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Abstract

The goal of Synthetic Speech Detection (SSD) is to detect spoofing speech synthesized
by text-to-speech and voice conversion. Most existing SSD methods focus only on mining
frequency-wise dependency by customizing frequency-aggregation modules in SSD mod-
els. However, the instance-wise dependency is usually under-explored, which is critical for
identifying the synthetic speech from a global view. In this paper, we propose a novel
model-agnostic training strategy for SSD that exploits both local (frequency-wise) and
global (instance-wise) contexts, which do not rely on a customized architecture and can be
flexibly integrated into previous SSD models. Specifically, we propose an inter-frequency
correlation module to capture the local context by reconstructing the masked frequency in-
formation from the unmasked frequency context. Meanwhile, an inter-instance correlation
module is performed to explore the global context among different instances by promoting
intra-class compactness and inter-class dispersion in the latent space. These two comple-
mentary modules operate from distinct contextual perspectives, leading to improvements
in SSD performance. Extensive experiments show that our method significantly improves
the performance of two state-of-the-art models on the 2019 dataset and 2021 dataset of
ASVspoof.
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1. Introduction

Synthetic Speech Detection (SSD) is the process of determining whether a given utterance is
synthetic speech. With the advancement of deep learning technologies such as AI-Generated
Content (AIGC) (Wen et al., 2023), Text-To-Speech (TTS) (Kim et al., 2022) and Voice
Conversion (VC) (Li et al., 2023), artificially generated speeches pose a threat to automatic
speaker verification systems(Qin et al., 2023; Yao et al., 2023). SSD plays a critical role
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in protecting user privacy, preventing telecom fraud, enhancing the reliability of speech
systems, and improving the user experience.

A mainstream of speech processing delves into network designs for time-frequency rep-
resentation learning, which aims to capture local context (Gao et al., 2024, 2023). As shown
in Fig. 1(a), existing methods often customize the network architecture for effective feature
aggregation. For example, Convolutional Neural Network (CNN) is utilized to capture the
discriminative time-frequency features (Tak et al., 2020). To capture the relationships be-
tween different sub-bands (e.g. spoofing artifacts present simultaneously in two different
sub-bands), Tak et al. (2021) model the non-Euclidean data manifold spanning different
sub-bands and temporal segments by Graph Neural Networks (GNN). Subsequent effort in-
corporates various techniques such as Transformer (Liu et al., 2023), to capture long-range
contextual information. On the other hand, the significant improvement of auxiliary fea-
tures (Kim and Ban, 2023) or performing model fusion (Zhang et al., 2023) demonstrates
their effectiveness in the SSD task. To learn more discriminative time-frequency features,
these approaches usually rely on architecture customization to model local context. A ques-
tion is naturally raised: Can we model local context in a model-agnostic manner?

Recently, exploiting the relationship among different instances has achieved remarkable
success in video representation learning tasks. Park et al. (2022) treat a segment of a video
as an instance, considering different video segments as different perspectives. By pulling
same instances closer together and pushing different instances farther apart in the feature
space, the model is encouraged to learn the spatio-temporal features of the video through
a self-supervised manner. This approach takes into account the rich semantic relationships
between different video frames from a global view, motivating us to explore the role of
relationships between speech samples in SSD. We raise another question: For SSD task,
can we model global context by exploiting the instance-wise relationship?

To answer the above questions, we propose a novel model-agnostic training approach
for SSD that exploits both local and global contexts. Specifically, we introduce an Inter-
Frequency (InF) correlation learning module based on band-pass filtering and consistency
loss. This module enhances the model’s ability to learn discriminative features across dif-
ferent frequency bands. Moreover, we introduce an Inter-Instance (InI) correlation learning
module that aims to bring instances of the same class closer together and push instances
from different classes farther apart in the feature space, thus achieving intra-class consis-
tency and inter-class disparity. The InF and InI modules can be seamlessly incorporated
into existing SSD networks, which leads to performance gains without extra computation
cost during inference.

In summary, our contributions can be summarized as follows:

• We propose a novel model-agnostic training strategy exploiting both local and global
contexts (i.e., frequency-instance correlations), which can be easily plugged into ex-
isting SSD models.

• We propose the InF module to capture discriminative features from different fre-
quency bands and the InI module to encourage intra-class consistency and inter-class
differences.

