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Abstract

Human gene interaction networks, commonly known as interactomes, encode
genes’ functional relationships, which are invaluable knowledge for translational
medical research and the mechanistic understanding of complex human diseases.
Advanced network embedding techniques has inspired recent efforts to identify
novel human disease-associated genes using canonical interactome embeddings.
However, a pivotal challenge persists as many complex diseases manifest in
specific biological contexts, such as tissues or cell types, while many existing
interactomes do not encapsulate such information. Here, we propose CONE
(https://github.com/krishnanlab/cone), a versatile approach to generate
context-specific embeddings from any context-free interactomes. The core compo-
nent of CONE consists of a graph attention network with contextual conditioning,
which is trained in a noise-contrastive fashion using contextualized interactome
random walks localized around contextual genes. We demonstrate the strong perfor-
mance of CONE embeddings in identifying disease-associated genes when using
known associated biological contexts to the diseases. Furthermore, our approach
offers new insights into the biological contexts associated with human diseases.

1 Introduction

The proper operation of cells relies on precise coordination and interaction among biological entities,
such as genes, RNA, and proteins. Complex human diseases are ramifications of perturbations
to groups of genes that collectively give rise to pathological states [9, 66]. Leveraging this inter-
dependence among biological entities by modeling their interactions as a network, graph-based
methods have demonstrated immense potential in unveiling the human genes’ functions [40] and
disease associations [35, 72]. Recent approaches achieved this by training machine learning models
on the low-dimensional embeddings extracted from functional gene interaction networks [40, 74].
Compared to more traditional methods that use the full networks [34], embedding-based approaches
are more scalable and efficient, enabling analyses on genome-scale networks for hundreds of diseases.
Despite these promising approaches, analyzing human genes from a context-independent manner
poses significant limitations in finely understanding their contributions under specific conditions.

The molecular interactions among genes vary across biological contexts, such as tissues, cell types,
or disease states, causing different manifestations of the dysfunctioning genes in different contexts.
A key factor for this difference is the context-specific gene expression [29]. For example, DMD
is primarily expressed in the muscle tissue. Malfunction of DMD can lead to Duchenne muscular
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dystrophy due to disrupted dystrophin production [20], which primarily affects the muscle tissue.
Moreover, such context-dependent gene expression can be further complicated by the shared or
distinct molecular pathways in different systems [16], causing complex diseases to affect many
seemingly unrelated tissues other than the primary affected site. A prime example is the elevated
risk of gastrointestinal tract dysfunction observed in patients with Parkinson’s disease, a neurological
disorder primarily centered in the brain [27]. Therefore, accounting for biological contexts in the
embedding space is crucial for accurately predicting genes’ function and disease associations.

Contributions. Here, we address the critical need for a versatile and scalable method for generating
biological context-specific network embeddings. We summarize our main contributions as follows.

1. We propose CONE, a versatile contextual network embedding method that takes context defini-
tions in the form of node sets.

2. The proposed method operates on a shared graph attention network across all contexts, which
is contextualized by conditioning on the raw embeddings. This results in a model that scales
practically independent to the number of contexts.

3. Through a series of experiments, we demonstrate the value of injecting various biological
contexts to improve disease gene prioritization.

2 Related work

Some recent efforts aim to learn a joint embeddings space by integrating multiple context-specific
gene interaction networks [15, 19, 22, 23, 68], which are derived from numerous functional genomics
data sources comprising diverse types, qualities, and scopes of genes or molecules [31, 48, 60].
However, this type of integrative approach ultimately eliminates context-specific information from
each input network, resulting in a context-naive network assumes the same molecular interactions in
different biological contexts.

Meanwhile, a few existing works explored the idea of contextualizing biological network embeddings
using contexts such as tissue or cell type specificity. Notably, OhmNet [76] pioneered the tissue-
specific gene interaction network embedding by leveraging the hierarchical relationships between
different tissue levels and genes. OhmNet learns a multi-layer embedding and operates on the idea
that closely related tissues, or layers, should have similar embeddings. However, the original OhmNet
method requires a highly specific construction of the hierarchical multi-layer tissue-specific networks,
making it hard to readily extend to broader biological contexts. More recently, PINNACLE [37]
further expanded the biological contexts into finer-grain definitions based on cell types using cell-type-
expressed genes constructed from the Tabula Sapiens single cell atlas [18]. Furthermore, PINNACLE
learns context-specific graph attention modules with independent parameters per context.

3 Our Method

We are interested in learning a collection of network embeddings, each specific to a biological context.
For example, we can use heart-specific gene embeddings to unravel more tissue-specific genes related
to cardiovascular diseases. Contextualizing gene embeddings to biological contexts this way allows
us to unveil nuanced relationships between diseases and biological contexts, such as tissues, cell
types, and other diseases or traits. The full pipeline of our approach is depicted in Figure 1. We refer
the readers to Appendix A for detailed notations and preliminary notes about random walk network
embeddings and the graph attention neural network.

