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Abstract. Pretrained protein language models are becoming increasingly popular as a backbone for
protein property inference tasks such as structure prediction or function annotation, accelerating bio-
logical research. However, related research oftentimes does not consider the effects of data leakage from
pretraining on the actual downstream task, resulting in potentially unrealistic performance estimates.
Reported generalization might not necessarily be reproducible for proteins highly dissimilar from the
pretraining set. In this work, we measure the effects of data leakage from protein language model
pretraining in the domain of protein thermostability prediction. Specifically, we compare two differ-
ent dataset split strategies: a pretraining-aware split, designed to avoid similarity between pretraining
data and the held-out test sets, and a commonly-used naive split, relying on clustering the training
data for a downstream task without taking the pretraining data into account. Our experiments suggest
that data leakage from language model pretraining shows consistent effects on melting point predic-
tion across all experiments, distorting the measured performance by an average 11.1% compared to the
pretraining-aware split. The source code and our dataset splits are available at https://gitlab.com/dacs-
hpi/pretraining-aware-hotprot.
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1 Introduction

Recent success of transformer-based large language models in Natural Language Processing (NLP) such as
BERT [1] and GPT4 [2] has inspired the development of protein language models (PLMs) that can learn
powerful representations of protein sequences. Models such as ESM2 [3] and ProtT5 [4] have been pretrained
in a self-supervised fashion via the masked language modeling objective on vast numbers of protein sequences.
They have been shown to create meaningful protein representations for use in downstream tasks, such as
protein structure prediction and function annotation [3]. Autoregressive PLMs are in turn capable of both
conditional and unconditional protein sequence generation, including finetuning for target properties [5–10].

By enabling these applications, PLMs have become an influential technology for computational protein
design and analysis, advancing protein research by facilitating various tasks, e.g., estimating the thermosta-
bility of unseen protein sequences [11]. However, utilizing representations generated by PLMs comes with
unnoticeable challenges when evaluating a downstream tool’s performance: performance metrics are usu-
ally acquired on test data, which is supposed to resemble real-world data samples. While test data should
follow the same distribution as the training data, its samples should be as independent from the training
data as possible. Otherwise, a model’s capability to ’remember’ the training samples is evaluated, instead
of its capability to generalize to truly unseen data. The impact is particularly high on applications based
on PLMs. PLMs are pretrained on a vast collection of protein sequences, potentially incorporating almost
every documented protein, of which only a fraction is being held out for testing. If the pretraining split is
disregarded when choosing a test set for a downstream application, the test set will certainly contain sam-
ples that were already used or samples that are related to proteins in the pretraining set. Thus, the PLM
serving as the backbone for the downstream model could potentially produce higher-quality embeddings for
proteins seen during pretraining. As illustrated in Fig. 1, this can result in unrealistic performance estimates
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for the downstream model. This is especially relevant as these models are often used to predict properties
of previously unknown proteins or to design new protein sequences, which might not have been seen during
pretraining [12–15].

To investigate the significance of pretraining data leakage, we measure its effects in the protein thermosta-
bility prediction task. Protein stability is a fundamental property that influences many biological processes,
such as enzymatic activity, protein-protein interactions, and protein folding. The melting point of a protein,
which is defined as the temperature at which the protein loses its native structure and unfolds, is a key in-
dicator of its stability. Accurate prediction of the melting point of a protein is therefore crucial for assessing
the real-world applicability of a protein for use cases in medicine or other areas [16].

We compare pretraining-aware and pretraining-unaware data split strategies to measure the effect of
information leakage between the training and test data sets. We run these experiments with multiple sizes
of the ESM2-family models, ESM-1b and ESMFold. In each of them, a regression head is attached on top of
the aggregated protein sequence embeddings, with the protein language model receiving protein sequences
as input and the regression head outputting their melting points. As training and test data we utilize the
Meltome Atlas [17], which contains numerous protein sequences with multiple experimentally determined
melting point measurements per protein.