• On the basis of LCNN (Das, 2021) and AASIST (Jung et al., 2022) models, our
training method achieves SOTA performance both on the 2019 dataset (Wang et al.,
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Figure 1: Illustration of existing SSD models and our model-agnostic training
method. (a) Existing methods mainly focus on architecture customization,
including ① CNN (Tak et al., 2020), ② CNN+GNN (Jung et al., 2022), ③

CNN+Transformer (Liu et al., 2023), ④ model fusion (Zhang et al., 2023), and ⑤

feature fusion (Kim and Ban, 2023). (b) By designing the InF and InI modules,
our model-agnostic method can be flexibly plugged into previous SSD architec-
tures for performance gains. The InF module is utilized to learn the correlation
between frequency, while the InI module is employed to learn the correlation
between instances. By randomly masking original speech via Masked Speech
Modeling (MSM), our InF module would implicitly learn to model the masked
frequency information under the guidance of a consistency loss. (c) By employ-
ing band-pass filters to filter the speech signals, MSM preserves signals within a
designated frequency range while suppressing signals outside of that range.

2020) and 2021 dataset (Yamagishi et al., 2021) of ASVspoof. We further validate the
effectiveness of each module through experimental results and visualizations.

2. Related work

In this section, we first give a brief overview of the system architecture for the SSD task.
After that, a description and an analysis of the inter-frequency correlation and inter-instance
correlation in the SSD task will be presented.
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2.1. Systems for synthetic speech detection

Using deep neural networks for synthetic speech detection is broadly divided into three
parts: (1) computing manual features which rely on theoretical and empirical understanding
of speech signals, (2) extracting embeddings using neural networks, which can learn more
complex feature representations and capture high-level semantic information of speech, (3)
classifiers and loss function.

The manual feature extraction approach leverages human auditory perception charac-
teristics to effectively extract critical information from speech. This extracted information
effectively represents the distinctive features in the speech signal, ensuring robustness even
in noisy environments. Inspired by the speaker verification task, synthetic speech detection
also tries to use manual features as model inputs, such as MFCC, CQCC, FBank, and so
on.

To extract deeper features, the manual features are fed into the model. By leveraging the
learning of multi-layer networks, we can extract more critical features from high-dimensional
data. This automatic feature learning enables efficient results even with limited data re-
sources.

Finally, the embedding features extracted by the model are fed into the classifier and
loss function for constraints. Commonly used loss functions are BCE loss, OC-Sotfmax loss,
and MSE loss.

2.2. The inter-frequency correlation in synthetic speech detection

There are differences in the artifactual information carried by different frequency bands
of synthetic speech. For example, on the ASVspoof2019 dataset, it turns out that the
high-frequency features cause the system to overfit, while the low-frequency features are
more robust but less accurate against known attacks (Zhang et al., 2021). However, on the
2021 data set, it is found that the difference between the high frequency components of the
spoofed speech and the real speech remained discriminatory even after transmission and
encoding in VOIP and PSTN systems (Huang et al., 2023). Therefore, it is a worthwhile
research problem to help models learn more general and comprehensive band information.

Moreover, there are many improved methods like data augmentation that have been
studied. For example, based on prior knowledge of test data and specific telephony sce-
narios, Rawboost (Tak et al., 2022) improves the detection performance of the model by
adding linear and nonlinear noise to the training data. DASC (Das et al., 2021) uses sig-
nal companding techniques based on a-law and mu-law. In this method, the signal is first
compressed and then expanded, which is widely used in telephone, speech, and many other
audio applications. The above methods increase the diversity of sample band information
by data augmentation. However, these are designed for the telephone scenarios or noise en-
vironment of the test data. Therefore, in non-telephony scenarios, the enhancement effect
may be sub-optimal. Furthermore, a robust model should produce reliable and accurate
outputs even when encountering minor perturbations in the input data. In the domain
of Natural Language Processing (NLP), it has been demonstrated that constraining minor
perturbations caused by data augmentation is beneficial to the model (Qiang et al., 2024).
However, the existing enhancement methods for SSD do not consider the constraint on such
disturbances.
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Therefore, we propose sub-band augmentation and consistency loss for synthetic speech
detection. It can encourage the model to consider a broader range of features to reduce
overfitting, which over-focuses on a few key features in the training data that may not
always be present, causing the model to perform poorly on new data. Consistency loss
can constrain the model to reduce its sensitivity to data shift and enforce smoother neural
network responses.