From a high level, CONE contains two main components, including (1) a GNN decoder and (2)
an MLP context encoder. The GNN decoder converts the raw, learnable, node embeddings into
the final embeddings. On the other hand, the MLP context encoder projects the context-specific
similarity profile that describes the relationships among different contexts (Section 3.2) into a
condition embedding. When added with the raw embeddings, the condition embedding serves as
a high-level contextual semantics, similar to the widely-used positional encodings in Transformer
models [63]. The embeddings are trained using the losses based on the random walk on the context-
specific subgraphs. We employ a straightforward approach to define a context-specific subgraph as
the subgraph induced by the genes relevant to that context. Next, we formally describe our approach.
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Figure 1: Overview of CONE embedding collection training and inference.

3.1 Contextualized network embeddings

Let C = {Ci}i∈1,...,nc
be a collection of nc contexts, where each context Ci ⊂ V is a subset of nodes

that defines the local context. We aim to learn a collection of embedding functions F = {fC} by

Ltot = LRW (f0) + EC∼CLRW
C (fC) (1)

where f0 is the context-naive embedding that is optimized against the whole network G, and fC is
the context-specific embedding that is optimized against the contextual random walk loss LRW

C that
samples random walks on the subgraph induced on the context set C, that is, G(C) = (C, {(u, v) ∈
E : u, v ∈ C}, w). Equation 1 aims to simultaneously optimize for the global and local contextualized
representation of all the nodes v in the network.

A naive attempt for obtaining the contextualized embeddings in equation 1 would be to learn
independent fC on the corresponding contextual graph G(C). However, the resulting context-
specific embeddings may completely lose the global information of the graph, since each fC operates
independently. We provide empirical evidence for this in Section C.2.

3.2 Contextualized GAT

To address the above-mentioned problem, we propose to learn a shared embedding encoding model
using GAT, and contextualize different embeddings by conditioning on the raw embedding matrix.

Let gθ : R|V |×d → R|V |×d be a GAT network parameterized by θ, and Z ∈ R|V |×d the raw
embedding matrix that is randomly initialized. Drawing parallels from recent work on conditional
generation [56], we view context-specific embeddings as generation conditioned on a specific context,
and propose to compute the contextualized embedding fC as

fCONE
C = gθ(Z+ ϕ(C)) (2)

where ϕ(C) ∈ R1×d is the context condition embedding that defines the context C. The context-
naive embeddings are computed by passing the raw embedding alone through the GAT encoder:
fCONE
0 = gθ(Z). Finally, to form the full context-specific embedding for downstream evaluation, we

concatenate it with the context-naive embedding and then project it down to d-dimension via PCA.

Context condition embedding The context condition embedding serves to provide low level
semantics about each context, and two contexts with highly overlapping sets of nodes should have
similar condition embeddings. To that end, we design an approach to encode condition embedding
using the context similarity matrix J ∈ Rnc×nc constructed by taking the Jaccard index between
all pairwise contexts, Ji,j =

|Ci∩Cj |
|Ci∪Cj | . Finally, we use a two-layer Multi-Layer Perceptron (MLP)
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to project J into the condition embeddings, thus for each context Ci, its corresponding condition
embedding is computed as ϕ(Ci) = MLP(J)[i,:].

3.3 Training CONE

The loss function defined in equation 1 is implemented in practice by alternating between the
context-naive random walk loss LRW (f0), and the context-specific random walk loss LRW (fC) for
a randomly drawn context. We train the model for 120 epochs using the AdamW [42] optimizer with
a constant learning rate of 0.001 and a weight decay of 0.01. Hyperparameter selection details can be
found in Appendix D.2.

3.4 Complexity analysis

As the main module of CONE, GAT has the computational complexity of O(|V |d2 + |E|d) [11, 64].
In addition, the context condition embedding encoder ϕ scales linearly with respect to the number of
conditions as O(ncd). However, in practice, since nc ≪ |E|, the computational complexity of CONE
should be equivalent to that of a single GAT network. This effective constant scaling with respect to
the number of contexts is in stark contrast with the recently proposed method PINNACLE, which
scales linearly with respect to the number of contexts due to the implementation of independent GAT
module for each context. We provide empirical evidence for the scalability of CONE in Appendix B.

4 Experiments

We devise diverse biomedical tasks to evaluate the capability of CONE against baseline methods to
prioritize genes in the gene interaction network. These tasks are binary classification tasks, where
the goal is to identify human genes that are related to certain diseases using the gene network
embeddings generated by the models. We conduct our main analysis using the PINPPI network,
which is a combined network using BioGRID [59], Menche [45], and HuRI [43], provided by the
PINNACLE [37] paper. For gene label information, we collect the two therapeutic target tasks (RA
and IBD) from PINNACLE. Furthemore, we compile a comprehensive collection of disease-gene
annotations from DisGeNET [53], following the processing steps detailed in [40]. After filtering out
diseases with less than ten positive genes intersecting with the PINPPI network, the final DisGeNET
benchmark contains 167 diverse human diseases.

