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Abstract

Polyamides, or peptides and proteins, are biomolecules that exist in a broad spectrum of size,
structure, and function. Both structure and function are defined by the underlying sequence of amino
acids, causing the polyamide to take three-dimensional conformations when in solution. Despite
significant efforts and advances in function and conformation prediction, there remains a critical
need for computational methods to accurately infer protein function from sequence and structure.
Recent advancements in deep learning, particularly Graph Neural Networks, have shown promise in
learning the sequence and structure of proteins. However, they fail to capture essential long-range
dependencies inherent in the complex and dynamic three-dimensional structures of proteins, leading
to issues including oversquashing and oversmoothing. Here, we explore solutions to the challenge of
capturing long-range dependencies in graph representations of polyamides, focusing on latent nodes
and graph rewiring techniques. While graph rewiring enhances information flow between distant
nodes, latent nodes enable the concentration of global information. In addition, we investigate the
effectiveness of ChebNet, a spectral backbone, in capturing long-range dependencies. Our unified
framework combines these approaches to address the limitations of current methods, offering insights
into protein function and regulation. Through experimental analysis, we demonstrate the efficacy of
our proposed methods in capturing long-range dependencies.

1 Introduction

Proteins are biomacromolecules that serve as essential components within cells and play critical roles in nearly every
biological process, including catalyzing metabolic reactions, replicating DNA, and transporting molecules. They are
comprised of a sequence of amino acids each of which possesses a distinct side chain, leading to an incredibly vast array
of potential protein sequences. Protein functions determine health outcomes and the progression of diseases, hence
predicting the functional properties of proteins is vital for developing new drug therapies. Despite the considerable
expense and time required for function annotation of new protein sequences, there’s a pressing need for accurate and
efficient in-silico methods to bridge the gap between sequence and function. However, sequence-based approaches do
not directly incorporate or utilize known structural information, which is crucial for understanding protein functions.
Protein design has emerged as an integral aspect of pharmaceutical research. Current efforts seek to better understand
the design principles that form a basis for the structure and functions of proteins. This would enable the discovery of
proteins with properties that are key for therapeutic and technological applications.

Recent advances in deep learning paved the way for new methods in protein design. In particular, Graph Neural
Networks (GNNs) [1, 2] have emerged as a powerful tool for learning structural representations of proteins and
biomolecules [3, 4]. GNNs are a class of machine learning models designed to operate on graph-structured data and
extract information by iteratively aggregating and updating node features based on their local neighborhood connections.
Despite their general success, GNNs exhibit clear limitations when confronted with long-range dependencies in graph
learning tasks. In such scenarios, GNNs are prone to the phenomenon described by Alon and Yahav as oversquashing,
whereby the propagated information along K graph layers are ’squashed’ into fixed sized vectors as the receptive field
of a given node grows rapidly [5]. Another problem arises when the number of layers of a GNN increases, resulting in a
loss of discriminative information and convergence of node embeddings towards similar values. This phenomenon is



referred to as oversmoothing [6, 7, 8]. These two phenomena diminish the expressive power of current graph-based
architectures, especially on larger graphs exhibiting long-range dependencies. The latter are fundamental aspects of
proteins’ structural and functional complexity, as inferred from their residue interactions. These interactions play pivotal
roles in stabilizing tertiary structures, facilitating ligand binding, and orchestrating allosteric regulation [9, 10, 11].
Understanding long-range dependencies is crucial for deciphering protein folding mechanisms, predicting protein
structures from sequences, and designing novel therapeutics targeting protein-protein interactions. Therefore, it is
crucial to account for such dependencies when modeling proteins with GNNs, rising the need for more expressive
architectures that would account for distant re interactions.

To tackle the aforementioned limitations of GNNs, Transformers have emerged as powerful learners on graphs as they
alleviate the problems of oversquashing by allowing a given node to attend to all other nodes through global attention
modules [12]. However, a few disadvantages are associated with Transformers, mainly their computational cost and the
loss of locality and connectivity of a given graph, which has been shown to be essential in graph learning [13]. A set of
alternative approaches has been proposed, mainly through the use of virtual nodes to reduce the commute time between
any two given nodes [14], or by changing the graph topology to allow for a better flow of information by optimizing
some properties related to graph bottlenecks: this is known as graph rewiring which has been recently investigated
[15, 16, 17]. Despite the aforementioned recent advances in tackling long-range dependencies in graphs, those are still
under-explored for learning on protein structures.