Our experiments show that data leakage from pretraining consistently inflates the performance when
compared to experiments run on the pretraining-aware dataset split. This shows that pretraining data leak-
age distorts comparisons of different protein language models when used for melting point prediction and
highlights the importance of proper dataset splitting in the world of proteins.

2 Related Work

2.1 Data Leakage

Data leakage is a known challenge in the prediction of protein-protein interactions [18]. Bushuiev et al. [18]
highlight problems that occur in existing splitting strategies for protein datasets. Here, we extend on this
issue by showing the data leakage between pretrained protein language models and a downstream task.
Ding & Steinhardt [19] show that PLMs like ESM2 are biased by unequal sequence sampling across the
tree of life, as in the popular protein databases, e.g. UniProt [20], some species are represented by orders
of magnitude more samples than others. Ding & Steinhardt demonstrate this by examining protein design’s
effects on thermostability following the design methodology proposed by Zhu et al. [21]. They measure the
thermostability of proteins from thermophilic species before and after protein redesign, utilizing the protein
melting temperature predictor DeepSTABp [11]. The results show a decrease in predicted melting points
after the redesign, indicating an overall decrease in thermostability [19]. The problem of data leakage is also
explored beyond protein-related research. Whalen et al. [22] describe leaky processing as a major pitfall when
working with machine learning in genomics. In their work, they explore several other challenges that are not
apparent at first sight (e.g. confounding, distributional differences, etc.) due to the inherent complexities of
biological systems. They propose further ideas to reduce the risk of encountering these pitfalls [22].

2.2 Protein thermostability prediction

Chen et al. [23] conducted a study to predict protein thermostability using both classification and regression
methods. They have implemented different methods in their study, including Factorized Sparse Tuning,
Structure-Aware Pretraining with AlphaFold2, and creative approaches like mixup feature augmentation
and worst-case feature augmentation. The proteins in their dataset are clustered by temperature ranges at
a sequence similarity threshold of 50% by employing the CD-Hit algorithm [24]. Unlike in this study, Chen
et al. trained their models without relying on a pretrained PLM, which reduces their risk of data leakage
from a differing pretraining split.

DeepSTABp is a thermostability predictor for protein sequences [11]. It employs ProtT5 [4] as a transformer-
based protein language model combined with feature extraction methods to predict the melting points of
proteins. The dataset used by the authors includes the Meltome Atlas [17] and additional proteins from
other studies [25, 26]. However, they do not consider pretraining leakage in their study and instead split
their dataset randomly into train and validation sets.
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Fig. 1: Conceptual drawing of pretraining-aware splitting (EPA) vs. pretraining-unaware splitting (FLIP ).
Protein clusters are shown as representatives for all existing UniRef50 protein clusters. A subset of the clusters
is used in ESM pretraining. EPA takes this into account, while FLIP does not, resulting in an overlap in
pretraining and downstream task evaluation clusters as highlighted in orange. For clarity, this simplified
figure assumes the same clustering threshold in both splits. In the general case, the clustering thresholds
might differ between the splits, but similar proteins present in both pretraining and test sets can still cause
data leakage. Protein clusters not assigned to any set are either in ESM pretraining held out test set or
not considered for pretraining or the downstream task at all. We conduct multiple experiments on different
ESM models to investigate data leakage. Leakage may be detected as unexpectedly inflated performance
on the FLIP split that cannot be attributed to other sources of split difficulty, such as sequence similarity
thresholds used to remove sequence redundancy. In the FLIP split, leakage-free proteins comprise only 9%
of the validation set and 9.3% of the test set (see Section 3.3). In contrast, the EPA split validation and test
sets contain exclusively leakage-free proteins.

Dallago et al. [13] explore representation learning with protein language models of proteins from various
landscapes across different protein functions. Their study results in a benchmark, FLIP , which includes
thermostability prediction for protein sequences. Their work also does not take the pretraining-related leakage
of the utilized PLM into account as well [13].