For each DisGeNET disease gene prioritization tasks, we randomly split the positive and negative
genes into 6/2/2 train validation test sets. The final prediction performance are reported as the average
test scores across five different random splits. For RA and IBD, we use the pre-defined train test split
given by PINNACLE. Detailed dataset statistics and processing notes can be found in Appenxi D.1

Baselines node2vec is a strong baseline method for network embedding-based gene prioritization
method with superior performance on various benchmarks [7]. We also include embeddings generated
by a two-layer GAT (v2) network [11, 64] trained in a standard graph autoencoder style [32] as a more
direct baseline against CONE. Moreover, BIONIC [22] and Gemini [68] are two recent approaches
that learn an integrated embedding across a collection of networks. We use them to test if embedding
multiple context-specific subgraphs together gives an advantage over embedding a single context-
naive network. All baselines and the CONE embeddings are evaluated in an unsupervised setting,
where an ℓ2 regularized logistic regression model is trained for each task using the embeddings that
are learned without accessing any label information.

For context-specific network embeddings, we consider a recently proposed method, PINNACLE [37],
which learns separate GAT modules for each context. We directly use the context-specific embed-
dings provided by the paper 3 to reanalyze the performance under our fair setting. We point out
that PINNACLE context-specific embeddings differ slightly from CONE in that PINNACLE only
generates embedding for the context-specific nodes. Conversely, CONE generates embeddings for
all nodes regardless of if they are specific to the context. This enables us to evaluate all context-
specific embeddings fairly across diverse disease gene prioritization tasks. Due to this limitation of
PINNACLE, we exclude it from the main disease gene prioritization benchmark (RQ1). We set the
embedding dimensions to 128 for all models.

3https://figshare.com/articles/software/PINNACLE/22708126
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Figure 2: DisGeNET disease gene predictions performance comparison between node2vec and
CONE embeddings. Each point in the box plot corresponds to the prediction performance of a
disease averaged across five splits. Different panels show groups of diseases with different number of
positive genes. For example, the left-most panel contains 31 diseases with at least 10 but less than 13
positive genes. ns, *, and ** indicate the significance level of the paired Wilcoxon test between the
baseline node2vec and CONE (ns: not significant, *: 0.01 < p-value ≤ 0.05, **: p-value < 0.01).

Table 1: Top performing contexts for selected diseases in the DisGeNET benchmark. Perfor-
mance reported as test APOP scores averaged across five random splits. The top contexts are sorted
descendingly from left two right. For example, the Heart context achieved the highest score for
Nemaline myopathy.

Task node2vec CONE (naive) CONE (best) Top contexts

Familial hypertrophic cardiomyopathy 3.1481 2.6405 2.9609 Pancreas, Stomach, Muscle
Nemaline myopathy 4.9395 4.7192 5.1911 Heart, Stomach, Minor Salivary Gland
Subvalvular aortic stenosis 4.1582 3.6587 3.9863 Colon, Artery, Minor Salivary Gland
Hypochromic microcytic anemia 2.5056 1.3827 2.8930 Adipose, Skin, Small Intestine
Familial bicuspid aortic valve 1.2164 3.4816 4.1857 Pancreas, Stomach, Heart
Pure red-cell aplasia 6.0797 5.9410 6.1684 Stomach, Pancreas, Liver

Context-specific gene sets We primarily consider tissue-specificity for contextualizing the network
embeddings. One widely adopted way of defining tissue- or cell type-specific genes is by differential
gene expression [61]. We first obtain tissue-specific gene expression from the GTEx project [41], and
then extract tissue-specific genes by taking genes with z-scores greater than one across tissues. In
addition to tissue-specific genes, we also showcase CONE using other biological contexts, including
cell types and diseases. The specific constructions for those context-specific gene sets and their
statistics can be found in Appendix D.1.

Metrics We use the log2 fold-change of the average-precision over the prior (APOP) as the main
metric for evaluating disease gene prioritization performance [40]. The area under the precision recall
curve, which is closely related to the average precision, is a better choice for evaluating tasks with
severe class imbalance [57]. The prior division, on the other hand, corrects for the expectation of
the random guesser performance on different tasks with different number of positive examples. For
the RA and IBD therapeutic target prediction tasks, we follow PINNACLE and report the average
precision and recall at rank five (APR@5) in addition to APOP.

