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Abstract

Genetic, molecular, and environmental factors influence diseases through complex interac-
tions with genes, phenotypes, and drugs. Current methods often fail to integrate diverse
multi-relational biological data meaningfully, limiting the discovery of novel risk genes
and drugs. To address this, we present MedGraphNet, a multi-relational Graph Neural
Network (GNN) model designed to infer relationships among drugs, genes, diseases, and
phenotypes. MedGraphNet initializes nodes using informative embeddings from existing
text knowledge, allowing for robust integration of various data types and improved gen-
eralizability. Our results demonstrate that MedGraphNet matches and often outperforms
traditional single-relation approaches, particularly in scenarios with isolated or sparsely
connected nodes. The model shows generalizability to external datasets, achieving high ac-
curacy in identifying disease-gene associations and drug-phenotype relationships. Notably,
MedGraphNet accurately inferred drug side effects without direct training on such data.
Using Alzheimer’s disease as a case study, MedGraphNet successfully identified relevant
phenotypes, genes, and drugs, corroborated by existing literature. These findings demon-
strate the potential of integrating multi-relational data with text knowledge to enhance
biomedical predictions and drug repurposing for diseases.MedGraphNet code is available at
https://github.com/vinash85/MedGraphNet
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1. Introduction

Diseases such as cancer are multifaceted, influenced by genetic, molecular, and environmen-
tal factors, as well as their interactions. Most diseases have a genetic component [13], where 
genotype interacts with environmental factors like lifestyle, influencing the manifestation of 
an individual’s phenotype or disease. The phenotype remains relatively stable throughout 
life, unless altered by environmental factors or disease interactions with genotype [43]. Ad-
ditionally, gene-gene interactions, or epistasis, can lead to drug or treatment failures [35]. 
Thus, complex interactions exist between diseases, genes, phenotypes, and drugs.

Diseases, drugs, phenotypes, and genes have each been studied extensively. Research 
is usually focused on dissecting these complexities into individual relationships: disease-
drug, disease-gene, disease-phenotype, phenotype-gene, phenotype-drug (drug side effects), 
gene-drug, and gene-gene interactions, resulting in extensive databases with millions of in-
teractions [42, 27]. Integrating these disparate components may reveal new drug targets 
for specific diseases [33]. Experimental discovery of gene associations is typically carried
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out through genome-wide association studies (GWAS), which often fail to detect associa-
tions for rare or uncommon diseases due to unique or less common genetic mutations that
are not adequately captured[38, 5]. GWAS have reported over 50,000 gene-disease associ-
ations [38, 5], but require large cohorts for statistical power to detect small associations
[38, 5]. Complex diseases like schizophrenia, obesity, asthma, and hypertension involve
gene-environment interactions, complicating the identification of genetic bases and effective
drugs. Polygenic diseases also present difficulties in detecting genetic associations [14].

Despite progress, current methods fail to integrate diverse biological data meaningfully,
obstructing the discovery of novel risk genes and drugs. Methods using relational data
often rely on a relation using two types of nodes, limiting their effectiveness. Such models,
called Single Relation Graph (SRG) models, are insufficient in various scenarios, such as
rare diseases, where conducting genome-wide association studies is challenging due to small
sample sizes and the absence of single risk factors for imputation. Graph Neural Networks
(GNNs) excel at predicting new interactions within a network of known connections. How-
ever, SRGs, which typically initialize nodes randomly [3], depend solely on connections for
inference and struggle to learn representations for isolated or sparsely connected nodes.

We therefore present MedGraphNet, a GNN-based approach to infer relationships be-
tween biological entities: drug, gene, disease, and phenotype leveraging multi-relational
data. Nodes are initialized with highly informative embeddings created from GeneLLM [14]
representations of text summaries, allowing generality across data types and facilitating a
more transferable model. By incorporating multiple modalities or node types, the graph in-
fers connections for isolated nodes through indirect paths not possible in SRG models. This
enhanced connectivity allows the GNN to predict interactions of any type (disease-drug,
disease-gene, etc.) by learning from existing knowledge and multi-relational interactions.
This is particularly useful for predicting unknown risk genes and drug-disease associations
in rare diseases. Therefore, we tested the hypothesis that MedGraphNet will outperform
traditional single-relation graph methods in predicting associations between biomedical en-
tities, and showed that it can accurately infer risk genes for diseases, suggest new drugs
for untreated diseases, infer potential side effects of drugs, and provide interpretable in-
sights into biological mechanisms. This approach addresses the critical gap of integrated,
multi-relational analysis, with the potential to advance actionable biomedical predictions.
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Figure 1: An overview of the MedGraphNet link prediction model architecture showing
node initialization using GeneLLM embeddings and the interactions between genes, drugs,
phenotypes, and diseases.