3 Methods

3.1 ESM1 & ESM2

Evolutionary Scale Modelling 1 and 2 (ESM1 and ESM2) are transformer-based protein language models
that have been pretrained on the masked language modeling (MLM) objective to create representations of
proteins that are useful for downstream tasks such as protein structure prediction [3]. Pretraining of ESM2,
as well as ESM1, has been performed on a dataset based on UniRef [27]. 10% of UniRef50 protein clusters
have been held out from pretraining, acting as an evaluation set. The UniRef50 clusters are found with
MMseqs2 [28] with a minimum 50% sequence similarity between proteins in the same cluster. ProtT5 [4]
data splits have not been made available, which is why we chose the ESM models for our experiments. We
focus on masked language models as common backbones for protein property predictors.
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For the task of melting point prediction, a variable size input – the protein sequence – is given, and a
fixed size output – the melting point – is the prediction target. As the number of amino acid embeddings
produced by ESM2 depends on the length of the given protein sequence, an aggregation method to obtain
a sequence-wide representation of fixed size is needed. The fixed-size representation can then be passed into
a simple fully connected neural network called a regression head to predict the protein’s melting point. To
acquire the fixed-size representation, we calculate the mean over the sequence of embeddings.

3.2 ESMFold

ESMFold [3] is an ESM2-based model for protein structure prediction. To predict the structure of a protein,
ESMFold performs a series of steps. First, the input sequence is passed through ESM-2, the language model
that generates a representation sequence. Then, the representations are fed into a series of folding blocks,
where each block updates the representations that are subsequently passed into the structure module. Within
the folding module, pairwise representations include a latent representation for every pair of amino acids in
the corresponding sequence. At the same time, the sequence representation contains a latent representation
for every amino acid in the corresponding sequence. ESMFold uses both kinds of representations for protein
structure prediction, but fully paired representations use considerable amounts of memory. Therefore, we
investigated whether the sequence representations updated by the folding modules could contain additional
information useful for thermostability prediction, compared to standard ESM2 embeddings.

3.3 Dataset

The training dataset utilized in this study is the Meltome Atlas, which covers a total of 201,282 samples
consisting of 34,672 unique protein sequences from 13 different organisms. For our experiments, we removed
proteins longer than 3000 amino acids to avoid exceeding hardware constraints. The average number of
thermostability measurements per protein is 5.81 [17]. The experiments were conducted on two different
splits.

The first split, FLIP , was introduced by Dallago et al. [13]. The authors employed a clustering strategy
using MMseqs2 with a sequence similarity of 20%, which produced clusters of proteins with at least 20%
similarity to the seed protein of the cluster, i.e. its longest sequence. Their split does not consider the ESM
pretraining split and instead randomly samples all protein clusters to create a train, validation, and test set.
Consequently, samples from the ESM pretraining set can be found in the FLIP test set, making it prone to
data leakage from PLM pretraining. Across the sets, 145 proteins were removed due to exceeding a length of
3,000 aa. In total, the dataset consists of 22,225 samples for the training set, 2,466 for the validation set, and
3,115 for the test set. The training and validation sets contain 18,349 and 2,362 unique proteins respectively,
while the test set only contains a single measurement per protein.

The second split avoids the risk of data leakage from PLM pretraining. We call it ESM Pretraining-Aware
split (EPA). Unlike the FLIP split, EPA employs the UniRef50 clustering to make it compatible with the
ESM pretraining clustering. Consequently, clusters here include proteins with at least 50% similarity to the
cluster’s seed protein. Due to the increased sequence similarity threshold, the clusters contain fewer proteins,
and more clusters are formed. Consequently, proteins within a cluster have a more similar protein sequence.
For example, two proteins with 40% sequence similarity will be in separate clusters in the EPA split but in
the same cluster for the FLIP split.