1.1 Main contributions

In this paper we shed light on the power of long-range techniques in representing protein structures for diverse tasks at
the global (protein) and local (residue) levels.

• We propose a GNN-based rewiring scheme that defines a set of trainable latent nodes to cover different regions
of the protein. Our model then uses the latent nodes as mediators to rewire the graph by attending distant
nodes through attention-based edge addition.

• We make a pragmatic choice of an expressive and theoretically-grounded spectral backbone, ChebNet, for
learning complex protein substructures and long-range dependencies. We empirically show the superiority of
this backbone on various protein learning tasks and under different constraints. An analysis for the obtained
improvement is given in Section 6.1

2 Background

2.1 Definitions

Let G = (V,E) be a graph with a set of n nodes V and edges E encoded in the adjacency matrix A ∈ Rn×n describing
the graph’s connectivity. Another essential matrix associated to the graph is its Laplacian: Given the diagonal degree
matrix Dii =

∑
j Wij of the graph, we can obtain its combinatorial Laplacian L = D −A and the normalized form

Lnorm = In − D
−1
2 AD

−1
2 , which is real, symmetric and positive semi-definite. The eigendecomposition of the

Laplacian reads L = UΛUT and results in a set of orthonormal eigenvectors U = [u0, ..., un−1] ∈ Rn×n and the
associated eigenvalues Λ = diag([λ0, ..., λn−1]) ∈ Rn×n are known as the Graph Fourier modes and their frequencies,
respectively.

2.2 Message Passing Neural Networks

Let X ∈ Rn×d be the matrix encoding the node features of the graph G. Message Passing Neural Networks (MPNNs)
typically use functions that take X and A as input and use them to aggregate features from the neighborhood of a given
node to update its representation in a high-dimensional space. A typical example of an MPNN can be found in [18].
The node feature update after one layer is given by:

h
(l+1)
i = Ml(h

l
i,

∑
j∈N (i)

AGGl(h
l
i, h

l
j)) (1)

where Ml and AGGl are update and aggregation functions at the lth layer, respectively and hi is the embedding at node
i. After a sequence of K message passing iterations, a receptive field of size K is covered and the graph embeddings
are sent to a readout module to obtain a final prediction.
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2.3 Spectral Convolution with Chebyshev Filters

Spectral graph convolutional methods have their foundation in graph signal processing and use graph convolution as
aggregating function.[19, 20]. The eigenvectors of the normalized Laplacian form an orthonormal basis in which convo-
lution occurs through simple multiplicative update. The main drawback of spectral methods is that eigendecomposition
of the Laplacian can be both computationally expensive and memory intensive for large graphs but it also yields to
global updates that do not exploit the potential small support of receptive fields. This issue was addressed and tackled
in ChebNet [21] which makes use of a truncated expansion of Chebyshev polynomials to parametrize localized spectral
filters as a polynomial function. The filtering operation can be defined as:

x ∗ gθ =

K−1∑
k=0

θkTk(L)x (2)

where θk is a set of learnable parameters for the K layers, L = 2L
λmax

− In and Tk is the Kth Chebyshev polynomial.

2.4 Long-range dependencies in graphs

As we consider larger networks with long-range dependencies, GNNs suffer from a major limitation highlighted recently
in [5] and referred to as over-squashing whereby information from distant nodes is squashed into fixed-sized vectors
as the number of layers grows exponentially. GNNs underperform on this type of graph prediction tasks. In [15], the
authors provide a topological perspective on oversquashing through the Balanced Forman curvature measure. They
find bottlenecks to be concentrated in regions with high curvature on the edges. Another perspective on oversquashing
quantifies the information bottleneck through effective resistance in the graph (Appendix B); similar to electrical
networks, a high resistance in a graph impedes the information flow [15, 17, 22]. A spectral metric for oversquashing is
given by the Cheeger constant [23, 24] which quantifies the presence of bottlenecks in a graph. This constant is an upper
bound for the spectral gap, which corresponds to the smallest non-zero eigenvalue of the Laplacian and describes graph
connectivity and expansion properties: information diffuses quicker with a larger spectral gap (high Cheeger constant).