5 Results and Discussions

RQ1. Can context-specific embedding improve disease gene prediction performance? We first
observe that, overall, picking the best context for each disease achieves noticeable performance
improvement over the context-naive CONE embeddings, as indicated by the good performance of
CONE (best) in Figure 2. Moreover, the advantage of using context-specific embedding is most
apparent when the number of positive genes available for the disease is lacking, which might be
attributable to the fact that diseases with more associated genes are more likely to contain more
ubiquitous and less context-specific genes, and consequently reducing the effectiveness of using
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Figure 3: Therapeutic area predictions for RA and IBD. Each point represent the APR@5 score
achieved when using a particular cell-type-specific embedding to predict the RA or IBD therapeutic
targets. Immune cell contexts are highlighted in orange and pink for CONE and PINNACLE.

Table 2: Top four performing contexts for predicting RA and IBD therapeutic targets. The first
block of rows show the top four cell types with highest APOP socres of predicting RA and IBD using
PINNACLE embeddings. Similarly, the second block of rows show those for the CONE embeddings.

Rheumatoid Arthritis (RA) Inflammatory Bowel Disease (IBD)
Context APOP APR@5 Context APOP APR@5

PINNACLE Large intestine goblet cell 1.734 0.333 Pulmonary ionocyte 3.145 0.333
Intrahepatic cholangiocyte 1.634 0.200 Pancreatic acinar cell 3.051 0.250
Retinal ganglion cell 1.537 0.200 Lymphatic endothelial cell 2.709 0.333
Lung ciliated cell 1.525 0.040 Muscle cell 2.672 0.000

CONE Retinal ganglion cell 3.186 0.760 Duct epithelial cell 5.977 1.000
Pancreatic acinar cell 3.158 1.000 Luminal cell of prostate epithelium 5.954 1.000
Pancreatic alpha cell 2.855 0.383 Tracheal goblet cell 5.883 1.000
Club cell of prostate epithelium 2.710 0.383 Vascular associated smooth muscle cell 4.691 0.500

context-specific embeddings. In all cases, we note that either the context-naive or the context-specific
CONE embedding consistently match the performance achieved by the node2vec baseline.

RQ2. Are the top performing context biologically relevant? Despite the performance improvement
due to the CONE contextualized embeddings, it is still unclear whether the biological contexts that led
to good performance on a particular disease are associated with that disease. To address this question,
we manually inspect six diseases where the connection between tissue and disease manifestation
appears readily evident, as shown in Table 1. We hypothesize that the CONE embeddings derived
from the disease-related tissue should have a higher APOP compared to the context-naive CONE or
node2vec embeddings. Indeed, many of the top contexts found by CONE are biologically meaningful,
whether as one of the main affected tissues or a related tissue. Subvalvular aortic stenosis and familial
bicuspid aortic valve are both diseases related to problems in the aortic valve, which is the valve
of an artery in the heart. The top-performing contexts for these two diseases include heart-related
contexts, specifically artery for subvalvular aortic stenosis and heart for familial bicuspid aortic valve.
More subtle top-performing but biologically-relevant contexts are small intestine and adipose for
hypochromic microcytic anemia. The cause of hypochromic microcytic anemia is typically decreased
iron reserves in the body. This may be due to decreased dietary iron, poor absorption of iron from the
gut, acute or chronic blood loss [14]. Iron absorption is primarily carried out by cells in the small
intestine [54], explaining why it would be a top context for anemia. Obesity, which is an excessive
accumulation of adipose, has also been molecularly linked to iron deficiency in a way that shows
the conditions mutually affect one another [2]. Also of note, the primary affected tissue of pure
red-cell aplasia, blood, was not identified in the top three contexts. However, patients with hepatitis, a
symptom of liver inflammation, sometimes develop pure red-cell aplasia [38, 58]. CONE did manage
to highlight cryptic associations between the liver and pure red-cell aplasia. Together, these results
imply that CONE can help uncover subtle disease-tissue relationships. Thus, CONE contextualized
embeddings can not only achieve good prediction performance, but the top performing contexts
typically show biological relevance.

RQ3. Can we further enhance therapeutic target prediction by encoding better contextual network
information? Inducing biological context information has been recently shown to be beneficial for
predicting therapeutic targets in complex diseases such as Rheumatoid arthritis (RA) and Inflammatory
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Figure 4: Sorted disease contexts for predict the therapeutic area predictions for RA and IBD.

Bowel Disease (IBD) in PINNACLE [37]. Contrasting with learning individual sets of parameters for
each biological context as in PINNACLE, we hypothesize that our approach of unifying models by
tying weights induces more regularity from the underlying graph and, as a result, produces better
contextualized embeddings for predicting therapeutic targets.

To test this, we first use the cell-type specific genes processed by PINNACLE to generate cell-
type specific CONE embeddings. We then follow the original evaluation and measure different
contextualized embeddings’ performance using APR@5. We note that the PINNACLE context-
specific embeddings only contain embeddings of genes within the context. Conversely, CONE
context-specific embeddings are genome-wide, meaning that embeddings in any context contain the
same number of genes, spanning the whole network. Thus, to unify the setting between PINNACLE
and CONE, we subset each context-specific CONE embedding to the corresponding context genes.