2.3. The inter-instance correlation in synthetic speech detection

In addition to learning rich time-frequency information, exploiting the relationships between
multiple instances can also improve the effectiveness of the model. In the domain of videos,
Park et al. (2022) treat a segment of a video as an instance, considering different video
segments as different perspectives. By pulling same instance closer together and pushing
different instances farther apart in the feature space, the model is encouraged to learn the
spatio-temporal features of the video through a self-supervised manner. This approach
takes into account the rich semantic relationships between different video frames. However,
in the domain of SSD, limited consideration is given to the correlations between instances.

Therefore, we propose an inter-instance learning module. To compare samples, we set
the memory bank to store historical samples. This module reduces the intra-class distance
and increases the inter-class distance.

3. Proposed Method

Fig. 1(b) demonstrates our model-agnostic SSD approach, which integrates InF and InI
modules. In the InF module, the input x is randomly masked using a Masked Speech
Modeling (MSM) strategy based on band-pass filtering. The original speech and the masked
speech are regularized to be consistent in the embedding space. In the InI module, speech
samples from each batch undergo feature extraction by the momentum encoder and are
subsequently stored in the memory bank. The embedded samples in each training batch
are contrastively drawn closer to those historical samples with similar semantics.

3.1. Learning inter-frequency correlation

Previous studies have revealed that the artifacts introduced by various spoofing algorithms
commonly manifest in distinct frequency ranges (Nautsch et al., 2021), so the SSD model
may rely heavily on specific sub-bands to predict synthetic speech. To capture relevant
artifact information, one may explicitly leverage the frequency-wise relationships within
the spectrogram of a speech signal (Chen et al., 2023), thereby benefitting feature learning
for accurate synthetic speech detection.

3.1.1. Masked Speech Modeling Based on Band-pass Filtering

Recently, Masked Image Modeling (MIM) has excelled at learning visual representations
by exploiting the correlation among neighboring pixels (Chen et al., 2024; He et al., 2022).
Inspired by this, several efforts in SSD have directly adopted the MIM concept, divid-
ing the spectrogram of a speech signal into structural patches to facilitate the learning of
time-frequency correlation. However, the manually extracted magnitude spectrogram may
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potentially result in a loss of valuable information (e.g. phase information) (Tak et al.,
2020). Another alternative involves the use of low-pass and high-pass filters (Tomilov et al.,
2021) to directly mask the raw waveform, which can emulate the interference caused by
codecs. Nevertheless, due to the characteristics of low-pass and high-pass filters, the masked
frequency range is often restricted.

To effectively model the frequency-wise relationships (local context), we propose a novel
MSM method based on band-pass filtering (in Fig. 1(c)), which selectively activates fre-
quency features within a specific sub-band. MSM can significantly improve the randomness
of masking by randomly setting a 2kHz frequency band within the 0-8kHz range. Tech-
nically, we use the Remez algorithm (Karam and McClellan, 1994) to construct a finite
impulse response band-pass filter. The sampling frequency is 16000Hz. The transition
bandwidth of the band-pass filter is set to 160Hz. The minimum frequency is randomly
selected between 160Hz and 5840Hz. The maximum frequency is set to 2000Hz above the
minimum frequency. The described filter can allow frequency features of random sub-band
with 2000Hz width to pass through, while suppressing other frequency band features. The
specific way of filtering with the original waveform is as follows: xmask = x ∗ h, where
xmask represents the signal after discrete convolution, x represents the original signal, and
h represents the filter.

3.1.2. Kullback-Leibler (KL) Divergence Consistency Loss

A naive way is to leverage the masked speech xmask as the augmented sample for model
training, employing the cross-entropy loss. But it may fail to exploit the connection between
the masked speech xmask and the original speech x. To tackle this issue, we encourage the
model to generate consistent features for the paired speech input by implementing the
Kullback-Leibler (KL) divergence consistency loss. In that way, the model is devoted to
recovering the masked frequency information by solely utilizing the unmasked frequency
context, thus modeling the frequency-wise relationship.

The specific formula for KL Divergence is as follows:

DKL(P ||Q) =
∑
i

P (i)log(
P (i)

Q(i)
) (1)

The formula DKL(P ||Q) represents how much information is lost when probability distri-
bution Q is fitted to probability distribution P .