Related works can be found in Appendix A.
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2. Methods

2.1. Data

For training MedGraphNet, we compiled datasets from several databases, which we collec-
tively refer to as MedGraphDB (Table 1). In addition to databases contained in MEd-
GraphDB, we also collected additional databases for independent evaluation of MedGraph-
Net (Table 1).

2.1.1. MedGraphDB compilation

MedGraphDB includes disease-drug, phenotype-gene, disease-gene, disease-phenotype, gene-
drug, gene-gene, and drug-phenotype associations, summarized in Table 1. For additional
details, refer to Appendix B. Note that, drug side-effect relational database was purposely
not included in MedGraphDB.

In MedGraphDB, we also compiled summaries of diseases, genes, drugs, and phenotypes
from the Human Disease Ontology [32], UNIPROT [4], PubChem [16], and Wikipedia
databases, respectively as described in the Appendix B.

Table 1: Source and Graph statistics of MedGraphDB and other evaluation datasets

Data Association Source Num of Nodes Used Num of Edges

MedGraphDB Disease-gene MGI [20] 1839 Diseases & 2897 Genes 8232
Gene-Drug DGIdb [7] 2101 genes & 2814 Drugs 21,080
Disease-Drug BIOSNAP [21] 1985 Diseases & 1070 Drugs 142,346
Phenotype-Gene HPO [18] 9497 Phenotypes & 4540 Genes 827,172
Disease-Phenotype HPO [18] 4809 Diseases & 6599 Phenotypes 96,693
Gene-Gene PPI [37] 14060 Genes 344,638

Other Evaluation Disease-gene DisGeNET [28] 986 Diseases & 5405 Genes 16,849
Datasets Disease-gene PsyGeNET [8] 16 Diseases & 1131 Genes 3,910

Phenotype-Drug SIDER 4.1 [19] 713 Phenotypes & 800 Drugs 34701

2.2. MedGrapNet

MedGrapNet is a heterogeneous graph consisting of four types of nodes: (diseases, genes,
drugs, and phenotypes), and edges between them depicting their known relationships. The
node indexing and edge construction steps can be found in Appendix C and D.MedGraphNet
consists of 32,940 nodes and 1,440,161 edges. The number of nodes and edges of each types
is summarized in Tables 1 and Appendix E.

2.2.1. Initialization

Nodes of MedGraphNet were initialized using summaries from MedGraphDB. The sum-
maries are converted into embeddings using a GeneLLM [14], which outputs embedding of
fixed size from text summaries as input. GeneLLM [14] is an interpretable transformer-
based model trained on both unstructured textual information and structured Gene On-
tology (GO) relationships using contrastive learning. GeneLLM embeddings were obtained
for diseases, drugs, phenotypes, and genes using their text summaries from MedGraphDB.
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2.2.2. Handling Heterogeneous Graph Neural Network using GCN

All nodes are initialized using GeneLLM’s 768-dimensional vectors, but embeddings for
diseases, drugs, phenotypes, and genes reside in type-specific spaces, forming a heteroge-
neous graph. We compared various heterogeneous graph neural networks, such as HAN
[41], HetGNN [45], and R-GCN [31], and selected the approach by Qingsong et al. [25],
which extends GCNs for heterogeneous graphs using type-specific fully connected layers.
These layers process and adjust feature representations for each node type, co-embedding
them in a common latent space while preserving type-specific information.