As shown in Figure 3, our CONE embeddings achieve significantly better performance than the
PINNACLE embeddings when used in an unsupervised embedding setting, in which the training
of the embedding does not involve node label information for the downstream prediction tasks.
Furthermore, the highlighted immune cell contexts show that CONE better prioritizes the relevant
cell context of IBD and RA, both of which are autoimmune diseases resulting from the malfunction
of immune cells. Upon top-performing cell contexts in RA, CONE achieves better performance than
PINNACLE. Specifically, CONE reveals contexts that are biologically related to RA. For example,
pancreatic acinar cells (rank of APOP=2, rank of APR@5=1) secrete digestive enzymes that are
involved in the digestion process within the small intestine. The early activation of these digestive
enzymes before they reach the duodenum can trigger the onset of acute pancreatitis [36]. On the other
hand, acute pancreatitis is highly associated with RA. Clinical studies have shown that RA patients
were 2.51 times more likely to develop acute pancreatitis [5]. CONE is also able to reveal hidden
associations based on cell-type-specific networks. Similarly, CONE performs better than PINNACLE
in identifying top relevant cell contexts related to IBD. CONE picked up duct epithelial cells (rank
of APOP=1, rank of APR@5=1) as the top cell context. These cells are integral to the intestinal
barrier, serving as the first line of defense against invading microorganisms [55]. However, in IBD
patients, the proper function of the intestinal barrier is frequently compromised to varying degrees [6].
Overall, these examples demonstrate the superior power of CONE in predicting therapeutic targets
using biologically relevant cell contexts.

RQ4. Can CONE leverage biological contexts other than tissue or cell-type? Since CONE takes
contextual information in the form of node sets, it can be extended to biological contexts outside
of traditionally used tissue and cell type contexts [37, 76]. Here, we explore the extendability of
our CONE approach to different biological contexts in two other ways. First, we reevaluate the
RA and IBD prediction performance using CONE trained on different disease contexts defined by
differentially expressed genes obtained from CREEDS [67]. We find that the top-ranked contexts
for both RA and IBD are indeed highly relevant disorders for both diseases (Figure 4). For example,
psoriasis is one of the top disease contexts related to RA (rank of APOP=3). A clear connection
between these two conditions is psoriatic arthritis, a form of arthritis with a skin rash, which is a
common symptom in psoriasis [71]. This indicates that there are similar genetic programs shared by
both diseases [51], which is revealed by CONE using disease context networks. Furthermore, CONE
also reveals several connections between RA and some seemingly unrelated diseases, such as heart
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failure (rank of APOP=115). Notably, a recent study has confirmed that RA patients have a two-fold
higher risk of heart failure mortality than those without RA [50].

Similarly, CONE unveils meaningful relationships between IBD and other disease contexts. Cystitis
(rank of APOP=3) is one of the top disease contexts identified by CONE. Clinical studies have shown
that cystitis, an inflammation of the bladder, leads to a significant increase in the risk of IBD [3, 17, 28].
For example, individuals with interstitial cystitis, a condition involving an inflamed or irritated bladder
wall, are 100 times more likely to have IBD [3]. CONE also finds subtle relationships between
IBD and neurological complications exemplified by epilepsy syndrome (rank of APOP=114) and
autism spectrum disorder (rank of APOP=112) in the top list [12]. Neurological complications affect
0.25% to 47.50% IBD patients [21]. These IBD-related neurological complications are associated
with neuroinflammation or increased risk of blood clots in brain veins [46]. Some diseases may
have a protective effect on other diseases. CONE identified such protective relationships between
Helicobacter pylori gastrointestinal tract infection (rank of APOP=2) and IBD, since H. pylori
infection helps protect against IBD by inducing systematic immune tolerance and suppressing
inflammatory responses [73]. Overall, these examples further confirm that CONE can leverage
disease context to reveal both apparent and cryptic associations between complex diseases.

Finally, we reperform the DisGeNET benchmark using a diverse construction of context specific gene
sets, spanning from tissues, cell types, to diseases, and retrieved from various databases, including
CellMarker2.0 [30], Human Protein Atlas [62], and the TISSUES database [49]. We observe that
CONE performs similarly under all collections of contexts tested (Figure C.3). Together with the
fact that CONE performs competitively against baselines (RQ1), and that it captures biologically
meaningful contextual information (RQ2), we believe that CONE is a versatile and effective approach
to scalably generate biological network embeddings conditioned on specific biological contexts.

