA-1.5 Liu et al. (2024a) and Qwen-VL-Chat Bai et al.
(2023) and followed their default hyperparameters, unless otherwise stated. We conducted
extensive experiments to evaluate the effectiveness of DCOT.

4.1. Datasets

ScienceQA Lu et al. (2022) is the first multimodal science question and answer dataset
with 26 topics, 127 categories, and 379 skills, covering a wide range of domains, including
multiple-choice questions in more than 20,000 science subjects.
VizWiz Gurari et al. (2018) collects datasets from real blind users, including more than
30,000 real visual questions with blurry noise data, each question gets 10 reference answers
through crowdsourcing, which can accurately reflect the real needs of users, and can also
reflect many trivial and small problems in the real implementation of VQA tasks.
TextVQA Singh et al. (2019) is used to benchmark visual reasoning based on text in im-
ages. More than 45,000 questions with 28,000 images require the model to read and reason
about the text in the images in order to answer the questions.
MM-Bench Liu et al. (2023b) is curated multimodal dataset of approximately 3,000 ques-
tions across 20 capability dimensions enables the evaluation of model performance at a more
granular level.
MM-Vet Yu et al. (2024) a total of 217 questions, it defines 6 core visual language functions:
recognition, OCR, knowledge, language generation, spatial perception, and mathematical
computing, and proposes an LLMs-based open output evaluator that can evaluate different
question types and answer styles, resulting in a unified scoring metric.
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4.2. Models

LLaVA-1.5 Liu et al. (2024a): Linear projection is replaced by an MLP projection layer
that maps visual features into an embedded space shared with LLM. Using a visual encoder
with CLIP-ViT-L 336 × 336 resolution, Vicuna was used as a language decoder, prompting
the LMM’s capabilities with visual instruction tuning. We conducted experiments using
models with 7B and 13B parameters.
Qwen-VL-Chat Bai et al. (2023): The model is based on Qwen-7B, uses Vision Trans-
former as the visual encoder, and introduces a location-aware visual language adapter to
compress the image feature sequence, maintaining fine-grained visual comprehension abil-
ity. Optimize your model’s performance with a three-stage training process of pre-training,
multi-task pre-training, and supervised fine-tuning.

4.3. Baselines

In our experiments, we compared our DCoT method with the other two advanced multi-
modal Chain-of-Thought method baselines as shown in Table 3, and to evaluate the added
benefit of our approach to the pre-trained LMMs, our first baseline was to apply the model
to the benchmark without any prompt engineering.
CCoT Mitra et al. (2024): It is a Zero-Shot Chain-of-Thought method that uses LMMs
to generate a scene graph SG, describe the objects in the picture and their relationships
and attributes, obtain structured data in Json format, and then use the scene graph data
in json format in the prompt to get a response.
DDCoT Zheng et al. (2023): This prompt maintains a critical attitude with negative spa-
tial prompts and first divides the reasoning responsibilities of the LLMs into reasoning and
identification. The reasoning process takes the form of decomposing sub-problems, convert-
ing the form of reasoning into two-step reasoning, for sub problems, first provide reasons,
and then use these reasons to infer the overall problem again.

4.4. Results

Table 1: The results of different retrieval strategies on ScienceQA and TextVQA.

Models Method Dataset

ScienceQA TextVQA

LLaVA-1.5-7B
Image-Text 68.9 58.8
Text-Only 69.3 59.1
Image-Only 68.4 58.7

LLaVA-1.5-13B
Image-Text 74.1 62.0
Text-Only 74.8 62.4
Image-Only 73.5 61.6

Qwen-VL-Chat
Image-Text 71.1 62.0
Text-Only 71.5 62.1
Image-Only 70.6 61.7



DCoT for LMMs

Selection of search strategy. Since the effectiveness of In-Context Learning is highly
dependent on the quality of prompts and the selection of examples. Therefore, in the
retrieval phase of the demonstration example, we conducted a series of experiments with
different retrieval strategies. These include: (i) Image-Text, which fuses image and text
features for multimodal retrieval. (ii) Text-Only, which relies solely on text embedding for
retrieval. (iii) Image-Only, only image features are used for retrieval.

