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Abstract

KV cache compression methods have mainly relied on scalar quantization tech-
niques to reduce the memory requirements during decoding. In this work, we apply
residual vector quantization, which has been widely used for high fidelity audio
compression, to compress KV cache in large language models (LLM). We adapt the
standard recipe with minimal changes to compress the output of any key or value
projection matrix in a pretrained LLM: we scale the vector by its standard deviation,
divide channels into groups and then quantize each group with the same residual
vector quantizer. We learn the codebook using exponential moving average and
there are no other learnable parameters including the input and output projections
normally used in a vector quantization set up. We find that a residual depth of
8 recovers most of the performance of the unquantized model. We also find that
grouping non-contiguous channels together works better than grouping contiguous
channels for compressing key matrix and the method further benefits from a light
weight finetuning of LLM together with the quantization. Overall, the proposed
technique is competitive with existing quantization methods while being much
simpler and results in 5.5x compression compared to half precision.

Code: https://github.com/iankur/vqllm

1 Introduction

Efficient decoding in transformer based large language model (LLM) requires caching past key and
value vectors, also known as KV cache. The size of KV cache creates a memory bottleneck for
storing and loading the cache, specially at long context lengths [11]. Scalar quantization has been
effective in compressing KV cache [18, 13, 31]. However, in other domains, vector quantization
(VQ) is often used for higher compression rate. For example, generative models for images have
used vector quantization for efficient training in the latent space [20]. In audio domain, residual
vector quantization has been used extensively for fast and near-lossless compression of the underlying
data [28, 7, 15]. Further, vector quantization is desirable since it decouples numerical precision and
compression, which can be useful for training.

Vector quantization has been used in different contexts for LLMs. Retrieval augmented generation
uses product vector quantization to tradeoff accuracy for efficient retrieval. VQ has been used to
speed up inference by compressing model weights [1, 9] or expand model capacity by learning
large codebooks [24]. A related field is sparse autoencoders [4] for LLMs which reconstruct the
features from a pretrained model to find interpretable directions [24, 19]. However, they require
extrememly large codebooks to facilitate interpretability. Recent works have also explored vector
quantization for KV cache. [17] use vector quantization to compress key and value matrices while
training small language models from scratch. [30] apply coupled quantization to compress KV cache
using approximate second-order methods to learn the codebooks.

In this work, we explore the application of vector quantization for KV cache compression. In
particular, we work with residual vector quantization due to their wide popularity in compressing
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raw audio. We show that given sufficient residual depth, the technique can be applied to compress
KV cache with minor changes to the standard recipe for vector quantization. This is in contrast to
existing works on KV cache compression which normally apply heuristics such as quantizing key
embeddings across channel dimension [18, 13] or modify the codebook learning procedure [30].

2 Method

2.1 Vector Quantization

[27] proposed vector quantization to learn discrete representations for different modalities including
images and audio. The idea is to maximize task-specific loss, which is reconstruction in their work,
along with vector quantization loss as follows

log p(x|zq(x)) + ||sg[ze(x)]− e||22 + β||ze(x)− sg[e]||22
where x is input, ze(x) is the encoder output, zq(x) is the quantized output, e is embedding in the
codebook and sg stands for stopgradient operation. The first term in the loss is the reconstruction
objective, the middle term is the codebook loss and the last term is the commitment loss. In stead
of codebook loss, exponential moving average can also be used to learn the codebook embeddings.
The commitment loss encourages the encoder to learn representations which are closer to codebook
embedding to avoid the embedding space from growing. Since we work with pretrained LLMs, we
set β to 0 in all the experiments.

2.2 Proposed Method

For any input embedding x ∈ Rd, we scale x by its standard deviation, divide the scaled vector
into groups of channels, each of size d̂, and quantize each group with the same residual vector
quantizer. We discuss two ways to group the channels in section 3.1. A residual quantizer uses K
codebooks, where each codebook {Ci}Ki=1 has |Ci| codes of size d̂ each. In this work, we do not
use any learnable projection matrices for encoding or decoding. For any embedding z ∈ Rd̂ to be
quantized, we obtain the quantized outputs zq as shown in algorithm 1. We begin with codebook
C1 by computing euclidean distance between z and each codebook vector C1j ∈ C1. We find the
nearest code C1ĵ and update z with z − C1ĵ . The process is repeated with the remaining codebooks.
The output is the sum of all the nearest codes found in the K codebooks multiplied by the standard
deviation of the unquantized input x.