To unify the embedding representations, we use type-specific fully connected layers
trained end-to-end with GCN parameters. The MedGraphNet architecture consists of mul-
tiple layers of GCN aggregate and transform features from adjacent nodes as H(l+1) =

σ
(
D̂− 1

2 ÂD̂− 1
2H(l)W (l)

)
where H(l) is node embeddings at layer l, Â is the adjacency ma-

trix, D̂ is degree matrix, W (l) is the trainable weight matrix, and σ is the ReLU activation
(details in Appendix F.0.1).

Training The model was optimized for binary cross entropy loss using the Adam optimizer
with an initial learning rate of 0.01 and weight decay, and early stopping was used to
prevent overfitting (Appendix F). The GNN is first initialized with all nodes. The set of
known edges are referred to as positive samples, and labeled as 1. In each set of samples
(test/train/validation), an equal number of negative samples were created by randomly
selecting an edge between two non-connected nodes and labeled 0. These sets of positive
and negative edges are then used to train the model for the task of predicting whether or
not an edge exists between two nodes. First we removed all phenotype-drug edges (drug
side effect) from the dataset, in order to test the model’s ability to predict edges with
completely unknown associations. Then we trained a model, termed Random Split, by
randomly splitting the list of all remaining edges into training (80%), validation (10%), and
test sets (10%).

In addition to this model, we also created hard test sets, in which all of a given node’s
edges for a particular association are only present in the test set, i.e., an isolated node. For
example, a given disease could be isolated from all gene nodes in training, forcing the model
to learn these edges based only on its connections to phenotype and drug nodes. To create
this dataset, we first split the nodes into 80/10/10 groups. Then to create an isolated test
set for gene-drug associations, all positive samples for that gene are placed in the test set.
This means that the distribution of edges may not be 80/10/10 as in the randomly sampled
training set. Leaf node test sets were also created this way by placing one edge for a given
node into the training set. For each association type there can be two isolated or two leaf
node sets created (i.e., isolated gene or isolated drug in gene-drug association).

Cluster Analysis First tSNE clusters were created for the refined embeddings from the
trained Random Split model. Over Representation Analysis (ORA) is performed using the
WebGestaltR package [23] to identify enriched pathways for each of the gene clusters. To
further explore the relationships between clusters, we then performed a hypergeometric test
to identify significant associations between all clusters of the nodes based on the model’s
predictions. The hypergeometric test assesses whether the association between the nodes in
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two clusters is greater than expected by chance, and all associations between clusters with
p-value less than 0.05 after adjusting for multiple hypothesis are considered significant.

2.3. Baselines

To our knowledge, no existing methods predict all six relationship types (Disease-Phenotype,
Drug-Disease, Gene-Disease, Gene-Drug, Phenotype-Gene, and Phenotype-Drug) thatMed-
GraphNet addresses. To ensure uniform comparison across relationship types, we bench-
markedMedGraphNet against two baselines: MedGraphNet Single Relation Graph (MedGraphNet-
SRG) and Multimodal Fusion.

Multimodal Fusion For each relationship type, we trained a separate fusion model using
GeneLLM embeddings as inputs. For instance, in predicting Drug-Gene relations, we started
with GeneLLM embeddings of drugs and genes. We fused these embeddings and applied
a series of fully connected layers, culminating in a binary output that classifies whether
a positive link exists between the drug-gene pair in the training data. The model was
trained to minimize the cross-entropy loss between predicted and actual links, using the
same data as MedGraphNet for a fair comparison. This approach was similarly applied to
other relationship types.

MedGraphNet Single Relation Graph (MedGraphNet-SRG) For each relationship
type, we trained a GNN using a graph comprising only that type’s edges. For example,
for Drug-Gene relations, we applied the GNN to a graph with nodes representing drugs
and genes, and edges representing their relations. The training and testing procedures for
MedGraphNet-SRG were similar to those used for MedGraphNet.

3. Results

3.1. Baselines

To evaluate the performance of MedGraphNet, we compared its performance to both single-
relation graph (SRG) and multimodal fusion methods using different test sets. The test
sets are grouped based on whether a node’s edge is isolated completely from the training
data, or it has only one edge in the training set (leaf node). The AUC of the models on the
different test cases is summarized in Tables 1 - 6.

Table 2: Comparison for Gene-Drug Association.
Highest performance in bold.