RQ5. Can CONE transfer to unseen contexts? The MLP context encoder used by CONE provides
possibility to generate embeddings for contexts that are not observed during training. This can be
done by feeding the similarity profile of the new query context against all training contexts to the
MLP encoder. To demonstrate the effectiveness of transfering to unseen context, we retrain the
CONE GTEx tissue-specific embeddings, but leaving out the Heart context during training. We
observe that holding out Heart context does not affect the disease gene classification performance
significantly, with > 0.8 coefficient of correlation against the original performance. Furthermore,
we compile two lists of diseases for which the Heart context achieved top five performances, for the
original and held-out Heart versions of CONE. We found a significant overlap between the two lists
(Hypergeometric p-value < 0.05), with seven common diseases (Table C.2). One notable example is
familial bicuspid aortic valve, a known common congenital heart defect [10]. These results highlight
the effective transferability of CONE to unseen contexts, with similar embedding quality as if the
contexts were seen during training.

6 Conclusion

We proposed CONE, a flexible and scalable framework that can inject arbitrary contextual information
into gene interaction networks. Our study underscores the efficacy of the CONE method in enhancing
the prioritization of genes within the gene interaction network. CONE consistently demonstrated
superior performance in various biomedical tasks than baseline methods. Crucially, the introduction
of context-specific embeddings, especially when positive genes for a disease were limited, resulted
in significant performance gains. Moreover, the contexts identified by CONE were found to be
biologically relevant, suggesting that the method not only boosts prediction accuracy but also
provides biologically meaningful insights. This ability to integrate diverse biological contexts, from
tissues and cell types to diseases, positions CONE as a versatile tool that can be used to uncover both
explicit and cryptic relationships within biomedical datasets.

Limitations and future directions. Constructing context-specific subnetworks solely based on the
subgraph induced by context-specific genes is a reasonable but overly simplistic assumption. In reality,
context-specific gene interactions are complicated and encompass diverse mechanisms, ranging from
interactions mediated by non-coding RNAs to the influence of epigenetic modifications and signaling
pathways. Consequently, a promising advancement would involve the carefully constructed context-
specific gene interaction networks that account for these intricate nuances, such as HumanBase [24],
HIPPIE [4], IID [33], and many others [13, 39, 65].
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A Notations and preliminary notes

A.1 Network Embedding via Sampling

Let G = (V,E,w) be a weighted undirected graph, where the edge weight function w : V ×V → R,
and denote its corresponding adjacency matrix by A ∈ R|V |×|V |. The goal of a graph embedding
method aims to find the mapping f : V → Rd that maps each node v ∈ V to a d-dimensional
embedding space by minimizing the following objective function.

min
f̂

LG,S+,S−(f̂) (3)

where S+ and S− are positive and negative edge sampling functions. Particularly, the Singular
Value Decomposition (SVD) can be viewed as the optimization of equation 3, where S+,− are both
uniform sampler on all pairwise entries in the adjacency matrix, f maps to the left (fL) and right
(fR) embedding representations [1]. The loss function is the squared error between the inner product
of the left and right embeddings of the two nodes and the edge weight between them in the graph:

LSVD = E(u,v)∼|V |×|V |

(
⟨fL(u), fR(v)⟩ −Au,v

)2

(4)

Random Walk Sampling Random walk on graphs have been studied extensively, with many
applications spanning social network analysis, information retrieval, and so on. In our framework, the
random walk procedure can be seen as the node-pair sampling function. For instance, node2vec [25]
with negative sampling can be reformulated in a noise contrastive fashion [26] as:

LRW = −E(u,v)∼S+(G) log
(
σ
(
⟨f(u), f(v)⟩

))
− kE(u,v)∼S−(G) log

(
1− σ

(
⟨f(u), f(v)⟩

))
(5)

where σ is the sigmoid function, k is the number of negative samples, and the positive sampling is
achieved by a sliding window over a second-order biased random walk [25]. We refer to the above as
the random walk loss.

A.2 Graph Attention Neural Network (GAT)

Graph neural network (GNN) is a special type of neural network architecture that operates on the
underlying graph structure. It does so by iteratively aggregating information from each node’s
neighborhood and transforming the aggregated representations [70, 75]. Particularly, GAT [11, 64]
uses an attention mechanism to weight each node’s neighborhood for aggregation, and the (pre-
activation and pre-normalization) layer updating rule is written as follows.

h′(u) =
∑

v∈N (u)

αu,vWhv (6)

where αu,v is the attention score, W ∈ Rd×d is a learnable linear transformation. In practice, we use
the v2 corrected attention proposed in [11]:

αu,v = softmaxv
(
a⊤LeakyReLU(W[h(u)||h(v)])

)
(7)

B Scalability experiment

We empirically demonstrate the scalability of CONE against three other related methods, including
GAT, BIONIC, and PINNACLE. All these methods use the GAT module as the main encoding
component. CONE and GAT both employ a single GAT module, while BIONIC and PINNACLE use
individual GAT modules for different contexts.

