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Abstract

The computational prediction and design of peptide binders targeting specific linear epitopes
is crucial in biological and biomedical research, yet it remains challenging due to their
highly dynamic nature and the scarcity of experimentally solved binding data. To address
this problem, we built an unprecedentedly large-scale library of peptide pairs within stable
secondary structures (beta sheets), leveraging newly available AlphaFold predicted structures.
We then developed a machine learning method based on the Transformer architecture for
the design of specific linear binders, in analogy to a language translation task. Our method,
TransformerBeta, accurately predicts specific beta strand interactions and samples sequences
with beta-sheet-like molecular properties, while capturing interpretable physico-chemical
interaction patterns. As such, it can propose specific candidate binders targeting linear
epitope for experimental validation to inform protein design.

1 Introduction

Peptides have emerged as important tools for fundamental and applied research in protein science
and therapeutics. Linear peptide-like binding interfaces are found in many protein-protein
interactions involved in cell signalling and regulation [1, 2, 3]. Targeting these regions is of great
biomedical interest in the treatment of numerous human pathologies, including neurodegenerative
diseases [4, 5, 6] and cancer [7]. Peptides can bind to epitopes with high affinity and specificity,
while exhibiting lower immunogenicity and more cost-effective production than large biologics
like proteins and antibodies [8, 9, 10].

The design of high-affinity linear peptides can be pivotal for epitope-specific antibody design
[11]. Fragment-based approaches, which design these linear peptides purely by joining interacting
protein-protein fragments and grafting them onto antibody scaffolds, have achieved low-nanomolar
affinity binders without in vitro affinity maturation [11]. However, the applicability of fragment-
based methods to new or less well-characterized targets is limited, as the epitope must already
exist in the database, or interacting partners for its short subfragments must be identified and
joined using custom rules. Machine learning-based generative models have also shown remarkable
potential in designing binding peptides [12, 13, 14] and antibodies [15, 16, 17, 18, 19]. The
state-of-the-art method, RFdiffusion, has achieved considerable success in designing medium-sized
binding peptides, as validated by a large array of experiments [13]. However, RFdiffusion does
not focus on designing short linear peptides, and there is room for improvement in the success
rate at directly designing binding antibodies [16].

Motivated by recent advances in natural language processing, in this paper we propose that
training generative language models on protein fragments to learn their complex dependencies
could be an effective tool for modelling linear epitope-specific peptide binding, and thus for
guiding the rational design of peptide binders and antibodies. These models, first designed for
machine translation, have demonstrated broad applicability in generating sequences across many
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domains [20, 21, 22] and in various protein-related tasks, including identifying epitopes [23, 24],
learning interaction motifs at the paratope-epitope interface [25], designing functional proteins
[26, 27] and peptides with desired biological activities [28, 29, 30, 31, 32].

A major challenge in machine learning-based peptide design is data acquisition, particularly
in obtaining a training dataset representative of the complex interaction motif space. The
release of the Alphafold Protein Structure Database (Alphafold DB) [33], containing 214 million
structures predicted by AlphaFold2 [34], has provided an unprecedented, large-scale new set
of protein structures that can serve many research purposes, from protein design [35, 36] and
characterization [37, 14] to training dataset augmentation [38, 39, 40].

In this work, we created AlphaFold 2 Beta Strand Database, hosting 488 million high-quality
beta strand interaction motifs collected from Alphafold DB for training data augmentation, since
large datasets are crucial to train language models. We then trained a Transformer-based model,
that we refer to as TransformerBeta, to predict probabilistic scores of peptide binding to linear
epitopes. Based on these scores, TransformerBeta efficiently generates putative peptide binders,
with the associated scores useful in candidate selection. We demonstrated that the designed
peptides are highly similar to natural interaction motifs, both statistically and physico-chemically,
and that the embedding of our model captures biologically meaningful representations.

2 Results

2.1 AlphaFold 2 Beta Strand Database

We constructed a large-scale database of sequence pairs sampling diverse beta-strand interaction
motifs, building upon the release of Alphafold DB [33] (Methods). We call this database
AlphaFold 2 Beta Strand Database, which stores 488 million distinct beta strand pairs (Fig. 1A).
It shows a higher occurrence of antiparallel pairs, three times as many as parallel pairs (Fig. 1B),
which are potentially relevant to peptide design strategies due to stronger inter-strand stability
and geometric planarity. The database contains data of significant diversity, with 97.7% pairs
of target-binder sequences showing less than 20% similarity, as calculated by the normalized
Hamming distance (Figs. 1D, 6, Supp. Methods 5.1). Constructing large and diverse dataset
is essential for training a deep language model, as machine translation performance was found
to improve consistently with increasing dataset size [41]. This database is potentially useful for
studying beta strand interactions in general and setting benchmarks for new prediction methods.

Despite the abundance and diversity of motifs in this database, especially at shorter lengths
(Fig. 1B), directly searching for matched epitope sequences and using the interaction partner
as a binder candidate is often not a viable strategy. For a typical length 8 target, fewer than
an average of 1.5 potential binders are available per target (Fig. 1C). This highlights the need
for extrapolating a general probability distribution over peptide sequence binding pairs through
machine learning to deliver a broadly applicable design strategy and retrieve molecular patterns.

2.2 Deep learning model – TransformerBeta

To develop our machine learning design strategy, we formulated the peptide binder prediction
problem as a machine translation task of beta strand interaction pairings, where one strand mimics
a linear epitope target, while the other acts as a potential interacting binder, and we performed
it through the Transformer architecture [42], which is the foundation for the majority of current
language models. This choice builds upon the success of recent generative approaches for protein
domain sequences [43], protein-specific drug molecules [44] and signal peptide generation [32]
based on casting the problem as a machine translation task and on the Transformer architecture.