Test Case MedGraphNet SRG Multimodal Fusion

Gene Isolated Node 0.95 0.31 0.85
Drug Isolated Node 0.92 0.81 0.85
Random Split 0.91 0.97 0.94

Gene-Drug Association For
Gene-Drug association tasks, Med-
GraphNet demonstrated superior
performance for test cases with
10% of the nodes isolated nodes
(Methods), whereasMedGraphNet-
SRG exhibited higher perfor-
mance for random test cases. In
scenarios with isolated nodes, the
absence of edges connecting isolated genes to drugs in the training set prevented
MedGraphNet-SRG from propagating information to these isolated nodes. In contrast,
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MedGraphNet overcame the lack of edges between isolated nodes by propagating informa-
tion between edges of isolated nodes and genes or phenotypes. Consequently, MedGraphNet
outperformed MedGraphNet-SRG for isolated nodes ( Table 2).

To investigate if this limitation of SRG is also evident when there are few edges connected
to nodes, we studied gene or drug nodes with a single edge in the training set (referred as
leaf node). Performance for leaf nodes was also lower for SRG than for MedGraphNet (Table
G.1) , suggesting that connectivity significantly impacts model performance. Interestingly,
in the Random Split test case, SRG performed the best.

Disease-Gene, Disease-Phenotype, Disease-Drug, Phenotype-Gene Associations
All tasks showed similar performance trends as observed for Disease-drug associations, as
illustrated in Table 2. In all cases, GNN performance depended on connectivity, with
MedGraphNet outperforming SRG in all instances (Appendix G.2, G.3, G.4, and G.5).

MedGraphNet-SRG baseline method for Disease-Gene Association prediction is exactly
equivalent to the method recently proposed by Rifaioglu et al. 1. Consistent with our
results reported in Appendix G.2, their method also reported high accuracy for Disease-
Gene prediction. However, these SRG methods struggle in challenging test cases with
isolated nodes, which is particularly important for predicting rare diseases without any
known gene associations. Additionally, as shown in Section 3.2, the SRG-based method
performs poorly when trained in one cohort and applied to another cohort.

3.2. Model Generalizability a) b) c)

Figure 2: Model Generalizability of MedGraphNet :
(a) MedGraphNet ’s performance in inferring Drug-
Phenotype relationships, (b) Comparison of AUC
scores on DisGeNET and PsyGeNET datasets, (c)
Comparison of AUC scores for rare diseases, demon-
strating MedGraphNet ’s ability to generalize to unseen
datasets.

To verify the generality of Med-
GraphNet, we implemented three
assessment methods:

1. Drug-Phenotype Relation-
ships: MedGraphDB excluded
known Drug-Phenotype relation-
ships, meaning MedGraphNet was
not trained on them. We in-
vestigated whether MedGraphNet
could infer these relationships in-
dependently. As shown in (Fig-
ure 2a), MedGraphNet accurately
inferred Drug-Phenotype relation-
ships. Remarkably, it even outper-
formed a GNN model directly trained on Drug-Phenotype relationships, achieving superior
prediction accuracy in 20% of the test data. This underscores the advantage of a multi-
relational graph and its ability to generalize to new relationship types.

2. Disease-Gene Associations: We predicted disease-gene associations using DisGeNET
[28] and PsyGeNET datasets [8], which are external to MedGraphDB and not included
in training. Unlike the MGI diseases dataset [20] with 8,231 edges between diseases and
genes, DisGeNET [28] and PsyGeNET [8] contain 16,850 and 3,911 edges, respectively.

1. https://www.mdpi.com/1099-4300/25/6/909
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MedGraphNet consistently achieved an AUC of 0.87 and 0.88 for both DisGeNET [28] and
PsyGeNET [8], respectively, compared to SRG and Multimodal Fusion as shown in (Figure
2b), demonstrating robust generalizability of MedGraphDB to unseen datasets.

3. Performance on Rare Diseases: A major challenge for many rare diseases is that
no disease-gene associations are known. To evaluate MedGraphNet ’s performance on such
diseases, we simulated a rare disease scenario by randomly selecting diseases from Med-
GraphDB and removing all edges between these diseases and any genes from the training
set. We then retrained MedGraphNet with this new graph. Remarkably, the model main-
tained an AUC of 0.94 for these selected diseases, similar to its performance on diseases
with known associations (Figure 2c). This suggests that for diseases without known risk
genes, MedGraphNet can leverage edges connected to diseases with known phenotypes and
drugs to infer associations.