Setup We consider two types of scaling experiments, number of contexts and context node percentages.
For number of contexts, we fix the number of context-specific nodes to be about 5% of the total
number of nodes and vary the number of contexts from 10 to 1000. Meanwhile, for context node
percentages, we fix the number of contexts to be 100, and vary the context node percentages from
1% to 50%. For both sets of experiments, we use a synthetic network with 10, 000 nodes generated
using the Barabási–Albert model [8]. The network is generated so that the density is approximately
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0.01. We report the peak CUDA memory usage (in bytes) of the forward pass for the model using the
torch.cuda.max_memory_allocated() function.

Implementation details All experiments are conducted on compute nodes with 5 CPUs, 45GB
memory, and a Tesla v100 GPU (32GB). We uniformly set the following hyperparameters across
models: 128 dimensions and one layer. Furthermore, BIONIC and PINNACLE require subgraph
batched training. We set the batch size to 2048 for both models. On the other hand, CONE and GAT
employ full batched computation.

Results The empirical scalability results are shown in Figure B.1. We first highlight that CONE
shows great scalability, with very minimal overhead as more contexts are introduced. Remarkably,
CONE’s memory consumption is quite comparable to the plain GAT model that does not take context
into account. This aligns well with our complexity analysis (Section 3.4).

Conversely, BIONIC and PINNACLE react drastically to the number of contexts, with BIONIC
running out of memory beyond 500 contexts. Furthermore, PINNACLE demonstrates a severe
scalability issue with the context nodes percentage. In other words, PINNACLE memory consumption
drastically increases as the context subgraphs increase. These results showcase the scalability
advantage of CONE using a single shared GAT module to decode embeddings for all contexts.
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Figure B.1: Models scalability across different contextualization settings. Star indicates the point
beyond which the model will run out of memory.

C Additional results

C.1 Effects of PCA dimensionality reduction

The final CONE context-specific embeddings are obtained by first concatenating the context-naive
with the context-specific embeddings, and then applying PCA to project the dimension by half.
Combining the context-naive and context-specific embeddings gives the final embedding a more
comprehensive view of both the global and local (context-specific) semantics. Dimensionality
reduction is applied so that the results for the final context-specific embeddings can be fairly compared
to the context-naive embeddings. PCA is a common dimensionality reduction technique due to its
simplicity and has been used in previous studies to combine multiple views of the embeddings, such
as Walklets [52].

One question remaining is how does the performance change before and after applying PCA. Here,
we compare the performance between the fully concatenated and PCA-reduced versions of CONE
following the DisGeNET benchmarking setting in RQ1. We observe little performance difference
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between the two versions of CONE (Figure C.1). Thus, we set the final CONE to use PCA, as it
provides a fairer setting in terms of the number of dimensions while having the same performance.
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Figure C.1: CONE dimensionality reduction effect comparison. Performance comparison between
PCA-reduced CONE (x-axis) and not reduced CONE (y-axis) in terms of testing APOP on the
DisGeNET disease gene classification benchmark.

C.2 Ablation studies

In the followings, we investigate the effectiveness of our main design choices of CONE, including the
context similarity measure and the MLP context encoder. We follow the same experimental settings
in RQ1 using the DisGeNET gene classification benchmark.

Context similarity measures. Besides the default Jaccard similarity measure, we consider three other
similarity measures, including the cosine similarity, radial basis function, and Spearman correlation
coefficient. Table C.1 shows that the choice of similarity has marginal effects on the performance,
with the default Jaccard similarity consistently achieving better or equivalent performance against
other choices of similarities. Figure C.2 further indicate that there is no significant performance
differences across the choice of similarity measures according to the paired Wilcoxon test.

Context encoder. A trivial way to encode context embedding is one-hot encoding, which is equivalent
to directly learning the embedding for each contexts. We call this approach Embedding. We observe
that Embedding achieves the lowest average performance across all groups of tasks (Table C.1). In
the case of disease task group [23, 42), the Embedding performance is significantly worse than that
of the default CONE (Figure C.2, Wilcoxon p-value < 0.05).

Table C.1: Ablation study of context similarity and context encoding strategies using the DisGeNET
benchmark. Results are reported as APOP scores averaged across tasks within a group based on the
number of positive examples.

Similarity Encoder [10, 13) [13, 23) [23, 42) [42, 173)

Default CONE setting Jaccard MLP 2.813 3.111 3.116 1.971

Context similarity ablations Cosine MLP 2.801 3.186 3.048 2.003
RBF MLP 2.805 3.189 3.038 1.957

Spearman MLP 2.705 3.194 3.050 1.966

Context encoder ablation – Embedding 2.697 3.083 2.911 1.932
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Figure C.2: Performance for different context similarity and context encoding strategies. Each
point in the box plot corresponds to the prediction test performance of a disease gene classification
task from the DisGeNET benchmark, averaged across five random splits. Different panels show
groups of diseases with different number of positive genes. * indicate that the performances between
the two methods are significantly different (Wilcoxon p-value < 0.05).
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Figure C.3: Performance of CONE on the DisGeNET benchmark across contexts collections.

