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Abstract

Speech Emotion Recognition (SER) systems are essential in advancing human-
machine interaction. While deep learning models have shown substantial success in
SER by eliminating the need for handcrafted features, their high computational and
memory requirements, alongside intensive hyper-parameter optimization, limit their
deployment on resource-constrained edge devices. To address these challenges, we
introduce an optimized and computationally efficient Multilayer Perceptron (MLP)-
based classifier within a custom SER framework. We further propose a novel,
layer-wise adaptive quantization scheme that compresses the model by adjusting bit-
width precision according to layer importance. This layer importance is calculated
based on statistical measures such as parameter proportion, entropy, and weight
variance within each layer. Our approach achieves an optimal balance between
model size reduction and performance retention, ensuring that the quantized model
maintains accuracy within acceptable limits. Traditional fixed-precision methods,
while computationally simple, are less effective at reducing model size without
compromising performance. In contrast, our scheme provides a more interpretable
and computationally efficient solution. We evaluate the proposed model on standard
SER datasets using features such as Mel-Frequency Cepstral Coefficients (MFCC),
Chroma, and Mel-spectrogram. Experimental results demonstrate that our adaptive
quantization method achieves performance competitive with state-of-the-art models
while significantly reducing model size, making it highly suitable for deployment
on edge devices.

1 Introduction

Speech Emotion Recognition (SER) is a challenging task that aims to identify emotional states
conveyed in human speech. It has a wide range of applications, including virtual assistants, social
robots, lie detection, call center analytics, mental health monitoring, fitness tracking, and human-
computer interaction (1). Recent advancements in SER have been driven by deep learning methods,
such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), Long Short-
Term Memory (LSTM) networks (2), and transformers (3). These models have improved emotion
classification accuracy due to their ability to leverage large annotated datasets for training and
evaluation. Furthermore, the development of large language models (LLMs) (e.g., GPT-3, GPT-4,
PALM, and Gemini) (4; 5; 6) and pre-trained speech models (e.g., wav2vec (7), HuBERT (8), wavLM
(9), Whisper (10), and Conformer (11; 12)) has underscored the need for efficiency improvements
in SER systems. However, the large size of these models, often containing billions of parameters,
poses challenges related to computational complexity, deployment cost, and environmental impact
(13). Optimizing model architectures and developing hardware-aware solutions are thus essential for
real-time SER applications.
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Figure 1: Comparison of model accuracy between various fixed-quantization methods and our layer-
wise adaptive quantization approach (AQ) across three benchmark datasets: TESS, EMODB, and
SAVEE. (The performance of proposed LAQ approach is indicated by the star pattern).

Feature selection plays a critical role in capturing the emotional information within speech, which can
vary significantly in both intensity and expression. Among commonly used features, Mel-frequency
cepstral coefficients (MFCCs) are prominent (14), along with Mel-spectrograms and Chroma features
(3; 15). CNNs and LSTMs, often paired with attention mechanisms, are widely used in SER models
(16; 17; 18; 19). For instance, Zhao et al. (17) employed an attention-based Bidirectional LSTM
model to capture spatio-temporal emotional features, while other studies have adopted multimodal
approaches integrating both audio and text data to enhance classification accuracy (20; 21). Despite
their success, these models typically involve a large number of parameters, resulting in significant
model size and computational demand (22).

To address these limitations, various compression techniques have been proposed, including model
pruning (23; 24), low-rank factorization (25), knowledge distillation (26), and quantization (27; 28).
Although much of the work on model compression has focused on image datasets such as MNIST
(29) and CIFAR (30), some studies (31; 32; 33; 34; 35) have begun exploring these techniques in
SER contexts. Our work extends these efforts by proposing an adaptive quantization scheme tailored
to SER neural networks, aiming to reduce model size by lowering bit precision based on layer
importance. Quantization is particularly valuable for model compression due to its efficient storage
and memory utilization (28). Most current quantization methods use a uniform bit-width precision
across layers, which can result in accuracy losses in complex tasks (36). Although mixed-precision
quantization has been explored as a solution, it presents challenges in determining optimal bit-widths
per layer, often leading to suboptimal trade-offs between compression and accuracy (37).

In this paper, we propose a lightweight Multilayer Perceptron (MLP) model with only three hidden
layers to recognize various emotions in speech, including anger, fear, disgust, happiness, surprise,
sadness, and neutrality. We introduce a framework for adaptive layer-wise quantization, as illustrated
in Fig. 1, to demonstrate the effectiveness of our approach compared to fixed-quantization methods.
As expected, model accuracy declines with higher quantization levels in fixed-precision methods;
however, our approach retains accuracy while achieving significantly lower average bit-widths.

The main contributions of this work are as follows:

• We propose a lightweight MLP model with three fully connected layers, containing ap-
proximately 169K parameters, for speech emotion recognition. The model is evaluated on
popular benchmark datasets, showing performance improvements over previous work.

• We introduce an efficient layer importance computation based on statistical measures such
as parameter proportion, entropy, and variance.

• We develop an adaptive layer-wise quantization method that assigns different bit-widths
to individual layers based on their importance, employing an iterative search algorithm to
fine-tune bit precision based on an adaptive margin threshold for each layer.