3.3. Applications

3.3.1. Alzheimer’s disease as Case Study

Table 3: Top Predictions for Alzheimer’s Disease As-
sociations and Supporting Literature

Alzheimer’s Associate Literature

Phenotype Mental deterioration Knopman et al [17]
Cognitive fatigue Angioni et al [1]
Emotional lability Silva et al [34]

Genes PICALM Harold et al [9]
TREM2 Jonsson et al [15]
EPHA1 Hollingworth et al [11]

Drugs Namzaric Tariot et al [40]
Donepezil Salloway et al [30]
Solanezumab Honig et al [12]

Using MedGraphNet, we asked if
given a disease, can we correctly
predict phenotypes, genes, and
drugs associated with the disease.
Using Alzheimer’s disease as a case
study, the model was able to in-
fer meaningful associations. Pre-
dicted phenotype associations in-
cluded mental deterioration, cog-
nitive fatigue, and emotional la-
bility, supported by studies from
Knopman et al. [17], Angioni et
al. [1], and Silva et al. [34]. Table
3 shows the top 3 predictions for
each of the associations, and supporting literature.

3.3.2. Cluster analysis

Next, we inferred clusters for each biological entity using the node embeddings (Figures 3b,
G.1, G.2, G.3) and examined the relationships between these clusters. We hypothesized
that MedGraphNet could help identify the underlying mechanisms that make certain drug
clusters effective treatments for specific disease clusters. To test this hypothesis, we created
a cluster graph (Figure 3b), connecting two clusters if the number of known inter-cluster
edges was significantly higher than expected by random chance (Section 2.2.2).

The cluster graph revealed that the molecular basis of drug clusters could be linked
to disease clusters through their association with common gene clusters. For example, the
GPCR ligand binding gene cluster forms a clique with Disease Cluster 7 and Drug Cluster
1 (Figure 3 c). Part of the drugs in drug cluster 1 is Acamprosate. One of the drugs in Drug
Cluster 1 is Acamprosate, which inhibits the trans-ACPD binding resulting in diminished
neurotoxicity, indicating an interaction with metabotropic glutamate receptors (a type of
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GPCR) (Harris et al., 2002) [10]. Acamprosate is also linked to Alcohol Use Disorder, a
disease found in Disease Cluster 7, and has been reported as an effective treatment for this
condition (Maisel et al in 2013)[26]. Another example is Risperidone that is used to treat
schizophrenia (Cluster 7). Risperidone can cause an irreversible interaction with h5-HT7
receptors, a family of GPCRs [36]. These examples demonstrate how the node embeddings
can reveal meaningful connections between drugs, diseases, and genes.

3.4. Ablation Study

HATs acetylate histones

GPCR ligand binding

The citric acid (TCA) cycle 

O−linked glycosylation

Neuronal System

Signaling by Interleukins

Axon guidance

Cilium Assembly
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Figure 3: MedGraphNet node cluster annotation. a)
t-SNE Plot of Gene Embeddings Clustering with En-
riched Pathway Names. Each cluster is labeled by
the most significantly enriched pathway. b) Network
graph showing significant association between clusters
of gene, disease, drug and phenotype

The comparison between the fu-
sion model and MedGraphNet
demonstrated that incorporating
relational information through a
GNN is crucial for accurate pre-
diction. To assess the necessity
of text summaries, we compared
MedGraphNet with its variant that
initializes nodes randomly (Med-
GraphNet-Random). The random
initialization exhibited lower per-
formance (Appendix G.6), under-
scoring the importance of using
text summaries for node initializa-
tion to achieve high predictive ac-
curacy.