2.5 Graph representation learning for proteins

Graph Neural Networks have become a key component in computational biology due to their ability to represent
complex molecular surfaces and learn useful interactions among the atoms in those systems. A notable use-case is
protein function prediction. In [25], Gliborijevic et.al present a graph-based architecture that takes as input a protein
structure and a sequence from a pre-trained language model. The model predicts the function of the protein and the
key residues in the sequence for that function. Another important application is protein structure comparison which is
crucial for structural homology discovery and other downstream structure-based analysis. For this purpose, GraSR
was introduced in [26] as a graph contrastive model to better learn global and local geometric features of residues.
Recent studies on molecular graphs discuss the importance of combining local semantics carrying potentially critical
information about graph substructures with graph-level features summarizing its global topology [27, 28].

3 Tackling long-range dependencies in graphs

3.1 Latent learning

The idea of introducing a latent space to constrain the learning task has been explored a few times. In [29], the Perceiver
architecture builds on Transformers by injecting latent vectors that aggregate information across different modalities
through cross-attention. As a result, the latent vectors technique made the model not only scalable to larger inputs
but also generalizable to many modalities [30]. Another advantage of latent space learning can be seen in [31] where
non-local representations of images are obtained by fusing their features into a compressed latent space. While there
are a few studies on non-local graph neural networks [32], the idea of compressing graph embeddings into smaller
non-local representations by means of latent nodes is under-explored, especially for large protein graphs where distant
communication is needed. Considering that both scalability and non-locality are desirable properties for modeling
protein graphs, it feels natural to fill this gap.

3.2 Graph Rewiring

Given a graph G = (V,E), graph rewiring is the process of changing the graph connectivity through an operation R(G)
resulting in a new structure described by R(G) = (V,R(E)). The changes mainly include edge addition or deletion
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Figure 1: Pipeline of our framework

and the goal is to optimize the information flow within the network to ensure that relevant communication within distant
nodes is achieved. Graph rewiring has been frequently addressed in the literature given its diverse set of applications
found in traffic management, communication systems and other domains [33, 34]. To tackle oversquashing through
rewiring, the authors in [15] consider the graph topology and change the graph connectivity by adding edges in regions
of low curvature and disconnecting high-curvature regions as a way of alleviating the bottlenecks. Alternatively, the
authors in [35] present EdgeRewire, a rewiring framework that optimizes various spectral constraints of the graphs
to make them more robust. Some of the main metrics for bottlenecks include the spectral gap and the effective
resistance. These two metrics have been revisited in the recent studies on oversquashing connecting them to long-range
dependencies in graphs. For instance, the DiffWire framework in [17] performs rewiring through a GAP layer that
optimizes the spectral gap of the network. Analogously, the work in [16] provides a computationally efficient way to
add edges based on the spectral gap.

4 Graph neural networks for long-range dependencies in proteins

Consider a protein represented as a graph G = (X,A) whereby each atom/node in X ∈ Rn×d is a feature vector
h ∈ Rd. In this section we provide a novel use-case based on attention-based rewiring of protein structures and proceed
to explain the choice of a spectral backbone and its ability to boost the performance in graph learning with long-range
dependencies. This approach is motivated by the fact that edge addition in general results in an increased spectral
gap and hence reduced bottlenecks in the network as described in Section 3.2. Adapting a pragmatic approach on
which edges to add is crucial to prevent oversmoothing by adding too many unnecessary connections. A mathematical
description of the effect edge addition has on the spectral gap is found in [35].

4.1 A local-to-global latent GNN

In this subsection we summarize the main steps of our architecture shown in Figure 1.

Step 1: Intra-atoms message passing. We begin by covering the local neighborhoods of the protein, so we update the
node representations based on their surrounding neighbors through a graph convolution operation Θconv resulting in
new atom embeddings h′

local ∈ Rf .