For computational feasibility, we implemented our strategy on a curated dataset of 2.1 million
length 8 antiparallel beta strand pairs from the AlphaFold 2 Beta Strand Database (Methods).
Length 8 is the typical epitope length, and the designed peptide of this length is suitable for
grafting onto a majority of antibody scaffolds by replacing the amino acids of CDR3 regions.
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Figure 1: AlphaFold 2 Beta Strand Database. (A) Illustration of the collection of high-confidence beta
strand pairs from Alphafold Protein Structure Database. Example structures (viewed with Mol* viewer [45]) show
two high-confidence pairs (anti-parallel and parallel) and one pair that did not meet the high-confidence criteria.
(B) Peptide length distribution of beta strand pairs with overall proportion of anti-parallel (74.9%) to parallel
(25.1%) pairs. (C) Average number of potential binders available for each distinct target sequence. For clarity of
visualization, lengths < 6 are plotted as an inset. (D) Pairwise dissimilarity distribution for anti-parallel length 8
data (a subset of 1,933,932 pairs) using the normalized Hamming distance. In B-C, pairs with lengths longer
than 20 are grouped together for clarity.

However, our implementation is not constrained to peptides of length 8, allowing alignment-free
training on varied input lengths. The Transformer model learns a probability distribution
formulated autoregressively, which means that the probability of an amino acid at position i (yi,
with i = 1, ...,m) depends on the previous amino acids (y<i) and the input target sequence (X)
(Methods, Supp. Methods 5.2, Fig. 6). The probability of a target X-specific binder (Y ) is the
product of the likelihood of the individual amino acids yi:

Pθ(Y |X) = Pθ(y1, ..., ym|X) =

m∏
i=1

Pθ(yi|X, y<i) (1)

We performed training on 90% of data by maximum likelihood, searched for optimal hyperpa-
rameters for a high-quality model on 5% and evaluated its performance on the remaining 5%.
We then retrained the model with best hyperparameter settings on 100% data for optimal perfor-
mance (Supp. Methods 5.3). As a result, we have TransformerBeta, a 6-layer encoder-decoder
model with 44 million parameters (Fig. 2). Once evaluated on new peptides for a given target,
TransformerBeta predicts a probability score, Pθ(Y |X), which represents the likelihood of the
binder adopting a natural beta-strand conformation with the target, thus reflecting the peptide’s
quality as a target-specific binder. The designed binder could be used as a peptide candidate to
carry on to additional computational and experimental tests in peptide and antibody design.

2.3 TransformerBeta accurately predicts target-specific binders

We tested the TransformerBeta’s ability to accurately recover known binders for given target
sequences. We assigned the TransformerBeta’s probability score to target-binder pairs from
the test set and from two negative-control datasets. In one of them, we coupled each target to
random binders by concatenating amino acids uniformly at random (random set) to test the
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Figure 2: Strategy for designing binders to target a linear epitope using TransformerBeta. The target
protein is shown in silver, with the epitope of interest highlighted in red. TransformerBeta takes as input the target
sequence (from N to C terminus) and generates diverse target-specific linear peptides that are putative binders.
The putative bound structure is a simulated docking pose using HPEPDOCK [46] and all protein structures are
viewed using Mol* viewer [45].

model’s ability to capture the typical amino acid usage of beta-strand binders. In the second
one, we shuffled the target-binder pairings, obtaining a randomly shuffled set that maintains all
statistical properties but loses its target-specific nature (shuffled set), to test whether the model’s
predictions preserve information on specificity (Methods). The scores’ distribution (Fig. 3A)
shows the model’s ability to discriminate the test data of genuine binders from both the shuffled
and random data sets, assigning to the former a higher probability of target specificity. We
quantified the model’s performance using the Receiver Operating Characteristic (ROC) curve,
the Precision-Recall (PR) curve, and the corresponding areas under the curve (ROC-AUC and
PR-AUC respectively). The model achieved a ROC-AUC of 0.98 and PR-AUC of 0.98 for random
peptides and ROC-AUC of 0.95 and PR-AUC of 0.96 for shuffled peptides, as shown in Fig. 3B-C,
confirming that the model accurately distinguishes binders from non-binders.

We further tested if TransformerBeta can well predict binders for unseen target sequences.
When constructing the test set, we specifically ensured that the test set contained no target-binder
pair identical to those in the training set. Fig. 3D shows the performance on this test set, stratified
by the closest Hamming distance of the test target relative to the training set target sequences:
it stays high for unseen targets with distance 1 from training targets, with a decrease beyond
this distance that however kept ROC-AUC>0.8 for distance 2 and ROC-AUC>0.65 for distances
3-4. The performance showed a similar pattern for distances between training and test binders
(Fig. 3E). Generalization performance is expected to become increasingly difficult with higher
distances between training and test set, as is well documented and typically controlled for in
applications of ML to protein data [47, 40, 48, 49, 50]. The prediction of immune receptors
specific binding for unseen linear peptide targets is an extremely challenging and far from being
solved [51, 52, 25]. In this context, for instance, it is already useful to achieve good predictive
power for targets harbouring one mutation compared to the available data (like in the case of
cancer neoantigens or viral single-point mutant epitopes); similarly, on the paratope side, 2-3
mutations can be sufficient to determine target specificity [53, 51, 54]. For a fixed target, we
also observed a trade-off performance-wise in terms of the heterogeneity of the corresponding
binders in the training data (Fig. 8J-L), as it has been assessed in other contexts of statistical
modelling of protein sequences [55, 56]: target-specific training binders should be heterogeneous
enough to sample their potential diversity, but not too divergent to preserve the necessary
functionally-relevant statistical information. Such a result could help optimize training dataset
construction from our AlphaFold 2 Beta Strand Database for specific targets. Finally, the model
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prioritizes binding pairs that appear frequently in beta strands and that have the potential to be
promiscuous binders (Supp. Methods 5.4, Fig. 8A-C, G-I).