4. Conclusion

MedGraphNet, a multi-relational GNN-based model, demonstrates promising improvements
over traditional single-relation graph methods and multimodal fusion approaches in pre-
dicting associations among biomedical entities: genes, drugs, diseases, and phenotypes. It
addresses the challenge of isolated or sparsely connected nodes by utilizing existing text
knowledge through an LLM and leveraging multi-relational data. Our results indicate that
MedGraphNet trained on one cohort can generalize to new, unseen cohorts and identify risk
genes for rare diseases. Remarkably, despite not being trained on drug side-effect data, Med-
GraphNet could predict side effects, in some cases outperforming models directly trained
on this data. Using Alzheimer’s disease as a case study, MedGraphNet identified risk genes
and drug associations not present in the training data but supported by existing literature,
highlighting its potential to uncover insights for rare diseases. Additionally, MedGraph-
Net proved useful for identifying and annotating clusters of drugs and diseases based on
shared genetic mechanisms. These findings suggest that MedGraphNet ’s multi-relational
framework and use of informative embeddings can enhance biomedical predictions, provid-
ing valuable insights into disease mechanisms and potential drug repurposing strategies.
However, experimental validation is necessary to confirm these predictions and advance its
clinical utility.
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Appendix A. Related Research

Graph Neural Networks Multimodal knowledge graphs are being used to gain better
insights into complex medical diseases [44]. Graph neural networks have been applied to
computational biology projects since 2019 [46]. By examining hidden relationships between
distinct entities such as drugs, diseases, and genes, and analyzing the topology and structure
of these entities, personalized medicine can be improved, including for patients with complex
diseases [44]. Several studies have leveraged heterogeneous graph machine learning tools to
health-related contexts.

Long et al. [24] utilized a heterogeneous graph attention network to predict SARS-CoV-2
drug-virus associations, integrating diverse biomedical data sources into two heterogeneous
graphs for drug-virus/microbe associations and drug-target interactions, achieving state-
of-the-art performance. Asada et al. [2] combined heterogeneous pharmaceutical data to
predict drug-drug interactions, demonstrating superior performance in DDI extraction and
drug-protein interactions, highlighting the advantage of applying GNNs on multirelational
data over unirelational data. Tanvir et al. [39] introduced a triplet attention mechanism
within a heterogeneous graph to model drug-target-disease interactions.

Drug-target predictions Several machine learning approaches have been used to study
and predict drug-target interactions (DTIs) using features derived from molecular struc-
tures, biological activity, and other relevant data. Early studies includes SVMs to pre-
dict protein-chemical interactions based on amino acid sequences, chemical structures, and
mass spectrometry data [29]. Additionally, random forest techniques were used to combine
non-structural descriptors of drugs or chemicals and their targets in a proteochemometric
modeling approach [29]. Recently, deep learning methods have also been deployed for DTI
prediction[29]. GNN has been recently applied for DTI prediction and shown to outperform
other approaches [47, 22].

Drug side-effect prediction Various machine learning methods have been applied to
the prediction of drug side effects. Semi-supervised methods such as clustering, traditional
supervised machine learning approaches, and deep learning techniques have all been em-
ployed [6]. However, class imbalance remains a significant challenge in multi-task drug
side-effect prediction, necessitating new methods.

Appendix B. Datasets

Disease-Gene Association Dataset The dataset was obtained from the DisGeNET
database [28]. DisGeNET [28] is a comprehensive discovery platform containing one of the
largest publicly available collections of genes and variants associated with human diseases. It
integrates data from expert-curated repositories, genome-wide association studies (GWAS)
catalogues, animal models, and the extensive corpus of scientific literature. We down-
loaded the Gene-Disease Associations (GDAs) dataset, which contains 1,134,942 GDAs,
linking 21,671 genes with 30,170 diseases, disorders, traits, and phenotypes. Data cleaning
involved removing duplicate entries and reperesenting genes and diseases with their IDs
(https://www.disgenet.org/).
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Phenotype-Gene and Phenotype-Disease Association Datasets The dataset was
sourced from the Human Phenotype Ontology (HPO) [18]. This dataset includes phenotype-
gene pairs, representing associations between observed phenotypes and genetic factors. It
comprises 3,000 phenotype-gene pairs. It also consists of 4,500 disease-phenotype pairs,
capturing the association of phenotypes to diseases.