D Additional information

D.1 Dataset information

Network We obtain the raw PINPPI network from the PINNACLE paper4, which contains 15, 461
nodes and 207, 641 edges. We then convert the node IDs from gene symbol to Entrez ID [44] using
the MyGeneInfo query service [69]. We only perserve genes that have exact one-to-one mapping
from gene symbol to Entrez ID. After the above conversion, the final processed Entrez based PINPPI
network contains 15, 229 nodes and 206, 835 edges.

4https://figshare.com/articles/software/PINNACLE/22708126
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Table C.2: List of diseases for which the Heart context appears to be the top five performing contexts
in terms of test APOP scores. Last two columns indicate whether the disease shows up as top five
context for the original CONE or the one trained without Heart context.

Disease ID Disease Name Original Holdout Heart

MONDO:0005580 esophageal squamous cell carcinoma ✓ ✓
MONDO:0001286 exotropia ✓ ✓
MONDO:0007194 familial bicuspid aortic valve ✓ ✓
MONDO:0018100 familial primary hypomagnesemia ✓ ✓
MONDO:0017410 porencephaly ✓ ✓
MONDO:0015194 sideroblastic anemia ✓ ✓
MONDO:0006987 subvalvular aortic stenosis ✓ ✓
MONDO:0007885 Legg-Calve-Perthes disease ✓
MONDO:0009532 Miller-Dieker lissencephaly syndrome ✓
MONDO:0015977 agammaglobulinemia ✓
MONDO:0016466 asbestosis ✓
MONDO:0002102 cheilitis ✓
MONDO:0017885 chromophobe renal cell carcinoma ✓
MONDO:0001342 dysgammaglobulinemia ✓
MONDO:0017610 epidermolysis bullosa simplex ✓
MONDO:0003435 microcystic adenoma ✓
MONDO:0018943 myofibrillar myopathy ✓
MONDO:0007243 Burkitt lymphoma ✓
MONDO:0010269 Coats disease ✓
MONDO:0000816 abdominal obesity-metabolic syndrome ✓
MONDO:0007150 arcus senilis ✓
MONDO:0015362 autosomal dominant distal hereditary motor neuropathy ✓
MONDO:0000640 central nervous system primitive neuroectodermal neoplasm ✓
MONDO:0004614 chronic monocytic leukemia ✓
MONDO:0019942 distal arthrogryposis ✓
MONDO:0002181 exostosis ✓
MONDO:0003252 granular cell cancer ✓
MONDO:0018778 intermediate Charcot-Marie-Tooth disease ✓
MONDO:0020367 juvenile open angle glaucoma ✓
MONDO:0011380 leukoencephalopathy with vanishing white matter ✓
MONDO:0021637 low grade glioma ✓
MONDO:0002478 mixed germ cell-sex cord-stromal tumor ✓
MONDO:0004600 monocytic leukemia ✓
MONDO:0018958 nemaline myopathy ✓
MONDO:0019181 non-syndromic X-linked intellectual disability ✓
MONDO:0019019 osteogenesis imperfecta ✓
MONDO:0006335 ovarian endometrioid adenocarcinoma ✓
MONDO:0005898 paronychia ✓
MONDO:0005391 restless legs syndrome ✓
MONDO:0006966 secondary Parkinson disease ✓
MONDO:0008428 septooptic dysplasia ✓
MONDO:0024268 superficial mycosis ✓

Table D.1: Gene set statistics. First three gene set collections are used as prediction tasks, and the
remaining three gene set collections are used as contexts.

Collection Type # gene sets Min. Lower quart. Med. Upper quart. Max.

Tasks DisGeNET [53] Disease 167 10 13 21 39 189
IBD [37, 47] Therapeutic Target 1 151
RA [37, 47] Therapeutic Target 1 113

Contexts GTEx [41] Tissue 30 430 1122.5 1593.5 3091 8604
Tabula Sapiens [18, 37] Cell type 156 1002 2012 2751 3051 3425
CREEDS [67] Disease 333 204 535 566 998 4452

D.2 Hyperparameter tuning

We optimized CONE’s hyperparameters using our main DisGeNET benchmark (RQ1) based on the
averaged validation APOP scores of the context-naive CONE embeddings. The hyperparameter grid
is shown in Table D.2, where the final hyperparameter settings are bolded.
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Table D.2: Hyperparameter search grid. Final settings are bolded.
Hyperparameter Search grid

Architecture Number of layers [1, 2, 3]
Number of heads [1, 2, 3, 4, 5, 6]

Optimization Learning rate [0.01, 0.005, 0.001, 0.0005, 0.0001]
Weight decay [1, 0.5, 0.1, 0.05, 0.001, 0.0005, 0.0001]

Random walk Walk length [40, 80, 120, 160, 200]
Walks per node [1, 5, 10, 15, 20]
Window size [5, 10, 15, 20, 25]
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