As described in Section 3.1, certain UniRef50 clusters have been excluded from the ESM pretraining
data set, acting as the ESM evaluation set. In the EPA split, we make use of this by including only those
samples that are part of the ESM evaluation clusters in the evaluation set. Therefore, proteins of the same
cluster as proteins seen during ESM pretraining cannot be part of our evaluation set. We further assign all
samples belonging to randomly selected two-thirds of the held-out protein clusters as the validation set and
the remaining one-third as the test set. All samples belonging to other UniRef50 clusters are selected for
training. We select the median of all measurements for a given protein sequence, resulting in one measurement
per protein sequence. As for the FLIP split, we removed protein sequences exceeding 3,000 amino acids in
length, reducing the total number of samples by 169. In total, the training, validation, and test sets contain
30,844, 2,113, and 1,082 respectively, summing up to a total of 34,208 samples.
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We assume that members of the protein clusters included in the ESM2 validation set are leakage-free, as
they were excluded from the ESM2 training set. To estimate the rate of leakage-free proteins in the FLIP
test set, we calculate how many of the FLIP test proteins are members of ESM2 validation clusters. We then
repeat the procedure for the FLIP validation set and the EPA test and validation sets. As expected, the
calculated rate of leakage-free proteins is 100.0% for the EPA sets, while it is only 9.3% and 9% for FLIP
test and validation sets, respectively.

4 Experiments

We conducted the experiments by either transfer learning using the frozen protein embeddings or finetuning
the backbone models in addition to the thermostability predictor. The finetuning experiments aimed to
increase the quality of the generated embeddings to improve the thermostability prediction capabilities of
the following predictor model. Because of the associated computational cost, we only run finetuning on the
35M parameter variant of ESM2. All experiments were replicated for the dataset splits:

1. EPA: ESM Pretraining-Aware split of thermostability measurements
2. FLIP : Split pattern as defined in the FLIP paper (not taking ESM pretraining into account)

The embeddings were mean-aggregated along the protein sequence length dimension, before being passed
into the thermostability predictor model. The pretrained backbone models can be found at the ESM GitHub
repository1. For all of the experiments, we used the regression head for mean aggregation as described by
Dallago et al. [13], without conducting a further hyperparameter search. It is a simple, two-layer, fully
connected network that maps from the embedding vector to a same-sized hidden representation, followed
by ReLU activation and subsequently mapped to the scalar melting point. All experiments used mean
squared error as their loss function during training and were trained for 30 epochs. We measured the models
performance on the validation dataset after each epoch and the model state was saved. After training the
best-performing model checkpoint was chosen and validated on the test set. The experiments were conducted
by training the thermostability predictor model on protein embeddings of multiple model backbones:

1. ESM-1b (650M parameters), frozen
2. ESM2 (35M parameters), frozen & finetuned
3. ESM2 (650M parameters), frozen
4. ESM2 (3B parameters), frozen
5. ESM2 (15B parameters), frozen
6. ESMFold sequence representations (utilizing ESM2-650M), frozen

Varying ESM2 model sizes were examined to measure the broad impact of data leakage independent of
the underlying backbone model size. As ESM-1b was already applied to the thermostability prediction task
in the FLIP study [13] and ESM-1b was trained with the same dataset split as ESM2, we also included a
reproduction of the FLIP findings using their exact pipeline as an additional comparison. As embeddings
created with ESMFold contain structural information that should help in predicting thermostability, these
embeddings were also included in the experiments.

5 Results

The EPA split reduces data leakage from PLM pretraining but employs a clustering strategy with a sequence
similarity threshold of 50%. This allows proteins with e.g. 40% similarity to be part of the training and the
test set, as they do not belong to the same cluster. In contrast, in the FLIP split, these proteins would
only be represented in either training, validation, or test set. Consequently, assuming that data leakage does
not have a significant effect, using the EPA split could result in obtaining higher performance estimates
compared to the FLIP split. Additionally, Figure 2 shows that the FLIP test set contains visibly more
outliers, e.g., proteins with unusually high melting points, while the train sets of both splits are similarly

1 https://github.com/facebookresearch/esm

https://github.com/facebookresearch/esm
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Fig. 2: Data distribution of melting points across the utilized splits with 95% quantile range displayed by inner
whiskers and extremes marked by outer whiskers. Both train and test sets visibly have a similar distribution.
The test sets do differ in terms of upper outliers. Specifically, the test set of the FLIP split contains visibly
more proteins with higher melting points than the test set of the EPA split as well as the equally distributed
train sets, making the FLIP split more challenging, when not considering any data leakage effects.