Disease-Drug Association Dataset The dataset was obtained from the Stanford Net-
work Analysis Project (SNAP), specifically from the BIOSNAP Datasets [21]. It is a disease-
drug association network that contains information on drug-disease relationships. Nodes
represent diseases and drugs (also including certain chemicals that are not human drugs).
It contains 1,535 diseases, 1,662 chemicals and 466,656 associations. The chemicals that are
not human drugs were filtered out.

Gene-Drug Association Dataset The dataset was obtained from the Drug-Gene Inter-
action Database (DGIdb) [7]. DGIdb integrates drug-gene interactions mined from various
sources such as DrugBank, PharmGKB, ChEMBL, and Drug Target Commons. It includes
over 10,000 genes and 15,000 drugs involved in over 50,000 drug-gene interactions. Data
were cleaned by removing duplicate entries and using drug and gene IDs.

B.1. Node Summaries

We compiled summaries of diseases, genes, drugs, and phenotypes from several sources, as
described below.

Human Disease Ontology The Human Disease Ontology (DO) [32] is a standardized
ontology for human diseases. It provides descriptions of human disease terms. We utilized
the DO to extract and compile disease summaries.

UNIPROT UNIPROT [4] is a comprehensive resource for protein sequence and func-
tional information. We used gene summary data from UNIPROT to generate the gene
node embeddings

PubChem PubChem [16] is a public repository for information on the biological activities
of small molecules. We used PubChem to gather data summaries of various drugs, including
their chemical properties.

Wikipedia Wikipedia is a widely-used, crowd-sourced encyclopedia. We extracted phe-
notypic information from Wikipedia to complement the data from other sources.

Appendix C. Node Identification and Indexing

To construct the graph, we first identified and indexed the nodes from all the datasets. The
nodes in our graph represent diseases, drugs, phenotypes, and genes. Nodes representing
diseases were identified from the disease-related datasets, including disease-drug, disease-
gene, and disease-phenotype datasets. Drugs were identified from the disease-drug and
gene-drug datasets. Phenotypes were sourced from the phenotype-related datasets, and the
genes were also identified in a similar manner. Each type of node was then assigned a unique
index to ensure proper integration into the graph structure. Diseases were indexed starting
from 0. Drugs were indexed starting from the end of the disease indices. Phenotypes were
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indexed starting from the end of the drug indices, and genes were indexed starting from the
end of the phenotype indices.

Appendix D. Edge Construction

Edges in the graph represent various types of associations between the nodes. We con-
structed edges based on the pairs present in each dataset. For example, in the disease-drug
dataset, an edge was created between the corresponding disease node and drug node for
each pair in the dataset. The edge construction ensures that all relevant associations are
represented in the graph, for effective analysis of the relationships between the different
entities (disease, drug, gene, and phenotype).

Appendix E. Graph Statistics

The constructed graph comprises a total of 32,940 nodes and 1,440,161 edges. Specifi-
cally, the graph includes 5,968 disease nodes, 3,212 drug nodes, 9,597 phenotype nodes, and
14,163 gene nodes. The edges represent various associations: 142,346 disease-drug, 827,172
phenotype-gene, 8,232 disease-gene, 96,693 disease-phenotype, and 21,080 gene-drug inter-
actions, as shown in (Table 1).

Table E.1: Graph Statistics

Category Number of Nodes Number of Edges

Disease Nodes 5,968 -
Drug Nodes 3,212 -
Phenotype Nodes 9,597 -
Gene Nodes 14,163 -

Disease-Drug Associations - 142,346
Phenotype-Gene Associations - 827,172
Disease-Gene Associations - 8,232
Disease-Phenotype Associations - 96,693
Gene-Drug Associations - 21,080
Gene-Gene Interactions - 344,638

Total 32,940 1,440,161

Appendix F. Training

• Input Layer: The graph data consisting of node embeddings, edges, optional edge
weights, and labels corresponding to each node are taken as input.

• Graph Convolution Layer: Multiple layers of graph convolution operations are
applied to aggregate and transform features from adjacent nodes. The convolution
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operation is defined as:

H(l+1) = σ
(
D̂− 1

2 ÂD̂− 1
2H(l)W (l)

)
where H(l) represents the node embeddings at layer l, Â is the normalized adjacency
matrix, D̂ is the diagonal degree matrix, W (l) is the layer-specific trainable weight
matrix, and σ is the ReLU activation function.