And the final consistency loss is as follows:

LInF = − 1

N

N∑
i=1

[1
2
(DKL(qi||

qi + q′i
2

) +DKL(q
′
i||
qi + q′i

2
))
]

(2)

Here, qi and q′i are probability distributions calculated by the classifier from the embedding
features fi and its masked version fmasked, respectively. N denotes the number of samples.
This consistency loss encourages the model to maintain stability and insensitivity to inputs
across different frequency ranges.
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3.2. Learning inter-instance correlation

In addition to focusing on frequency-wise correlation (local context), it is also essential to
consider instance-wise correlation (global context). For example, different bonafide speeches
often exhibit similarities in terms of silent segments (Zhang et al., 2021). To this end,
different embedded bonafide speeches should be clustered together in the embedding space.
To achieve this, we propose an inter-instance correlation module that pulls samples in the
same category closer and pushes different samples in different categories farther apart in
the feature space.

A straightforward approach is to learn inter-instance correlation in batch. Due to the
limited number of instances in batch and to avoid excessive memory consumption, we
employ a memory bank to store historical instances. The features stored in the memory
bank come from the momentum encoder (He et al., 2020), and its weights update follows
the momentum update rule as shown below.

θk ← aθk + (1− a)θq (3)

Here, θk denotes the parameters of the momentum encoder, and θq denotes the parameters
of the encoder. a ∈ [0, 1) is a momentum coefficient.

We use labels to construct positive and negative instance pairs. The f+ ∈ F+ denotes
the positive sample features in the memory bank of the fi. And the f− ∈ F− denotes the
negative sample features. Therefore, the similarity loss function is as follows.

LInI =− 1

N

N∑
i=1

[ 1

Npos

∑
f+

ŷlog(
1

1 + e(−cosine(fi,f+))
)

+
1

Nneg

∑
f−

(1− ŷ)log(1− 1

1 + e(−cosine(fi,f−))
)
] (4)

Here, cosine denotes the cosine similarity loss. Npos and Nneg denote the number of positive
and negative sample features, respectively. For the positive pairs, the ŷ = 1. And ŷ = 0 for
the negative pairs.

The InF module focuses on the frequency relationships within the instances, while the InI
module focuses on the relationships between instances. These modules are complementary
and compatible. The classification loss we used is the Binary Cross-Entropy loss (BCE
loss), which is one of the most commonly used loss in the field.

LBCE = − 1

N

N∑
i=1

[yilog(g(fi)) + (1− yi)log(1− g(fi))] (5)

Here, fi ∈ RN is the embedding extracted by model. And yi is the label of instance. The
final classification loss is as follows.

Ltotal = λ1LInF + λ2LInI + LBCE(x, y) + LBCE(xmask, y) (6)

where λ1 and λ2 are scalar used to balance LInF , LInI and classification loss.
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4. Experiments

4.1. Datasets and Metrics

All experiments are conducted using the ASVspoof2019 (Wang et al., 2020) and ASVspoof-
2021 (Yamagishi et al., 2021) datasets. The model performance is evaluated using the Equal
Error Rate (EER) and the Minimum Tandem Detection Cost Function (min t-DCF) (Kin-
nunen et al., 2020).

4.2. Feature Extraction and Implementation Details

For the LCNN model, the input speech length is fixed at 6 seconds. Then, we use Fbank
with the first-order dynamic feature and second-order dynamic feature as the input during
all the experiments. The input speech is sampled at a sampling rate of 16000Hz. The frame
length is 512 sampling points and the frame shift is 128 sampling points. For the AASIST,
6 seconds of raw waveform data is used as input.

We implement our model in PyTorch, using the Adam (Kingma and Ba, 2015) optimizer,
setting the β1 parameter to 0.9 and the β2 parameter to 0.999 to update the weights in the
model. For the LCNN, the batch size is set to 64, and for the AASIST, the batch size is
set to 8. The learning rate is initially set to 0.0003 and decays by 50% every 10 epochs.
For LInF and LInI , λ1 = 0.1, λ2 = 1 during LCNN+InF+InI training, and λ1 = 0.1,
λ2 = 0.0001 during AASIST+InF+InI training. We train 100 epochs on 4 NVIDIA GTX
3080 Ti GPUs. The model with the lowest validation EER is then selected for evaluation.