Algorithm 1 Residual vector quantization
Require: z, {Ci}Ki=1
z1 ← z
zq ← 0
for i← 1 to K do

ĵ ← argminj ||zi − Cij ||
zqi ← Ciĵ

zq ← zq + zqi
zi+1 ← zi − zqi

end for
return zq

3 Experiments

Following [13], we apply quantization to the output of key and value projection matrices, which we
will refer to as key and value for brevity. Therefore, quantization is applied before RoPE positional
encoding [23] and each attention block learns 2 residual quantizers, one for key and value each, when
quantizing both key and value. Unless mentioned, we quantize both key and value, and a single
residual quantizer uses K = 8 codebooks, where each codebook Ci has |Ci| = 2048 codes with each
code having d̂ = 32 dimensions. All the experiments use 10K random samples from SlimPajama
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[22], which amounts to about 10M tokens, to learn the quantizer codebooks. We initialize each
codebook using k-means clustering on the first batch of the corresponding inputs and update them
using exponential moving average with a decay factor of 0.99. We use batch size of 64K tokens which
is about 150 steps for Llama-3-8b [8] and 180 steps for Mistral-7b [14] as they use different tokenizers.
However, we find that loss does not change much after roughly 50 steps. We evaluate all the models
on old-llm-leaderboard [2] tasks: ARC (25-shot) [3], HellaSwag (10-shot) [29], MMLU (5-shot)
[12], TruthfulQA (0-shot) [16], Winogrande (5-shot) [21] and GSM8k (5-shot) [5]. We implement
the quantization using a simple triton kernel [26] to fuse the K residual steps. We find this to greatly
speedup the experiments as it does not materialize the intermediate encodings. All the experiments are
run on single A100 GPU (40 GB SXM4) except finetuning and Gemma-7b [25] experiments which
require higher memory and were run on single H100 GPU (80 GB PCIe). Finetuning experiment
uses a constant learning rate of 1e-5 and reduced batch size of 50K tokens. Learning the codebook
for the default codebook configuration takes about 1.5 hours for A100 experiments and 2 hours for
H100 experiments.

3.1 Key and value quantization ablation

Table 1 shows the results for quantizing key and value embeddings with default codebook configura-
tion described above. The first row shows the results for unquantized base Llama-3-8b model. In the
second row, we only quantize the key whereas value remains unquantized. Also, contiguous d̂ = 32
channels are grouped together. We find that the model has significant drop on MMLU and GSM8k
testsets. However, we see improved performance when we group non-contiguous channels which are
d/d̂ = 4 channels apart (third row). This is different from prior work on coupled quantization [30]
which groups the channels contiguosuly and learns different codebook for different group. We always
use contiguous grouping to quantize value embedding (fourth row), which has smaller degradation
compared to quantizing key. GSM8k, in particular, has significant gap for key quantization. Finally,
when we quantize key and value together, we find a small degradation relative to only key quantization
(third row). All these results used frozen LLM weights. However, we see noticable improvement
when we also finetune the weights in all attention blocks along with quantization (last row).

Table 1: Results for quantizing attention key and value vectors in Llama-3-8b. First row shows results
for the unquantized Llama model whereas subsequent rows shows the results for quantizing key
or/and value embeddings. We use the default codebook configuration for all the experiments in this
table. By default, channels in key embeddings are grouped non-contiguously whereas value channels
are grouped contiguously. See 3.1 for details. Finetune means all weights in the attention blocks are
finetuned simultaneously with the quantization step.