Step 2: Protein-to-LN message passing. We propose to fuse the local graph information into a compressed global
representation through message passing between the local embeddings h′

local and a set of c trainable latent nodes
forming a graph Gc ∈ Rc×f such that c << n. Given the embedding h′

i−local for each node i in G and the initial latent
embedding zq for a node q ∈ [1, c], we perform an input-to-latent message passing:

z(l+1)
q = Ml(z

l
q,

∑
j∈N (q)

AGGl(z
l
q, h

l
j)) (3)

For this message passing to occur, the nodes in G and the latent nodes are considered to be part of a bipartite graph.
Each node in G is randomly assigned to a latent node in Gc, hence two or more nodes in G can be connected to the
same latent node. A total of |E| = n edges need to be added, alleviating some computational cost in comparison with
a Transformer where each node attends all other nodes. Instead, we use a Graph Attention Network (GAT) [36] to
aggregate messages towards the latent components.

Step 3: Intra-LN message passing. The latent nodes then exchange information through fully connected message
passing i.e each latent node attends all other C nodes as described below:

4



z(l+1)
q = Ml(z

l
q,

∑
j∈[1,c]

AGGl(z
l
q, z

l
j)) (4)

This step ensures that latent nodes covering different ranges of the protein have interacted, providing a solid global
operator for protein representation.

Step 4: Attention-based rewiring through latent nodes. This methodology is based on the idea that distant nodes
need to communicate for a more effective representation at the graph-level, hence it uses attention as metric to quantify
the importance of the interaction of two distant nodes using the latent nodes as a mediator. In contrast to previous
methods where rewiring is based on pre-processed measures [15, 37], we perform rewiring in an end-to-end fashion in
analogy to more recent work [17, 38] . To proceed, we use an additional GAT to perform message passing from the
updated latent nodes back to the nodes hi−local as described in Eq.5. We then add new edges among the Q nodes with
the highest attention scores and perform graph convolution operations on the updated graph with the new adjacency
matrix Grew = (X,A′) s.t A′ = A+Qedges (Eq.6). For the final classification task, we combine the information from
the node embeddings h′ and hrew in addition to the latent graph Gc. A pseudo-code is given in Algorithm 1.

h
(l+1)
loc = Nl(h

l
loc,

∑
j∈N (h)

α×AGGl(h
l
loc, z

l
j)) (5)

hrew = Pl(h
l+1
loc ,

∑
j∈N (h)

TopQ(α)×AGGl(h
l+1
loc , h

l
j)) (6)

Readout: The final step consists of feeding the embeddings to a Multi-layer Perceptron to get the readout of the task.
We find experimentally that combining the embeddings hrew from the rewired graph with the latent node embeddings
scaled by a hyperparameter λ provides the best performance as show in 7

Readout = MLP (hrew + λ zfinal) (7)

with zfinal being the final aggregation of the latent nodes obtained by taking either the sum or the mean.

Algorithm 1 Attention-based rewiring through latent nodes
Input: Graph G = (X,A)
Initialize: θ ← θ0, ϕ← ϕ0, Vc ← rand(C,F )
repeat
Gi+1 ← GNNθ(Gi) Backbone graph convolution

until i==Z
Vc ← GZ

ϕ(Vc)← Vc Fully-connected latent MP
GZ ← ϕ(Vc);α ∈ RE GAT from latent to input
Eatt ← maxQ

α Select top-Q attention values
Eupd ← concat(EG, Eupd) Update adjacency matrix
repeat
Gj+1 ← GNNγ(GZ) updated GCN

until j==2

5 Experiments

Protein 3D structures We benchmark on a collection of protein structure datasets obtained using the ProteinShake
framework [39]. We first validate our model on the EnzymeClass task which consists of predicting the type of reaction
catalyzed by the given protein as given by the Enzyme Commision database. The second task consists of binding site
identification on the PDBBind2020 dataset [40]. Both datasets are also publicly available on the Protein Data Bank
platform [41].

Peptide dataset We evaluate the performance of our model on the Peptide datasets of the Long Range Graph Benchmark
(LRGB) which is the main benchmark for learning on graphs with long-range dependencies. Peptides are short chains
of amino acids that play a crucial role in biological processes. They exhibit distant dependencies through the long-range
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amino acid interactions that influence the chain. In this scenario, amino acids are mapped as nodes and the whole peptide
structure is considered to be a graph. The Peptides dataset is split into two tasks: graph classification (Petptides-func)
and graph regression (Peptides-struct).