Model EPA FLIP Difference

ESM-1b (650M), frozen 0.620* 0.680* +0.060
ESM2 (35M), frozen 0.497 0.610 +0.113
ESM2 (650M), frozen 0.523 0.618 +0.095
ESM2 (3B), frozen 0.674 0.699 +0.025
ESM2 (15B), frozen 0.670 0.721 +0.051
ESM2 (35M), finetuned 0.436 0.478 +0.042
ESMFold seq. rep. (650M), frozen 0.416 0.546 +0.130

Mean over ESM variants ∼ 0.548 ∼ 0.603 +0.055

Table 1: Spearman rank correlation for melting point prediction on the test set of ESM-pretraining-aware
split (EPA) and FLIP split using different PLM backbones. Cells marked with ∗ are related to experiments
that we run with the pipeline from the FLIP paper.

distributed, not resembling the density of outliers found in the FLIP test set. This contributes to the
assumption that the EPA split should lead to observing higher values of the performance metrics, as long
as no detectable data leakage is present. A histogram visualizing this disparity in distributional outliers can
be found in Figure A1.

To benchmark the model performance, we employed Spearman Rank Correlation Coefficients (SRCC)
of prediction and label observed on the test set for each experiment. Ranking-based metrics like Spearman
rank correlation are a common choice in protein optimization [13, 29] and ranking-based losses have been
shown to improve prediction quality across different protein fitness landscapes [30]. Each experiment was
evaluated on the model checkpoint at the epoch with the best validation loss during the training process. We
summarize the results in Table 1. The diverse protein embeddings utilized for training are shown alongside
the corresponding parameter counts of the underlying models.

All tested PLM backbone models achieve a higher Spearman rank correlation if they are trained and
evaluated on the FLIP split compared to the EPA split. The Spearman rank correlation on the EPA split
is statistically significantly worse than on the FLIP split (Wilcoxon signed-rank test, p = 0.007).

The average Spearman rank correlation for these models on the EPA and FLIP splits are 0.548 and
0.603 respectively, which is an increase of 11.1%. Additionally, the results show a trend of improved Spearman
rank correlation with model size. However, on the EPA split, we observe no significant change from the 3B
model variant to the 15B variant. On the FLIP split, the performance continues to improve. Additionally,
the largest differences in Spearman rank correlation are seen for smaller ESM2 variants of up to 650M
parameters with the exception of the finetuned 35M parameter model. A comparison of the leakage effect for
the finetuned and frozen training of the ESM2 (35M) model reveals that finetuning decreases performance
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Fig. 3: Prediction residuals of the
model trained using the ESM-2 15B
backbone compared to a näıve average
predictor, i.e., a model that just pre-
dicts the respective training set’s aver-
age melting point for all samples. The
95% quantile range is displayed by
inner whiskers and extremes marked
by outer whiskers. The smaller 95%
quantile ranges and zero-centrality of
the residuals of the trained models
clearly show that they indeed do out-
perform the naive predictor.

difference between EPA and FLIP . This could be caused by underfitting of the FLIP -finetuned model.
Further, as the clusters that have been leaked into the validation and test partitions are not included in the
training set during finetuning, some of the pretrained information on these clusters may be discarded when
adjusting the model weights, thereby reducing the impact that data leakage has on the downstream task. Our
hypothesis that the ESMFold embeddings contain structural information that would increase the performance
of the thermostability predictor was not confirmed as the model performed worse compared to similarly
sized ESM2 and ESM-1b backbones. Moreover, this model exhibits the largest increase in performance when
comparing the FLIP split to the EPA split.

Prediction residuals of the experiments utilizing the ESM2 15B backbone are visualized in Figure 3.
For comparison, two hypothetical models predicting only the average train target for FLIP and EPA
respectively are shown and are labeled ”FLIP average” and ”EPA average”. We observe a slightly larger
95% quantile range, indicated by the inner whiskers, for both FLIP plots compared to the EPA split. The
increased residual range of the ”FLIP average” plot compared to the ”EPA average” plot indicates that the
FLIP split is indeed the more challenging one, disregarding data leakage effects.