2.4 TransformerBeta generates peptides similar to natural peptides

For the peptide design task, it is key that the model generated sequences exhibit biophysical and
functional properties akin to natural ones, ensuring e.g. high binding affinity and stability. We
generated peptides with TransformerBeta (generated set) and compared them to a set of natural
binders (test data binders of Section 4.2, referred to as the natural set) and a set of randomly
concatenated amino acids (random set). First, to ensure that our generated peptides were not
simply replicates of natural ones, we measured the Hamming distances between them for the
same targets. We found an average Hamming distance of 4.6 with length 8 sequences, suggesting
that the generated sequences were mostly novel.

We projected a set of natural, generated and random peptides on a two-dimensional space using
t-SNE [57](Fig. 4A). We observed a clear similarity in overall distribution between generated and
natural sequences, but not with random ones, indicating that the model captures the organization
of natural sequences in sequence space. Furthermore we found that generated sequences accurately
reproduce the amino acid frequencies and correlations of natural sequences (Supp. Methods 5.5,
Fig. 9), which is a fundamental test of the model’s generative capacity [58, 59, 60, 61].

Finally, we focused on the physicochemical properties known to influence peptide stability
and molecular interactions [62, 63]. By comparing the cumulative distribution functions (CDF)
of five physicochemical properties (Net charge, Hydrophobicity, Molecular weight, Isoelectric
point and Aromaticity) across different data groups, we observed that generated and natural
peptides have a substantial overlap in terms of these properties, while being clearly distinct from
random sequences (Fig. 4B). The differences in these properties’ distribution between natural
and generated peptides are not statistically significant in four out of five cases (p-value > 0.05,
Kolmogorov’s D-statistic tests, Supp. Methods 5.6), with a slight deviation only in aromaticity.
We specifically noted that TransformerBeta emulates the hydrophobicity distribution of natural
peptides, which is substantially higher than that of random sequences (Fig. 4B). This is expected
since beta sheets often form the hydrophobic core of proteins, but it implies the model would
design binders with hydrophobic tendencies potentially compromising their solubility, which
should be additionally screened by tailored computational methods [64, 65, 66].

2.5 Model’s biological interpretability

Language models have been shown to learn representations that recapitulate interpretable
biological information and capture key protein features, including structure, function, interactions
and evolution [67, 68, 69, 19]. To check whether the learnt representations of TransformerBeta are
biologically sensible, we first studied its input embedding layer, a dictionary of 20 learnable amino
acid vectors shared across the encoder and decoder (Fig. 5A). We projected the high-dimensional
embedding vectors onto a two-dimensional space using t-SNE to visualize the distribution of
amino acids, annotating them by the main physico-chemical property, including charge, polarity,
hydrophobicity and aromaticity (Fig. 5A). The trained embedding displayed clear clustering
patterns corresponding to such groups, demonstrating the model has captured biologically
meaningful representations in the embedding space, similar to other language models [67, 68]. We
compared the TransformerBeta’s embedding layer with the amino acid substitution propensities
summarized by the BLOSUM62 matrix [70] (reflecting physico-chemical similarities), and with
the learnt embeddings of established pretrained protein language models [68, 71], finding a
relatively high degree of correlation with all of them (Figs. 5B, 10, Table 3, Supp. Methods 5.7).

Finally, we assessed if our model has learned features specific to our beta strand data, beyond
general amino acid properties. We extracted all cross-attention maps for a set of 1,000 target-
binder pairs randomly sampled from the training data (Supp. Methods 5.2). These attention
values reflect the relevance of each amino acid in the target for the prediction, and hence the
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Figure 3: Model’s prediction accuracy. (A) Distribution of the TransformerBeta predicted probability assigned
to binders in the test, shuffled, and random sets, each containing 107,441 sequence pairs. (B) Receiver Operating
Characteristic (ROC) curve and corresponding Area Under the Curve (ROC-AUC). (C) Precision-Recall (PR)
curve and corresponding Area Under the Curve (PR-AUC). The dashed line gives the performance of a random
classifier (ROC-AUC=PR-AUC=0.50). ROC-AUC as a function of the closest Hamming distance between test
and training targets (D) and between test and training binders (E). Hamming distances of 4, having fewer than 5
data points, are grouped with distance 3.

design, of each amino acid in the binder. In average, attention values are mostly concentrated
along the diagonal (Fig. 5C): when predicting the next amino acid of the binder, the model
leverages maximally the information from the facing residue along the target, in line with the
fact that hydrogen bonds between facing residues are the key interactions in beta strands [72].

3 Conclusion

In this paper, we built upon recent progress in machine learning architectures for language trans-
lation and text generation to train a generative model of linear peptide binders (TransformerBeta)
on a dictionary of beta strand pairs. To obtain a more exhaustive sampling of such interaction
motifs for the model’s training, we leveraged the predicted structures made available by the
Alphafold Protein Structure Database [33]. We have shown that TransformerBeta recovers with
high accuracy complementary beta strands, and that by sampling from the learnt distribution
one can generate novel candidate peptides with beta strand characteristics that resemble natural
ones statistically and physico-chemically. The generative power of TransformerBeta could be
exploited to design high-affinity beta-strand-like binders specific to pre-selected linear epitopes.
We found that TransformerBeta learns representations recapitulating beta strand-specific binding
modes (like the presence of hydrophobic face-to-face bonds) and general amino acid properties.