The results, shown in Table 1, show that text-only retrieval improves the performance
of scienceQA and TextVQA by 0.5 and 0.27, respectively, compared to image-text multi-
modal retrieval. It demonstrates that the traditional multimodal retrieval approach uses a
text encoder and a visual encoder to encode the question and image to obtain a common
embedding, this retrieval strategy is not a good choice for contextual examples when search-
ing in very small data samples (our experiment only had 10 samples per category). when
image-text multimodal retrieval is used, the correlation between the retrieved contextual
examples and the actual query is weak, which undermines the final QA performance. This
weakness is due to the large amount of information in the image that is not relevant to
the question, which may dominate the embedding space and distract from the core query
elements. In addition, as hypothesized by Winterbottom et al. (2020) for model biasing,
where large multimodal models rely more on textual information when trained, or where the
model itself is more mature and refined in its processing of text inputs, then using only text
vectors may naturally lead to better performance. Therefore, our subsequent experiments
use the (ii) Text-Only approach.

Table 2: Comparison of TopK Performance between LLaVA and Qwen VL Chat Models on
ScienceQA and TextVQA Datasets.

Models ScienceQA TextVQA

K=1 K=2 K=3 K=4 K=1 K=2 K=3 K=4

LLaVA-1.5-7B 68.5 69.0 69.3 69.2 58.7 59.0 59.1 59.1
LLaVA-1.5-13B 73.7 74.4 74.8 74.5 61.8 62.2 62.4 62.4
Qwen-VL-Chat 70.8 71.3 71.5 71.5 61.4 61.9 62.1 62.1

The number of examples in context. As shown in Table 2, for ScienceQA we find
that with the increase of K value, the accuracy first increases and then tends to stabilize or
even decrease, which shows that increasing the number of K times will improve the perfor-
mance of the model using context learning, but increasing the K value excessively can lead
to performance degradation, which means that additional examples may introduce useless
information, indicating a potential problem with redundancy in example selection. For
TextVQA the performance will hardly change when the K value is continuously increased.
This is due to the fact that the LLaVA-1.5 and Qwen-VL-Chat have a context window of
only 4096, which makes it impossible to host too many demo examples. When K takes
3, the average improvement of the model in ScienceQA and TextVQA is 0.87 and 0.57,
respectively, compared with only one example. Therefore, we used K=3 for all subsequent
experiments.
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Table 3: Main results table on MMBench, MM-Vet, TextVQA and VizWiz Benchmarks.
Contains basic model scoring without any methodology and two advanced CoT
methods as well as our methodology. Bold markings is the highest result, underline
is the second highest result.

Method MMBench MM-Vet ScienceQA TextVQA VizWiz

LLaVA-1.5-7B 64.3 31.1 66.8 58.2 50.0
LLaVA-1.5-7B+CCoT 66.9 32.0 68.7 58.9 51.1
LLaVA-1.5-7B+DDCoT 64.6 31.3 67.6 57.9 50.5
LLaVA-1.5-7B+DCoT (ours) 66.1 32.9 69.3 59.1 51.9

LLaVA-1.5-13B 67.7 36.1 71.6 61.3 53.6
LLaVA-1.5-13B+CCoT 70.7 37.5 73.9 61.9 54.3
LLaVA-1.5-13B+DDCoT 68.2 36.6 72.4 61.3 54.0
LLaVA-1.5-13B+DCoT (ours) 69.4 38.4 74.8 62.4 55.7

Qwen-VL-Chat 60.6 28.7 68.2 61.5 38.9
Qwen-VL-Chat+CCoT 63.9 29.6 71.0 61.7 41.1
Qwen-VL-Chat+DDCoT 61.9 29.5 70.5 61.1 40.6
Qwen-VL-Chat+DCoT (ours) 64.5 30.1 71.5 62.1 42.7