4.3. Ablation Experiments

This section mainly proves the universality and effectiveness of our method by analyzing
the experimental results. The main ablation experimental results of our model-agnostic are
shown in Table 1. We did ablation experiments on two datasets of the ASVspoof using
the LCNN model based on hand-crafted features and the end-to-end model AASIST. The
t-SNE visualizations of features learned from method LCNN and our method are shown in
Fig. 2.

4.3.1. Learning from inter-frequency correlation

InF denotes the incorporation of frequency band filter masking and consistency loss during
the model training process. According to the experimental results in Table 1, LCNN+InF
reduces EER by 41.9% (4.22 −→2.45) on the 2019 test set and 30.1% (5.77 −→4.03) on the 2021
test set compared to LCNN. Similarly, AASIST+InF also showed reductions in EER and
min t-DCF compared with AASIST. The role of InF during the training process is evident
not only in the improvement of experimental results but also in the spatial distribution
of features. Observing the distribution of different frequency features of the same speech
(in Fig. 2(a) red points), it is evident that the baseline model fails to represent them
consistently. In contrast, our proposed training method effectively achieves this consistency
in representation (in Fig. 2(b) red points).
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(d) The distribution change of the augmented samples
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(d) The distribution change of the augmented samples

Figure 2: The t-SNE (Van der Maaten and Hinton, 2008) visualizations of some features
learned from method LCNN and our methods. Green points represent genuine
speech, blue points represent spoofed speech, and red points correspond to 20
samples generated from spoofed sample LA E 9157999 using random filter mask-
ing. (a)(b)(c) represent the distribution of 500 samples and 20 augmented samples
on the LCNN model and the improved methods. (d) shows the effects of the InF
and InI modules on 20 augmented samples in detail. As can be seen in the red
circle, the LCNN is unable to produce similar representations for different masked
samples. Adding the InF module yields similar embeddings; After adding the InI
module, the distance between the enhanced features and other spoofed samples is
narrowed. (e)(f)(g) represent the distribution of 15000 samples on the 2019 test
set.

4.3.2. Learning from inter-instance correlation

InI denotes the incorporation of cosine similarity loss during the training process. The
experiments in Table 1 show that the InI module reduces the EER of the models on multiple
datasets. LCNN+InI reduces EER by 53.5% (4.22 −→1.96) on the 2019 test set and 35.7%
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Table 1: Ablation Experiments. Each set of experiments is repeated three times with seed
values of 1, 100, and 1000, and the final results are then averaged.

System
ASVspoof2019 ASVspoof2021

EER(%) t-DCF EER(%) t-DCF

LCNN (Das, 2021) 4.22 0.1073 5.77 0.3107

LCNN+InF 2.45 0.0675 4.03 0.2813

LCNN+InI 1.96 0.0592 3.71 0.2720

LCNN+InF+InI 1.90 0.0550 3.15 0.2611

AASIST (Jung et al., 2022) 1.04 0.0317 6.24 0.3428

AASIST+InF 0.64 0.0205 5.19 0.3138

AASIST+InI 0.95 0.0315 5.08 0.3127

AASIST+InF+InI 0.62 0.0205 4.65 0.3017

Table 2: Performance comparison with existing single systems on the evaluation set of the
ASVspoof 2019/2021 LA scenario.

System
ASVspoof2019 ASVspoof2021

EER(%) t-DCF EER(%) t-DCF

DFSincNet (Huang et al., 2023) [SPL23] 0.52 0.0176 3.05 0.2601

GST+GCN (Chen et al., 2023) [ICASSP23] 0.58 0.0166 - -

Rawformer (Liu et al., 2023) [ICASSP23] 0.59 0.0184 4.53 0.3088

ECANet (Xue et al., 2023) [ICASSP23] 0.88 0.0295 - -

Res2Net (Kim and Ban, 2023) [2023] 0.94 0.0270 - -

OCT (Li et al., 2022) [SPL22] 1.06 0.0345 - -

AASIST (Jung et al., 2022) [ICASSP22] 0.83 0.0275 5.82 0.3349

AASIST+InF+InI(Ours) 0.49 0.0160 3.51 0.2728

LCNN (Das, 2021) [ASVspoof21] 3.37 0.0875 4.94 0.2979

LCNN+InF+InI(Ours) 1.80 0.0523 3.01 0.2602

(5.77 −→3.71) on the 2021 test set compared to LCNN. Moreover, from the perspective
of spatial feature distribution, our method exhibits better classification performance with