We provided proof-of-concept of our TransformerBeta design strategy for peptide pairs
of fixed length, nevertheless future efforts could improve its ability to generalize to varying
lengths by exploiting more data from our AlphaFold 2 Beta Strand Database, albeit at the
cost of increased computational power. Systematic comparisons with existing peptide design
methods and computational pipelines [11, 35, 56] will be needed in connection to specific design
applications. Our beta strand database could also be further expanded with new predicted
structures becoming available, e.g., following the release of AlphaFold3 [73].

Converting structural motifs into a library of interacting sequence fragments gave the advan-
tage of building an approach that is sequence-based, hence computationally cheaper, making it
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Figure 4: Properties of generated data. (A) t-SNE projected distributions of 5,000 randomly sampled binders
from natural set, the model generated set and random set. (B) Cumulative Distribution Function (CDF) of
various physicochemical properties (Net charge, Hydrophobicity, Molecular weight, Isoelectric point, Aromaticity)
for the same natural, model generated, and random binders as in (A).

Figure 5: Interpretability of TransformerBeta. (A) Input embedding shared across encoder and decoder. (B)
Scatter plot comparing embedding cosine similarity scores and BLOSUM62 substitution scores (Supp. Methods 5.7).
(C) Average cross-attention map. Xi and Yi represents the ith amino acid of target and binder respectively. <bos>
and <eos> are two special tokens.
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useful to score or generate large numbers of putative binders in a short time. TransformerBeta
could be used to select a few high-quality starting sequences for in vitro optimization of ligands,
or to generate epitope-specific peptide libraries for experimental screening to accelerate drug
discovery. It could be flexibly coupled with functional motif scaffolding methods for the design of
a binding protein, e.g. in antibody engineering, where designed peptides are grafted onto the
antigen-binding region of an antibody scaffold. Finally, it could serve as baseline model of generic
beta-sheet-type interactions to train via transfer learning models of specific types of interactions
with linear targets and ligands, for instance some immune epitope-paratope interactions [74, 16].

4 Methods

4.1 Creation of AlphaFold 2 Beta Strand Database

We developed the AlphaFold 2 (AF2) Beta Strand Database to store high-confidence scored beta
strand pairs predicted by Alphafold 2 [34]. We downloaded all 214 million protein structures from
the Alphafold Protein Structure Database (Alphafold DB) [33] with data access dated 07/10/2022,
available at https://alphafold.ebi.ac.uk/. We extracted the equal-length pairs of amino acid
sequences that face each other in a beta-strand conformation with the following criteria: (i) Both se-
quence lengths are at least 3 residues; (ii) All residues have a pLDDT of at least 70; (iii) All residues
that face each other have a PAE of less than or equal to 10. We obtained a total of 1,532,767,459
beta strand pairs from the Alphafold DB and reduced them to 488,153,783 unique beta strand pairs,
each with a count value indicating its frequency in the original 1.5 billion dataset. The database
is available at https://huggingface.co/datasets/hz3519/AF2_Beta_Strand_Database.

4.2 Dataset preparation for model training and evaluation

We retrieved 38,616,564 length 8 antiparallel beta strands from the AF2 Beta Strand Database.
We removed data with counts less than 5, resulting in a final dataset with 2,148,813 pairs. The
dataset was randomly split into training data, comprising 90% of the data (1,933,932 pairs),
validation data, with 5% (107,440 pairs) and test data, with the remaining 5% (107,441 pairs). For
evaluation, we generated additional control datasets, which we refer to as ‘random’ or ‘shuffled’.
Random binders were generated by uniformly sampling from the 20 amino acids at each position
for each test target. Shuffled binders were obtained by permuting the order of true binders for
the test set. Samples of ‘generated’ binders were generated by a probabilistic sampling strategy
(Supp. Methods 5.3) for each test target. We constructed the final random, shuffled and generated
sets, each containing 107,441 pairs, by pairing the binders with corresponding test targets.

4.3 Generative model for peptide design – TransformerBeta

Our aim was to learn the conditional probability distribution P (Y |X) of natural beta strand
space, where X is the target and Y is the binder. We treated the amino acids as discrete tokens
and represented X and Y as sequences of tokens (x1, . . . , xn) and (y1, . . . , ym), respectively.
Given that AF2 Beta Strand Database contains target and binder pairs of equal length, the
lengths of the target and binder sequences are equal (n = m). We trained a standard Transformer
[42] (Supp. Methods 5.2, 5.8), an autoregressive model that learns the probability Pθ(Y |X) given
by Equation 1, then used for the beta-strand-like binders generation task (Supp. Methods 5.3).
The parameters θ specifying the conditional probability distribution Pθ(Y |X) are learnt by
maximizing the log-likelihood over the training data DT , i.e., by finding θ∗ such that:

θ∗ = argmax
θ

∑
(X,Y )∈DT

m∑
i=1

logPθ(yi|X, y<i) (2)

The code is available at https://github.com/HZ3519/TransformerBeta_project.
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5 Supplementary Methods

5.1 Database dissimilarity measures

To estimate the dissimilarity in peptide composition of our dataset, we concatenated the sequence
pairs and calculated the pairwise normalized Hamming distance between different concatenated
sequences (each of length 16). The Hamming distance, denoted as H(x, y), is defined as the
number of positions at which the corresponding amino acids in sequences x and y are different.
The normalized Hamming distance is given by the formula:

Normalized Hamming distance =
H(x, y)

16
(3)

The sequence pairs within all datasets (training, validation, and test) were sufficiently diverse
for model training and evaluation as the majority of sequence pairs exhibited less than 20%
similarity (Figs. 1, 6).