• Each convolution layer is followed by an activation function to introduce non-linearity
to the network and a dropout regularization function to randomly drop a portion of
the node features during training to reduce overfitting.

• Output Layer: The final features are processed through a linear layer or convolution
layer to produce the final node embeddings that incorporate information propagated
through the graph.

By adjusting parameters such as the number of layers and the dimensionality of the hidden
layers, the model can be adapted to different scales of graphs and complexities of tasks.

F.0.1. Loss Function and Optimization

To train the GNN model, we used a loss function suitable for binary classification, given
that the task involves predicting the existence of an edge (association) between nodes.

Binary Cross-Entropy Loss We employed the Binary Cross-Entropy (BCE) loss func-
tion, which is defined as:

BCE Loss = − 1

N

N∑
i=1

[yi log(pi) + (1− yi) log(1− pi)] (1)

where N is the number of samples, yi is the true label (1 for positive samples, 0 for negative
samples), and pi is the predicted probability of the edge’s existence.

Optimization The optimization of the GNN model was carried out using the Adam
optimizer, which is well-suited for training deep learning models due to its adaptive learning
rate capabilities. The key parameters of the optimizer included:

• Learning Rate: The initial learning rate was set to 0.01.

• Weight Decay: A small weight decay value was used to prevent overfitting.

During each training epoch, the model’s parameters were updated by minimizing the
BCE loss, and the training process continued until the validation loss stopped improving,
indicating convergence.

Appendix G. Results
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Table G.1: Performance Metrics of models trained with Leaf Node Association. Bold values
indicate the highest performance among the methods.

Association Test Case MedGraphNet SRG

Gene-Drug Gene Leaf Node 0.95 0.79
Drug Leaf Node 0.93 0.85

Disease-Gene Disease Leaf Node 0.94 0.77
Gene Leaf Node 0.92 0.74

Disease-Drug Disease Leaf Node 0.85 0.75
Drug Leaf Node 0.96 0.93

Phenotype-Gene Phenotype Leaf Node 0.87 0.67
Gene Leaf Node 0.88 0.67

Disease-Phenotype Disease Leaf Node 0.90 0.80
Phenotype Leaf Node 0.93 0.90

Table G.2: Performance Metrics Comparison for Disease-Gene Association. Bold values
indicate the highest performance among the three methods.

Test Case MedGraphNet SRG Multimodal Fusion

Disease Isolated Node 0.95 0.44 0.83
Gene Isolated Node 0.95 0.73 0.88
Random Split 0.94 0.98 0.92

Table G.3: Performance Metrics Comparison for Disease-Drug Association. Bold values
indicate the highest performance among the three methods.

Test Case MedGraphNet SRG Multimodal Fusion

Disease Isolated Node 0.89 0.63 0.66
Drug Isolated Node 0.98 0.92 0.61
Random Split 0.94 0.80 0.90

Table G.4: Performance Metrics Comparison for Phenotype-Gene Association. Bold values
indicate the highest performance among the three methods.

Test Case MedGraphNet SRG Multimodal Fusion

Phenotype Isolated Node 0.82 0.47 0.65
Gene Isolated Node 0.89 0.74 0.78
Random Split 0.84 0.84 0.88
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Table G.5: Performance Metrics Comparison for Disease-Phenotype Association. Bold
values indicate the highest performance among the three methods.

Test Case MedGraphNet SRG Multimodal Fusion

Disease Isolated Node 0.90 0.33 0.89
Phenotype Isolated Node 0.94 0.89 0.78
Random Split 0.90 0.96 0.93

Table G.6: Ablation Study: AUC Comparison for All Associations. Bold values indicate
the highest performance among the three methods.

Association MedGraphNet MedGraphNet-Random

Gene-Drug 0.91 0.88
Disease-Gene 0.94 0.92
Disease-Drug 0.94 0.91
Phenotype-Gene 0.84 0.80
Gene-Drug 0.91 0.88
Disease-Phenotype 0.90 0.86
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Figure G.1: t-SNE Plot of Disease Node Embeddings
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Figure G.2: t-SNE Plot of Drug Node Embeddings
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Figure G.3: t-SNE Plot of Phenotype Node Embeddings
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