Main results. We demonstrate that after a fair comparison of the same demo examples,
the experimental results of several benchmark datasets are shown in Table 3, Compared
with the basic model, our DCoT method has an average improvement of 2.47, 1.83, 3, 0.87
and 2.6 respectively on MMBench, MM Vet, ScienceQA, TextVQA and VizWiz. Com-
pared with CCoT’s method, the average increase of MM Vet, ScienceQA, TextVQA and
VizWiz is 0.77, 0.67, 0.37 and 1.27. Compared with DDCoT method, the average increase
of MMBench, MM-Vet, ScienceQA, TextVQA and VizWiz was 1.77, 1.33, 1.87, 1.1 and
1.73 respectively, highlighting the effectiveness of our method and the scalability without
additional computational overhead, And the comparative experiments of LLava-1.5-7B and
LLaVA-1.5-13B show that the larger the number of parameters, the more obvious the im-
provement effect. These results show that the proposed DCoT can effectively improve the
general performance of the model in different scenarios.

4.5. Ablations

The ablation study as shown in Table 4. Includes the two variations: a text guide that lacks
fine-grained images, is based entirely on the original input images at the visual level, and
implements contextual learning only by demonstrating examples; One that lacks contextual
text guidance but inputs fine-grained images containing bounding boxes at the visual level
for guidance.

On MMBench, MM-Vet and ScienceQA datasets, the average accuracy of ICL guidance
was 0.83, 0.37 and 0.8 higher than that of FGI guidance, respectively, while on TextVQA
and VizWiz datasets, the average accuracy of FGI guidance was 0.5 and 0.6 higher than that
of ICL guidance, respectively. This shows that the two have different effects. If the answer
exists explicitly within the image, without requiring any inference, the Fine-Grained Image
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Table 4: The ablation study of the two main components of our proposed method: Fine-
Grained Image and In-context learning where ✗ means we do not employ the
corresponding method in our approach and ✓ means we use the corresponding
method in the system. FGI: Fine-Grained Image, ICL: In-context learning.

Models FGI ICL MMBench MM-Vet ScienceQA TextVQA VizWiz

Llava-1.5-7B ✓ ✓ 66.1 32.9 69.3 59.1 51.9
✗ ✓ 65.1 32.0 69.1 58.4 50.3
✓ ✗ 64.6 31.4 68.5 58.9 51.2
✗ ✗ 64.3 31.1 66.8 58.2 50.0

Llava-1.5-13B ✓ ✓ 69.4 38.4 74.8 62.4 55.7
✗ ✓ 68.3 37.2 73.6 61.6 54.7
✓ ✗ 67.2 36.8 72.2 62.0 55.2
✗ ✗ 67.7 36.1 71.6 61.3 53.6

Qwen-VL-Chat ✓ ✓ 64.5 30.1 71.5 62.1 42.7
✗ ✓ 62.9 29.5 71.1 61.5 41.8
✓ ✗ 62.0 29.4 70.7 62.0 42.2
✗ ✗ 60.6 28.7 68.2 61.5 38.9

(FGI) module demonstrates better performance. Conversely, when the answer is implicit
embedded within the image, necessitating logical reasoning, the In-context learning (ICL)
module becomes essential to decipher the underlying logic. In terms of the overall results,
the effect of the two modules together has the highest accuracy on the five data sets, and
the average accuracy of the model reaches 66.7, 33.8, 71.9, 61.2 and 50.1, respectively.

5. Conclusion

In this paper, we propose an innovative Dual Chain-of-Thought (DCoT) strategy and a
Fast In-Context Retrieval Framework (FICRF) to improve the inference performance of
Large Multimodal Models in complex multimodal tasks. The DCoT strategy provides a
plug-and-play performance enhancement scheme for LMMs through its unique two-pronged
approach by combining fine-grained image-guided and contextual learning text-guided ap-
proach, through which the model can focus more precisely on the image area related to
the problem and reduce the interference of irrelevant information. At the same time, the
application of the Fast Unsupervised Retrieval Framework enables the text guidance stage
to dynamically retrieve the most relevant examples according to the problem, which further
enhances the logical reasoning ability of the model. Our work provides valuable insights
and feasible solutions for the development of future multimodal AI systems, especially in
the pursuit of more efficient and intelligent alternatives to model fine-tuning.
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