5.2 Model architecture

To learn the autoregressive model of Equation 1, we employed the encoder-decoder neural network
architecture known as Transformer, as illustrated in Fig. 7. We adopted the same architecture
in the original paper [42], where both the encoder and the decoder are composed of a stack
of NL identical layers. The Transformer architecture, its training and performance have been
revised in detail in several studies [75, 76, 77]. For the sake of a brief illustration, we describe the
structure of a typical Transformer encoder layer containing two key components: a multi-head
self-attention module followed by a position-wise fully connected feed-forward neural network.
We omit the details of the decoder, as it closely resembles the encoder.

Before entering the encoder, the target sequence of amino acids X = (x1, ..., xn) is first
preprocessed by an input embedding transformation and positional encoding. Each amino acid
is independently transformed by a learnable input embedding layer into a vector of dimension
dmodel. The embedded vectors are added by the sinusoidal positional encoding as in [42], which
produces a matrix E of dimension n × dmodel. The transformation of input embedding layer
is learnt during the training process and gives a representation of each amino acid as vector
of continuous values. We quantify the correlation between two amino acids using embedding
similarity, calculated as the cosine similarity between their embedding representations a⃗ and b⃗,
given by the following formula:

Embedding similarity(⃗a, b⃗) = Cosine similarity(⃗a, b⃗) =
a⃗ · b⃗

||⃗a||2 · ||⃗b||2
(4)

The multi-head attention module then projects in parallel the embedded input E into h
sets (or heads) of query (Q), key (K), and value (V ) representations through learnable linear
transformations. For each head i = 1, . . . , h, the matrices Q, K, and V have dimensions
dmodel × dq, dmodel × dk, and dmodel × dv, respectively; here we chose dq = dk = dv = dmodel/h as
in [42]. The attention function for each of the h heads is computed as follows:

Attention(i)(Q(i),K(i), V (i)) = softmax

(
Q(i)K(i)T√
dmodel/h

)
V (i), i = 1, . . . , h (5)

The n × n matrix softmax

(
Q(i)K(i)T√
dmodel/h

)
provides, for a given input sequence, the weights by

which each token attends to the other tokens along the sequence, quantifying its relevance to
their representation and prediction and hence reflecting the degree of statistical interdependence
among tokens. The h attention outputs 5 (each of dimension n× dmodel/h) are concatenated to
produce a multi-head attention output with dimension n× dmodel.
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Next the position-wise feed-forward neural network applies, independently to each position
of this multi-head attention output, two linear transformations with a ReLU activation in the
middle. The first transformation projects the output to dimension n × dff , while the second
transformation projects it back to the original dimension n×dmodel, producing the final output of
a Transformer encoder layer - a high-level protein feature representation vector Z = (z1, . . . , zn).
The encoded representations Z then enter the cross attention module in the decoder, which
operates similarly to Equation 5. In the cross attention module, the value (V ) projections are
derived from Z, while query (Q) and key (K) projections are derived from binder sequences.

During training, the model outputs a predicted probability distribution Pθ(yi|X, y<i) over
20 amino acids at each decoding position i. This predicted probability is compared to the true
amino acid at the same decoding position, which is represented by a categorical distribution
q(yi|X, y<i) over the 20 amino acids, with probability 1 at the correct amino acid and 0 at others.
The Transformer learns the parameter set θ∗ that minimizes the categorical cross-entropy loss
across all decoding positions in the training dataset DT :

θ∗ = argmin
θ

−
∑

(X,Y )∈DT

m∑
i=1

∑
k∈S

q(yi = k|X, y<i) logPθ(yi = k|X, y<i)

 (6)

where k represents a specific amino acid within the 20-amino-acid set S. The minimization
of the cross-entropy loss aims to align the model’s predicted amino acid frequencies (via Pθ)
with the empirical ones (via q). This process is equivalent to maximizing the log-likelihood
(Equation 2). As in [42], we used two regularization techniques to prevent overfitting during
training: applying a dropout with probability Pdrop to the output of each sub-layer and label
smoothing ϵls to the cross-entropy loss [78].

5.3 Model selection

We evaluated the performance of Transformer models with various hyperparameter configurations
by changing the number of layers (NL), the dimension of embedding (dmodel), the dimension of
the feed-forward layer (dff ), the number of heads for the multi-head attention module (h), the
dropout probability (Pdrop), label smoothing (ϵls), and the number of training steps (Table 1).
We used Adam optimizer [79] with β1 = 0.9, β2 = 0.98 and ϵ = 10−9 (the default choices by
[42]). A cosine warmup schedule was utilized for the Adam optimizer, incorporating a linear
increase warmup phase over 10,000 steps, for training stabilization [80, 81]. We implemented
embedding sharing for encoding input embedding and decoder input embedding, which was shown
to achieve similar (or better) performance while effectively reducing the model’s parameters
[82, 83]. We maintained a consistent batch size of 4096 and a learning rate of 0.004 across the
hyper-parametric search.

The primary metric used for model selection was the average log-likelihood of the validation
dataset DV , defined as:

LV =
1

|DV |
∑

(X,Y )∈DV

logPθ∗(Y |X) (7)

which measures the model’s capability to assign high probabilities to unseen data. We
supplemented this primary evaluation metric with additional metrics to ensure the quality of
the selected model. To ensure the selected model would capture the statistical properties of
beta strands, we calculated the single-site frequency and 2-point connected correlations for both
generated and validation binders, monitoring the Mean Absolute Errors (MAE1, MAE2) on
these quantities for each model (Supp. Methods 5.5, Fig. 9). To confirm the selected model’s
ability to capture the physicochemical properties of beta strands, we looked at the distributions
of various physicochemical properties (charge, hydrophobicity, molecular weight, isoelectric point
and aromaticity) for both generated and validation binders, and calculated the Kolmogorov’s
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D-statistic, representing the maximum absolute difference between two empirical distributions
(Supp. Methods 5.6).