On Learning Frequency-Instance Correlations by Model-Agnostic Training for SSD

Fbank

The first-order dynamic feature

The second-order dynamic feature

Fbank

The first-order dynamic feature

The second-order dynamic feature

(a) Feature after InF module (b) Feature after SpecAugment

Fbank

The first-order dynamic feature

The second-order dynamic feature

Fbank

The first-order dynamic feature

The second-order dynamic feature

(a) Feature after InF module (b) Feature after SpecAugment

Figure 3: Differences between SpecAugment and InF methods. (a) is the feature map after
InF filtering masking. Inside the red box is the frequency band passed after
filtering. And (b) is the feature map after SpecAugment (Park et al., 2019).
Inside the red box is the masked frequency band.

more clear boundaries (in Fig. 2(e)(f)(g)). It is demonstrated that training with the InI
module can enhance the model’s ability to distinguish more challenging instances. At the
same time, by comparing Fig. 2(b) with Fig. 2(c), it can be seen that after adding the InF
module, the model recognizes several spoofed speeches (blue points) from bonafide speech
(green points) distribution.

4.4. Comparison with Other Systems

Table 2 presents the best results achieved by our single system as well as the results from
other methods. In contrast to architecture customization models, our method has higher
generality and works with most of the models. AASIST+Inf+InI achieves an EER of 0.49%
on the 2019 test set, which is the best result among the current models. LCNN+InF+InI
also achieves a competitive result with an EER of 3.01% on the 2021 test set. While
our model-agnostic approach improves the detection of the model steadily, it is unable to
achieve optimality on multiple datasets at the same time, as DFSincNet (Huang et al., 2023)
does. In our perspective, this issue is correlated with the selection of baseline models and
data augmentation techniques. The performance of the AASIST model itself appears to be
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Table 3: Performance comparison with SpecAugment. Each set of experiments is repeated
three times with seed values of 1, 100, and 1000, and the final results are then
averaged.

System seed
ASVspoof2019 ASVspoof2021

EER(%) t-DCF EER(%) t-DCF

LCNN (Das, 2021)

1 3.60 0.0908 5.25 0.3023

100 3.37 0.0875 4.94 0.2979

1000 5.71 0.1436 7.12 0.3321

average 4.22 0.1073 5.77 0.3107

LCNN+SpecAugment (Park et al., 2019)

1 4.37 0.1094 5.73 0.3082

100 3.64 0.1080 5.92 0.3218

1000 4.81 0.1249 6.68 0.3272

average 4.27 0.1121 6.11 0.3190

LCNN+InF(without consistency loss)

1 2.40 0.0712 3.75 0.2711

100 2.58 0.0700 4.10 0.2835

1000 2.95 0.0850 4.27 0.2909

average 2.59 0.0742 4.04 0.2818

suboptimal on the 2021 dataset. And DFSincNet utilizes Rawboost (Tak et al., 2022) data
enhancement, which we do not use.

The SpecAugment method, similar to the InF method, enhances the data by randomly
masking in both the time and frequency domains, directly setting certain values to zero.
Fig. 3 illustrates the differences between InF and the SpecAugment method:

• InF directly processes the raw waveform through the filter, which can be applied to
the input of more models.

• Since InF operates directly on the original waveform, concatenating the first-order
dynamic and the second-order features will produce the same masking effect. However,
SpecAugment masks the extracted handcrafted features along the time and frequency
dimensions, so it cannot produce the same masking effect for the three concatenated
features.

• SpecAugment directly assigns 0 to the masked part. However, InF only weakens the
other features and highlights the passband features. The augmentation effect of InF
is more moderate and does not produce unrealistic data samples.
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Table 3 presents the results of the SpecAugment and InF methods. It can be seen from
the experimental results that the improvement of InF is stable. SpecAugment does not
work well, which we conjecture is related to the size of the masking range.

5. Conclusion

In this paper, we propose a novel model-agnostic training approach which can be seam-
lessly incorporated into existing SSD models. The InF module utilizes the MSM and KL
consistency loss to learn the local context about frequency. And the InI module can learn
the global context of multiple instances by cosine similarity loss. Experiments show that
both modules can stably improve the detection of the models. In future work, we expect to
explore the potential application of our training method in not only SSD but also any task
related to speech.
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