6 Discussion

Our study examines the extent and effects of pretraining data leakage within the protein language model
domain. The results show that all models achieved higher performance on the data leakage-prone FLIP
split compared to the data leakage-free EPA split.

Our analysis indicates that data leakage is the primary factor contributing to these observations. Upon
further examination of Figure 2 it becomes evident that the test set of the FLIP split contains a greater
number of proteins with higher melting points compared to the test set of the EPA split. This makes
the test set of the FLIP split more challenging for the thermostability prediction task, due to the limited
availability of very thermostable proteins in the training sets of both splits. Furthermore, the FLIP split
employs a different clustering strategy with 20% protein sequence identity instead of 50% as implemented in
the UniRef50 clustering. Therefore, protein sequences in the FLIP test set share less similarity with protein
sequences from the train set, making it even more difficult to generalize to the unseen test set. Despite these
facts, the models achieve a higher performance on the FLIP split. This inconsistency can be explained
by the data leakage that comes from the disregard of clustering and splitting of the datasets used during
pretraining. The difference between FLIP and EPA is especially evident for models below 3B parameters.
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A potential cause for this could be that smaller models do not generalize well beyond their training data for
a complex task such as protein language modeling. Since data leakage is present in the FLIP split, potential
overfitting to the training data becomes visible in the test metrics.

As we have only measured the effects of pretraining data leakage in the protein thermostability prediction
task, the applicability of these findings to other tasks needs to be confirmed. However, as ESM2 is not
specifically designed for the thermostability prediction task, but rather to learn protein representations
that capture properties beyond the amino-acid sequence, we believe that the effects of pretraining data
leakage apply to other tasks as well. Furthermore, a limitation of this study is the exclusive testing on ESM
backbone models, which were trained on the masked language modeling objective. While we expect other
PLMs with the same training objective to exhibit similar effects of pretraining data leakage, future work
should expand on other models and models that were trained on different objectives. Also, the effect of
alternative tuning methods like Factorized Sparse Tuning as applied by Chen et al. is still to be determined.
However, we expect the effect to persist as data leakage is fundamentally a data-dependent problem. The
impact of varying similarity thresholds for the EPA split could also be investigated, but we anticipate the
performance difference between the two splits to be even more noticeable if the threshold were to be lowered
to 20% as done in the FLIP split. Further, as the experiments were conducted on only two different splits,
the observed effect could have been influenced by variations of sampling the train, validation, and test sets.
To exclude the possibility of such factors, we ran several experiments utilizing different model backbones
and we employed a Wilcoxon test to confirm whether these findings are statistically significant. The test
yielded a p-value of 0.007 which we consider significant. To further eliminate random factors, reproducing
these experiments with multiple data leakage-prone splits could validate our findings to a greater extent.

7 Conclusion

Data leakage from pretraining is not always considered in protein language model-related research. In our
work, we have shown that it has a significant effect on the measured performance to an extent that could
be a major limitation to the conclusions drawn from commonly used benchmarking procedures. Although
this study is limited to a single regression task and a family of related pretrained models, we expect the
conclusions to apply also beyond this particular setup. Therefore, we call the researchers using protein
language models to consider potential data leakage from pretraining and carefully choose their data splitting
strategy to guarantee the validity and reproducibility of the produced results.

Code and Data Availability

The source code and our dataset splits are available at https://gitlab.com/dacs-hpi/pretraining-aware-
hotprot.
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A Appendix

(a) Histogram of train melting points for FLIP and
EPA splits

(b) Histogram of test melting points for FLIP and
EPA splits

Fig.A1: Data distribution of melting points across different splits. Both train and test sets visibly have a
similar distribution. The test sets do differ in terms of upper outliers though. Specifically, the test set of
the FLIP split contains visibly more proteins with higher melting points (i.e. greater than 75°C) than the
test set of the EPA split as well as the more similarly distributed train sets, making the FLIP split more
challenging, when not considering any data leakage effects.
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