As a final model to generate results, we have selected Model M in Table 1, as it demonstrated
the best performance in terms of LV . Across two additional statistical metrics, this model proves
to be the best performing in terms of MAE1 and third best performance in terms of MAE2.
Furthermore, 4 out of 5 Kolmogorov-Smirnov property tests cannot be rejected at the 0.05
significance level, i.e., the distribution of the corresponding physicochemical properties across the
generated sequences is not significantly distinguishable from the one across the sequences of the
validation set. We used Model M trained on 90% of the training data for subsequent validation
analyses. For the generation of peptides, we retrained the parameter settings of Model M using
the full dataset (2,148,813 pairs, Methods 4.2) for optimized performance.

To generate peptides for evaluation, we adopted a random sampling strategy that sequentially
generating amino acids for the binder given a target. Amino acids are sampled from the learnt
conditional distribution (1) until both the binder and target sequence attain equal length.

5.4 Additional assessment of model performance

In this section, we define the conditions informative about model performance assessed in Figs. 3
and 8.

1. "Hamming distance (Target)" represents the minimum Hamming distance target sequences
in the test data and the closest training data.

2. "Hamming distance (Binder)" represents the minimum Hamming distance binder in the
test data and the closest training data.

3. "Count" represents the frequency of occurrence of each test data point in the AF2 Beta
strand database.

4. "Hamming distance (Concat.)" represents the minimum Hamming distance between con-
catenated sequences, by joining target sequences and binder sequences, in the test data
and the closest training data.

5. "Promiscuity (Target)" represents the number of binders for a test target in the AF2 Beta
Strand database.

6. "Promiscuity (Binder)" represents the number of targets for a test binders in the AF2 Beta
Strand database.

7. "Average within distance (Target)" represents the average pairwise Hamming distance of
binders for a test target in AF2 Beta Strand database.

8. "Average within distance (Binder)" represents the average pairwise Hamming distance of
targets for a test binder in AF2 Beta Strand database.

We additionally monitored model performance against other metrics: ‘Count’ represents
the frequency of target-binder pairs; ‘Promiscuity’ is given by the number of binders per target
(and vice versa) and is a proxy for a peptide’s versatility in binding; ‘Average within distance’
quantifies the sequence diversity of binding partners to the same peptide. In conclusion, we found
that TransformerBeta predictions have higher accuracy for higher count, higher promiscuity and
medium average within distance, as shown in Fig. 8, essentially reflecting the level of sampling of
target-binder pairs in the training set. Beyond sampling, a space of binding partners too narrow
or too heterogeneous leads to slightly less accurate predictions (Figs. 8J-L).
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5.5 Validation on statistical properties

The statistical covariation between sequence positions encodes key evolutionary protein infor-
mation and is highly relevant in generating functional synthetic sequences, as experimentally
demonstrated by previous research [59]. We evaluated three statistical properties, namely the
single-site amino acid frequency fi(a), i.e. the frequency of the amino acid a at position i along
the sequence in the sample under consideration, the 2-point connected correlation Cij(a, b), and
the 3-point correlation Cijk(a, b, c). The definitions are as follows. The two-point connected
correlation of amino acids a and b at distinct positions i and j, respectively, is given by:

Cij(a, b) = fij(a, b)− fi(a)fj(b) (8)

where fij(a, b) denotes the joint frequency of amino acids a and b occurring at positions i and
j (where i ̸= j), respectively. Cij(a, b) measures the degree to which the observed frequency
of a and b appearing together deviates from what would be expected if their occurrences were
independent.

The three-point correlation of amino acids a, b, and c at distinct positions i, j, and k,
respectively, is given by:

Cijk(a, b, c) = fijk(a, b, c)− fi(a)fjk(b, c)− fj(b)fik(a, c)− fk(c)fij(a, b) + 2fi(a)fj(b)fk(c) (9)

where fijk(a, b, c) denotes the joint frequency of amino acids a, b, and c occurring at positions
i, j, and k (where i ̸= j, i ̸= k, and j ̸= k), respectively. It measures the degree to which the
observed frequency of amino acids a, b, and c appearing together at positions i, j, and k deviates
from what is expected if their occurrences were independent or only pairwise dependent. The
three-point correlation provides a higher-order statistical description of the beta strand sequence
space, capturing the intricate interdependence among the amino acid residues.

The Mean Absolute Errors (MAEs) between the original data statistics (fi(a), Cij(a, b), and
Cijk(a, b, c)) and the model predicted ones (f ′

i(a), C
′
ij(a, b), and C ′

ijk(a, b, c)) are computed as
follows:

MAE1 =
1

m|S|

m∑
i=1

∑
a∈S

|fi(a)− f ′
i(a)| (10)

MAE2 =
2

m(m− 1)|S|2
m∑

i=1,j=1
i ̸=j

∑
a,b∈S

|Cij(a, b)− C ′
ij(a, b)| (11)