Structure comparison Inspired by work on graph isomorphism and graph comparison, we evaluate the ability of an
MPNN to distinguish graph-level proteins and compare their structures and family. We compare this ability to that
of ChebNet which has been theoretically shown to have higher expressivity [42]. The Structural Similarity dataset
was generated using the TM-Align software [43] and is available on the PDB Database [41]. Given the scarcity of
long-range datasets with challenging substructure comparison, we add a jet tagging task obtained from CERN’s open
data portal.

Robustness We validate our model’s ability to capture long-range node dependencies by testing it on the synthetic
RingTransfer dataset presented in [44]. This dataset contains graphs in the form of rings of size k (chordless cycles).
Within each graph, we identify two specific nodes as the target and source, consistently positioning them at a distance
of k

2 . Given a source node, the goal is to obtain a hot-one encoding of its label at the level of a target node, with all
remaining nodes containing a uniform feature vector. While previous datasets demonstrate the ability of our latent-based
model in capturing long-range dependencies, RingTransfer highlights its robustness as the network depth increases.

Baselines We provide a comparison with a set of baselines to highlight the benefit of rewiring through attention in
capturing long-range dependencies, in addition to the expressive power of ChebNet as a backbone on these types of
graphs. For the Peptide function and structure, we provide a comparison with SOTA architectures such as Drew [38]
and other rewiring approaches on that dataset [16, 13]. 1.

6 Results

Results on different protein-level and atom-level tasks are summarized in Tables 1 and 2, respectively. It is shown as
expected that adding multiple latent nodes to cover different regions of the proteins boosts the performance relative to
using the backbone alone. Further details on training is found in Appendix A. For the PDBBind dataset, we disregard
the GCN and Cheb-latent architectures given that as a node classification task, and in contrast to the graph-level ones,
we do not directly use the latent nodes in the classifier, but rather only the messages propagating back from them (as in
Cheb-Rewire and GCN-Rewire).

Attention-based rewiring advantage: We highlight the improvement obtained by the rewiring framework when using
the GCN backbone. On all the benchmark datasets, GCN-Rewire performs better than both the GCN backbone and the
GCN model with multiple virtual nodes. On the Peptide dataset, it surpasses other rewiring frameworks such as FOSR
and LASER. The advantage is especially shown on the binding site detection task in the PDBBind dataset, which is
the only atomic-level task. This can be explained by the success of this method in attending distant residues whose
communication potentially determines the overall protein’s function. By doing so, it provides a solid combination of
local and distant neighboring features on the one hand through both features of hlocal and hrew and the global features
on the other hand through the latent node features zq . We evaluated the model under different parameters and it is found
empirically that the best performance saturates around K = 6 latent nodes and Q = 8 newly rewired nodes.

ChebNet case: Having shed light on the powerful aspect of rewiring through latent nodes, we now highlight the solid
improvements obtained by adapting a pragmatic choice of a backbone which is explained further in Section 6.1. It can
be seen empirically that, without any rewiring or latent nodes, Chebyshev Convolution (ChebNet) alone outperforms
most baselines. It has a similar performance to SOTA models such as Drew on the peptide function prediction, while
surpassing it on the structure regression. The rewiring framework on top of ChebNet still helps boost the performance
in the Enzymes and PDBBind datasets, which can be explained by their relatively larger size. On those datasets, the
Transformer and ChebNet variants show a more notable advantage. In a third set of experiments, we experimentally
validate on proteins the expressive power of ChebNet relative to modern MPNNs that was theoretically discussed in
[45, 42]. As shown in Table 3, ChebNet notably surpasses an MPNN on a graph-level scenario for distinguishing two
large graphs. This can attributed to its ability to learn global and local structures simultaneously. The latter make the
usage of a spectral backbone like ChebNet rely capable of capturing non-localities, hence virtual nodes and rewiring
show less competitive advantages on top of ChebNet.