VQ ARC HellaSwag MMLU TruthfulQA WinoGrande GSM8k

– 58.70 82.24 65.29 43.03 78.22 49.96

Key (contiguous) 57.17 81.64 61.74 43.01 76.72 43.21
Key 57.59 81.66 63.80 42.39 77.19 44.58

Value 58.19 81.91 64.32 42.41 78.14 47.08

Key and Value 57.88 81.22 62.91 41.55 76.93 44.43
+finetune 58.36 81.58 63.77 43.51 75.69 44.35

3.2 Residual codebook size ablation

We study the effect of different codebook sizes on the model performance using frozen Llama-3-8b.
We experiment with number of codebooks K in each quantizer, number of codes C in each codebook
and dimension of codebook entry d̂. We experiment with K ∈ {4, 6, 8}, C ∈ {1024, 2048} and keep
d̂ = 32 as we saw larger value of d̂ led to drop in performance, which is consistent with findings in
the previous work [6, 10] that smaller code size performs better for code lookup. Therefore, there
is a tradeoff between accuracy and compression rate. Results are reported in table 2. We find that
C = 2048 performs better than 1024 across all settings. However, the gains diminish for larger
values of K. At K = 8, we see small difference between 1024 and 2048 codes for most tasks
except GSM8k. We also find K to be the most important factor. A value of K = 8 recovers most
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of the original performance (last row). However, a smaller value such as 6 brings significant drop
in performance. The effect is more pronounced on MMLU and GSM8k tasks where we see severe
degradation for all cases except K = 8. Therefore, we use d̂ = 32, C = 2048 and K = 8 in all the
experiments. We keep the standard deviation, used to scale the input before applying quantization, in
half precision which leads to a compression rate of 5.5x for this setting. We note that several existing
quantization works normally do not compute performance on GSM8k, which [18] refer to as hard
generation task requiring several heuristics to maintain performance on the testset. Compared to their
method, our technique is much simpler and can be combined with other heuristics in existing works.

Table 2: Results for different codebook size and depth when quantizing attention key and values with
frozen Llama-3-8b model. d̂ is dimension of each codebook entry, C is number of entires in each
codebook and K is the number of codebooks in a residual vector quantizer.

d̂ C K ARC HellaSwag MMLU TruthfulQA WinoGrande GSM8k

– – – 58.70 82.24 65.29 43.03 78.22 49.96

32

1024
4 46.84 71.34 43.75 38.08 62.83 00.70
6 54.69 78.87 56.55 40.98 71.98 32.22
8 59.13 80.94 62.03 41.36 76.56 42.61

2048
4 50.68 74.46 50.03 41.73 64.33 13.27
6 56.57 79.89 59.88 40.67 74.19 35.33
8 57.88 81.22 62.91 41.55 76.93 44.43

3.3 Model ablation

We ablate the proposed quantization method on different model families to test if the proposed method
generalizes. Table 3 shows the results for base LLama-3-8b, Mistral-7b and Gemma-7b models
with the default codebook configuration for quantization. We see a similar trend for performance on
all tasks for the three model types. In general, GSM8k has a consistent 4-5% drop in performance
followed by MMLU with around 1.5-2.5% drop. Moreover, Gemma model sees a higher drop for
TruthfulQA when compared to Llama-3 and Mistral models.

Table 3: Results for different models when quantizing attention key and values with frozen LLM
weights and default codebook configuration (see section 3 for more details).

Model VQ ARC HellaSwag MMLU TruthfulQA WinoGrande GSM8k

Llama-3-8b No 58.70 82.24 65.29 43.03 78.22 49.96
Yes 57.88 81.22 62.91 41.55 76.93 44.43

Mistral-7b No 61.35 83.61 62.64 42.14 78.93 37.60
Yes 60.41 82.96 61.15 40.64 78.3 33.74

Gemma-7b No 60.49 82.21 62.89 45.21 78.45 52.01
Yes 58.19 81.61 60.55 41.69 76.16 47.61

4 Conclusion

We showed that residual vector quantization can be applied to compress KV cache in large language
models. The proposed method is much simpler and does not use heuristics such as quantizing keys
across channel dimension or keep top 1% outliers in high precision. However, the performance
drop on GSM8k even with residual depth of K = 8 is a concern. Further, 8 codebooks per residual
quantizer may introduce computational efficiency challenges, specially in compute-bound scenarios
such as pre-fill phase and large batch decoding. Future works may include ways to reduce the number
of codebooks per residual quantizer and analyze the computational efficiency of the proposed method.
We hope that some of these challenges can be resolved by integrating the codebook learning during
pre-training of large language models.
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