MAE3 =
6

m(m− 1)(m− 2)|S|3
m∑

i=1,j=1,k=1
i ̸=j,i̸=k,j ̸=k

∑
a,b,c∈S

|Cijk(a, b, c)− C ′
ijk(a, b, c)| (12)

where m is the total length of the sequence and S stands for the set of 20 amino acids. During
model selection (Supp. Methods 5.3), we kept track of MAE1 and MAE2 between the statistics
of the model generated set and that of the validation set of natural binders for each model
(Methods 4.2). For the best-selected model M, we extended the examination to include MAE3,
verifying its effectiveness in capturing high-order beta strand statistics. As presented in Figs. 9B,
D, F, the generated data exhibited a strong correlation with validation data at single-site
frequency (MAE1=0.00093, R2=0.99871, Pearson correlation coefficient=0.99935), two-point
correlation (MAE2=0.00013, R2=0.90624, Pearson correlation coefficient=0.95197) and three-
point correlation (MAE3=0.00003, R2=0.46089, Pearson correlation coefficient=0.67889). We
performed an additional correlation analysis comparing generated data with training data, which
produced similar results (Figs. 9A, C, E). These outcomes imply that the chosen Model M has
the capacity to generate samples that closely mirror the statistical properties of natural beta
strands. It is worth noting that the training of Transformers does not rely on a moment-matching
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procedure that constrains the moments of the learnt distribution to match the empirical moments
(as is the case for single-site and pairwise frequencies in protein sequence modelling methods
like Direct Coupling Analysis [58]). On the other hand, the Transformer learns probabilities of
single sequence sites conditioned on the sequence context, which enables it to capture global
correlations and hence to well reproduce high-order statistics [61].

5.6 Validation on physicochemical properties

We evaluated five physicochemical properties of peptide sequences:

1. Net charge (Char), which reflects the overall electric charge of a peptide. The net charge
of each peptide was calculated by summing the charge of all amino acids in a peptide.

2. Hydrophobicity (Hydro), which indicates the preference of a peptide for nonpolar envi-
ronments based on its constituent amino acids’ reluctance to interact with water. The
hydrophobicity of each peptide was calculated by averaging the hydrophobicity (using the
Kyte-Doolittle scale [84]) of all amino acids in a peptide.

3. Molecular weight (MW ), which denotes the aggregate mass of a peptide’s constituent
atoms. The molecular weight of each peptide was calculated by averaging the molecular
weight of all amino acids in a peptide.

4. Isoelectric point (IP ), which identifies the pH value at which a peptide exhibits a net charge
of zero. The isoelectric point of each peptide was estimated using Bio.SeqUtils.IsoelectricPoint
module in Biopython package [85].

5. Aromaticity (Arom), which measures the proportion of aromatic residues within a peptide.
The aromaticity of each peptide was calculated by the relative frequency of aromatic amino
acids (Phenylalanine, Tryptophan, Tyrosine) in a peptide.

During model selection (Supp. Methods 5.3), we computed the cumulative distribution functions
(CDF) of these physicochemical properties of generated binders, comparing them to those in
the validation and random sets for each model (Methods 4.2, Fig. 4). We first calculated the
Kolmogorov’s D-statistics (DChar, DHydro, DMW , DIP , DArom) for each respective property
between the natural and random sets. The respective computed D-statistics were 0.048427,
0.39769, 0.20989, 0.05868 and 0.10316, while the respective p-values were 6.35304× 10−110, 0
(less than representable positive number in python), 0, 2.96223× 10−161 and 0, demonstrating a
clear distinction between natural and random binders. We then calculated the Kolmogorov’s
D-statistic for each respective property between natural and generated sets (see Table 2). For
the best selected model M, the computed D-statistics were 0.00338, 0.00300, 0.00332, 0.00443
and 0.00684, while the respective p-values were 0.571, 0.719, 0.592, 0.242 and 0.013. Four of the
five tests can not be rejected at a 0.05 significant level, which implies no significant difference
between these properties for generated and the natural binders. Based on these results, we can
conclude that our selected model M accurately captures the physicochemical properties of beta
strands, with a minor deviation in the case of aromaticity.

5.7 Embedding comparisons with protein language models

We calculated the embedding similarity between amino acids as in Equation 4, resulting in a
20 by 20 matrix. To avoid repeated values, we used the upper triangle of this matrix and the
BLOSUM62 scores, then computed their Pearson correlation (Fig. 10, Fig. 5B).

By comparing the models’ embeddings, we found that our model can learn amino acid
representations comparable to protein language models with millions of parameters pretrained on
millions of sequences, whose amino acid embedding similarity scores have a Pearson correlation
with the BLOSUM62 scores ranging between ∼ 0.42 (for ProtBert) and ∼ 0.86 (for ProtXLNet),
see Fig. 10.
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5.8 Hardware

We conducted database construction, data preparation, training and analysis work on the Imperial
High Performance Computing cluster. Our model implementation was mainly built on the open-
source Pytorch library [86] and d2l package [87]. We employed parallel computing [88] to train
the model (300K steps) on two RTX6000 GPUs over a duration of 50 hours.
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6 Supplementary Tables and Figures

Model NL dmodel dff h Pdrop ϵls train steps
base 6 512 2048 8 0.1 0.1 100K
A 6 512 2048 4 0.1 0.1 100K
B 6 512 2048 16 0.1 0.1 100K
C 2 512 2048 8 0.1 0.1 100K
D 4 512 2048 8 0.1 0.1 100K
E 8 512 2048 8 0.1 0.1 100K
F 6 256 2048 8 0.1 0.1 100K
G 6 768 2048 8 0.1 0.1 100K
H 6 512 2048 8 0.0 0.1 100K
I 6 512 2048 8 0.2 0.1 100K
J 6 512 2048 8 0.1 0.0 100K
K 6 512 2048 8 0.1 0.2 100k
L 6 512 2048 8 0.1 0.1 300K
M 6 512 2048 8 0.2 0.1 300K

Table 1: Transformer architecture hyperparameters scanned for model selection. Deviations from the
original Transformer architecture from [42] (Model base) are emphasized in red.
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Model LV MAE1 MAE2 DChar DHydro DMW DIP DArom