6.1 The expressive power of a spectral backbone: ChebNet

Multi-hop receptive field: One major factor that enables the ChebNet architecture to perform better is its K-hop
localized nature. Eq.2 describing ChebNet is a polynomial function parametrizing spectral filters, the latter is taking

1The code is made available at: https://anonymous.4open.science/r/Protein-Structures-2582/.
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Model Peptide-function Peptide-structure
Test AP ↑ Test MAE ↓

GCN 0.5930 ± 0.0023 0.3496 ± 0.0013
GCN-Latent 0.6211 ± 0.0059 0.2723 ± 0.0040

GCN-Rewire 0.6670 ± 0.0024 0.2660 ± 0.0043
GAT 0.5800 ± 0.0061 0.3506 ± 0.0011

FOSR 0.4629 ± 0.0071 0.3078 ± 0.0026
LASER 0.6447 ± 0.0033 0.3151 ± 0.0006

Transformer + PE 0.6326 ± 0.0126 0.2529 ± 0.0016
Drew-GCN 0.6996 ± 0.0076 0.2781 ± 0.0028
ChebNet 0.6946 ± 0.0044 0.2583 ± 0.0021

ChebNet-Latent 0.6820 ± 0.0131 0.2582 ± 0.0011
ChebNet-Rewire 0.6766 ± 0.0235 0.2599 ± 0.0029

Table 1: We compare the performance of latent-based models on the LRGB datasets against numerous baselines. We
colour based on the ranking: first , second and third.

Model EnzymesClass PDBBind
Type Graph-level Node-level

Test Acc ↑ Test AUROC ↑
GCN 73.33 ± 1.06 62.65 ± 0.13

GCN-Latent 74.22 ± 0.50 N/A
GCN-Rewire 75.80 ± 0.92 66.53 ± 0.34

ChebNet 76.57 ± 1.51 71.70 ± 0.23
ChebNet-Latent 76.89 ± 0.64 N/A
ChebNet-Rewire 77.87 ± 0.86 73.37 ± 0.44

Table 2: We compare the performance of latent-based models on protein structure datasets against numerous baselines.

Model Protein Structural Similarity Quark-Gluon decay
Test Spearman Corr. ↑ Test Acc ↑

MPNN 56.79 ± 1.46 61.90 ± 1.20
ChebNet 63.25 ± 1.44 65.36 ± 1.34

Table 3: Performance comparison on protein graph comparison between MPNN and ChebNet

Figure 2: Performance comparison on the RingTransfer dataset

powers of the Laplacian and weighting them by the parameter θk prior to obtaining the new node representation. By
doing so, the spectral filter gradually aggregates information from a receptive field of size k ∈ [0,K] for each kth term
of the polynomial. Therefore, ChebNet can be seen as a multi-hop graph neural network as it accounts for a receptive
field of size K prior to a node embedding. This strategy has been shown to work better on datasets with long-range
dependencies in the Drew and LASER methods [13, 38] as it dampens the loss of information between distant nodes
and hence prevents oversquashing. In addition, the weighting term θk is useful to assign more importance to distant
hops when needed: this is especially useful on datasets with high-frequency signals.
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Robustness to growing receptive field: Figure 2 shows a comparison of the performance of ChebNet on the Ring-
Transfer dataset in its backbone and latent model form against a simple GCN. The GCN can perform well up until 30
nodes, above which the performance drops to 0.2. As the diameter of the ring increases, the number of layers required
to reach the target node is higher, resulting in oversmoothing. This is not the case for ChebNet which can perform
consistently well up to 55 nodes in its simplest form prior to failure, in contrast to the latent ChebNet model which is
consistently robust to the increase in diameter. We analyze the potential reasons for the improvement provided by the
choice of ChebNet in the next section.

Jacobian bound: To analyze over-squashing, the authors in [15] provide a formulation of the Jacobian of the embedding
hr
i of a node i relative to the initial features h0

j of a node j at distance r. The Jacobian is an important measure to
quantify the information flow between nodes i and j after r message passing iterations. More specifically, a low
Jacobian value indicates that h0

j has a minimal effect on hr
i due to the squashing of information into fixed-size vectors.