(×10−5) (×10−5) (×10−5) (×10−5) (×10−5) (×10−5) (×10−5)
base -12.26 109.97 13.73 370 1246 890 501 506
A -12.20 121.06 13.50 388 1075 677 483 496
B -12.32 117.68 13.62 451 1269 876 587 533
C -13.36 122.35 14.11 655 1617 759 746 320
D -12.19 115.48 13.74 356 1484 552 407 706
E -12.60 126.99 13.35 224 1239 760 454 533
F -12.58 119.64 14.03 260 1561 944 385 257
G -12.69 116.09 13.20 231 837 638 398 795
H -16.70 209.84 15.38 243 2045 1151 810 252
I -11.98 95.20 13.51 312 665 320 380 741
J -13.20 128.11 13.28 356 1318 925 423 1354
K -12.29 294.22 16.02 638 4090 2377 866 629
L -12.65 111.71 13.34 396 934 648 581 679
M -11.95 92.52 13.31 338 300 332 443 684

Table 2: Transformer model selection. Metrics for model selection are evaluated on the validation set
(Methods 4.2). Best results according to log-likelihood, and quality of reproduction of statistical properties are
emphasized in blue. We highlighted in red when the D-statistics of the Kolmogorov-Smirnov test suggests that the
null hypothesis (H0) cannot be rejected at a 0.05 significance level. H0 posits that the validation and generated
samples distributions are identical, while the alternative hypothesis (H1) asserts that they differ. The selected
Model M is enclosed within a red dashed box.

Model name Architecture Number of Parameters Dataset Dataset Size
ProtBert BERT [89] 420M UniRef100 [90] 216M
ProtBert-BFD BERT 420M BFD-100 [91] 2.1B
Prott5XL-BFD T5 [92] 2.8B BFD-100 2.1B
ProtXLNet XLNET [93] 409M UniRef100 216M
ProtAlbert ALBERT [82] 224M UniRef100 216M
TapeBert BERT 92M Pfam 31M

Table 3: Summary of pretrained protein language models used for input embedding comparison.
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Figure 6: Pairwise dissimilarity distributions for concatenated sequences in training, validation and
test sets. Distribution of normalized Hamming distance within: (A) a randomly sampled portion of the training
set (10%, 193,393 sequences); (B) the validation set (107,440 sequences); (C) the test set (107,441 sequences).
The score ranges between 0 and 1, with higher values indicating greater dissimilarity. For clarity of visualization,
a zoom on the density for normalized Hamming distance < 0.6 is provided in the insets. Panel D of Fig. 1 is the
training set distribution in panel A here.

Figure 7: TransformerBeta architecture and sampling strategy. The figure depicts the generation of a
binder "ILRAKVIL" for the target sequence "TLEILDIT" at the step of decoding symbol in position 6 along the
sequence. Red tokens represent the target sequence, green tokens represent the decoded sequence for previous
steps and gray token represents the next decoded token in this example. <eos> and <bos> are 2 special learnable
tokens such that the decoding process starts with <bos> token and continues until the binder with a length equal
to the target sequence is generated.
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Figure 8: TransformerBeta’s ability to discriminate test data from shuffled and random data with
varying factors. The average Area Under the Receiver Operating Characteristic Curve (ROC-AUC) is plotted as
a function of: (B) occurrence count of each test data point in AF2 Beta Strand database; (E) minimum Hamming
distance between concatenated sequences (targets and binders as insets) in the test data and closest training data;
(H) promiscuity score of test targets (binders as inset) when searched in AF2 Beta Strand database; (K) average
pairwise Hamming distance of binders for each test target (targets for each binder as inset) when searched in AF2
Beta Strand database. Similar Area Under the Precision-Recall Curves (PR-AUC) are monitored in (C), (F), (I)
and (L). The probability distributions generating the AUC plots are shown in (A), (D), (G) and (J).
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Figure 9: Model’s validation on statistical properties. Comparison of 1-site frequency (A-B), 2-point
connected correlations (C-D) and 3-point connected correlations (E-F) between model generated binders (107,440
sequences) and: training binders (1,933,932 sequences, A, C, E); validation binders (107,440 sequences, B, D, F).
The model used to generate new samples is Model M (Table 1).
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Figure 10: Correlation between cosine similarity of input embedding and BLOSUM62 substitution
matrix scores across 6 pretrained protein language models (see Table 3). (A) ProtBert: a BERT
architecture model trained on UniRef100 dataset. (B) ProtBert-BFD: a BERT architecture model trained on
BFD-100 dataset. (C) ProtT5XL-BFD: a T5 architecture model trained on BFD-100 dataset. (D) ProtT5XLNet:
a XLNET architecture model trained on UniRef100 dataset. (E) ProtAlbert: a ALBERT architecture model
trained on UniRef100 dataset. (F) TapeBert: a BERT architecture trained on Pfam dataset.

27


	Introduction
	Results
	AlphaFold 2 Beta Strand Database
	Deep learning model – TransformerBeta
	TransformerBeta accurately predicts target-specific binders
	TransformerBeta generates peptides similar to natural peptides
	Model's biological interpretability

	Conclusion
	Methods
	Creation of AlphaFold 2 Beta Strand Database
	Dataset preparation for model training and evaluation
	Generative model for peptide design – TransformerBeta

	Supplementary Methods
	Database dissimilarity measures
	Model architecture
	Model selection
	Additional assessment of model performance
	Validation on statistical properties
	Validation on physicochemical properties
	Embedding comparisons with protein language models
	Hardware

	Supplementary Tables and Figures