The interaction of these nodes is bounded by the powers of the adjacency matrix A through the following formulation:∣∣∣∣∣∂hr
i

∂h0
j

∣∣∣∣∣ ≤ c(Ar)ij (8)

In our case using ChebNet, we use the normalized Laplacian adjacency matrix defined in Section 2.1. ChebNet
spans k-hop layers per iteration and hence information between two nodes at distance r is reached in [ rk ] iterations.
Consequently, the exponential decay proportional to r given in Eq.6 becomes slower as the Jacobian is now dependent
on Â

r
k where r

k << r. By increasing this upper bound on the Jacobian, the latter now has a larger value which translates
into an alleviated over-squashing, hence explaining the better performance ChebNet provides on datasets displaying
long-range dependencies.

Link to Commute Time: As described above, ChebNet requires [ rk ] iterations to go from a node i to a node j at a
distance r. Consequently, the commute time between these nodes is also reduced from r to [ rk ] as the shortest paths are
considered. Commute-time and Effective Resistance (which are often used interchangeably) have been directly linked
to over-squashing. The latter becomes more prevalent in graph tasks which depend on the interactions between nodes
with high CT due to high obstruction during information transfer. We refer the reader to Appendix in [24] for a detailed
description of this connection.

Alleviating Oversmoothing: A starting point is to observe the spectral backbone from the perspective of the influence
score in analogy to [46]. Given a starting node A and a distant node B in a graph G = (V,E) the influence score I(A,B)

of node A by B is the sum of the absolute values of the entries of the Jacobian matrix [
∂h

(k)
A

∂h
(0)
B

]. In the case of ChebNet, if

we consider the case at the 0th layer, this ratio is proportional to the parameter θr0 at the rth neighborhood where B

falls, i.e [
∂h

(0)
A

∂h
(0)
B

] ∝ θr0. After k convolutional layers, the embedding h′
A of A is proportional to the embedding h′

B of B

through a new parameter θrk while still inherently containing information from θr0.Hence, the inherent information from
earlier convolutional layers can be seen as a sort of residual connections from the initial layer to later ones. Hence the
strong performance from ChebNet is logical considering that residual connections are one way to tackle dependencies
and prevent oversmoothing [46].

7 Conclusion

In this work, we have proposed a unified framework to alleviate the phenomenon of oversquashing that GNNs exhibit
on proteins when dealing with long-range dependencies. The main components of the framework include the use of
latent nodes that cover different regions of proteins and a novel use-case these latent nodes as a mediator for rewiring.
We show that latent nodes can enhance the performance on a given GNN backbone for the datasets under consideration.
We also evaluate our extension on the same dataset and show the additional boost it provides. We study the design
space of possible GNN backbones and find empirically that the spectral ChebNet model outperforms other baselines.
We attribute this superiority to its weighted multi-hop aspect and provide an analysis of this result. Future work can
make use of this methodology to further extend its expressive power by trying more pragmatic approaches to define the
input to latent connections. Another perspective can be to view the method as a set learning problem as described in
[47]. It could also be interesting to explore the latent space exhibited by the latent nodes for interpretability.
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A Dataset Summary

We report the properties of different datasets in the Table below. For training on all datasets, we used the AdamW
optimizer with the learning rates tabulated below. All experiments are done on an NVIDIA Titan-RTX GPU and we
report an average of 3 runs.

Dataset # of graphs Loss Function hidden dim Learning rate
Peptide-func 15,535 Cross-Entropy 300 0.0001
Peptide-struc 15,535 MSE 300 0.0001

PDBBind 2839 Cross-Entropy 150 0.0005
EnzymesClass 15,603 Cross-Entropy 150 0.0005

Structural Similarity 994 MSE 150 0.0005

Table 4: Dataset description
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Figure 3: Number of nodes across different ProteinShake Datasets

B Definitions

Effective resistance (ER) in a graph measures the resistance between two nodes when an electrical current is passed
through the edges. It quantifies how well-connected or isolated the nodes are and is commonly used in network analysis
to assess the flow of information or current within the graph.

Commute time (CT) in a graph represents the expected time it takes for a random walk or particle to travel between
two nodes, starting from one and reaching the other. It is a measure of the efficiency of traversal within the graph and
finds applications in various fields, such as computer science and transportation planning.
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