The remainder of this paper is organized as follows: Section 2 reviews related work. Section 3
provides a detailed description of the proposed method. Section 4 outlines the experimental setup,
and Section 5 presents the results. Finally, Section 6 concludes the paper.
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2 Related Work

The advent of deep learning has enabled the development of models capable of automatically
learning representations from raw audio data, significantly enhancing recognition accuracy in Speech
Emotion Recognition (SER) (38; 39; 40). Prominent architectures such as Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs) are well-suited for capturing the temporal
dependencies intrinsic to speech signals. For example, Zhao et al. (17) employed an attention-
based Bidirectional Long Short-Term Memory (LSTM) model that enhances SER by capturing
essential spatio-temporal features. Similarly, Du et al. (18) demonstrated that attention mechanisms
significantly improve SER performance, highlighting their effectiveness in processing temporal and
contextual information in speech. Li et al. (20) demonstrated substantial performance gains using
temporal alignment mean-max pooling mechanism to capture the subtle and fine-grained emotions
implied in every utterance, providing a context-rich understanding of emotions.

Feature extraction and selection techniques also play a crucial role in the performance of SER (60; 61).
A study by Krishnan et al. (61), utilized empirical mode decomposition and non-linear features to
improve the SER effectiveness. Further, studies by Islam et al. (52) and Swain et al. (53) explored
various handcrafted features for enhancing SER accuracy. Further, some studies have explored
transfer learning for the task of emotion recognition in speech. Latif et al. (62) applied transfer
learning to improve SER accuracy in cross-corpus and cross-language scenarios, while Wen et al.
(63) and Ye et al. (65) developed frameworks that integrate transfer learning and gated multi-scale
temporal convolution for cross-corpus SER tasks.

Though deep architectures have expanded SER capabilities, simpler models such as Multilayer
Perceptron (MLP) remain relevant due to their flexible architecture and reasonable performance.
The main issue with the traditional MLP is its huge number of parameters and model-size, thereby
limiting the application in resource-constrained environments (43; 42). This challenge has spurred
research into compression techniques aimed at developing lightweight yet accurate MLP classifiers
for SER. Compression techniques such as pruning, quantization, and knowledge distillation have
become central to optimizing SER models. Although model compression is well-explored in image
classification, its application in SER is relatively less explored. Among them, quantization reduces
model memory usage by decreasing weight precision, with uniform and dynamic quantization
techniques showing promising results in reducing storage needs (46). However, quantization can
introduce errors that degrade accuracy, especially in deeper networks. Despite the progress made
with compression techniques, many SER models continue to face challenges related to model size
and inference speed. Existing methods frequently apply uniform quantization across all layers, which
can lead to suboptimal performance in complex tasks by disregarding the varying importance of
individual layers (36). Additionally, most approaches rely on fixed-precision quantization, which
limits the potential to balance compression and accuracy effectively (37).

To address these limitations, our work introduces a lightweight MLP architecture with an adaptive
layer-wise quantization approach. This method selects different bit-widths for individual layers based
on their importance, reducing model size while maintaining the performance. Our approach aims
to make SER models both efficient and practical for real-world applications where computational
resources are limited.

3 Methodology

3.1 Proposed Framework

Figure 2 depicts our novel framework for efficient speech emotion recognition, integrating audio
feature extraction, a compact multi-layer perceptron (MLP) model, and an adaptive quantization
approach to optimize performance and minimize model size. The framework begins with raw audio
input, from which features like MFCC, Mel-spectrogram, and chroma are extracted. These features are
then processed by a lightweight MLP architecture, designed to balance performance with efficiency.
An adaptive quantization strategy, guided by layer importance, optimizes the precision of weights in
each layer, reducing model size without sacrificing accuracy. This process consists of (i) computing
layer importance, (ii) performing iterative bit precision optimization, and (iii) applying layer-wise
quantization. The quantized model is thus compressed to retain high performance while being more
memory-efficient. The framework’s final stage involves classifying the speech sample into predefined
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Figure 2: The framework of the proposed LAQ approach.

emotion categories. By combining effective feature extraction with an optimized MLP architecture
and a layer-adaptive quantization (LAQ) approach, this framework supports resource-constrained
deployments and real-world applications.

3.2 Layer Importance-Guided Adaptive Quantization (LAQ) Strategy

Our Layer Importance-Guided Adaptive Quantization (LAQ) strategy introduces a layer-wise quan-
tization approach and an iterative optimization process aimed at minimizing accuracy loss while
reducing model size. This strategy enables the deployment of deep neural networks (DNNs) on
resource-limited devices by selecting bit precision per layer based on its relative importance, thus
retaining performance close to original accuracy. The primary objective is to adaptively assign
bit-widths across layers to achieve a balance between model size and accuracy. Motivated by the
observation that layers contribute unequally to the model’s final accuracy (48), we analyzed quan-
tization sensitivity per layer by selectively quantizing each layer while maintaining 8-bit precision
for others. This revealed that layers vary in sensitivity to quantization, which we leverage to assign
different bit-widths based on computed importance. Given the challenge of optimal quantization
order, we introduce a layer ranking mechanism grounded in layer importance.

3.2.1 Layer Importance Computation

Layer importance is computed by evaluating the following three metrics, each designed to balance bit
precision with model accuracy:

Parameters Proportion: The parameter count per layer significantly influences model size. Layers
with more parameters are prioritized for quantization to minimize model size, while layers with fewer
parameters retain higher precision. We define the parameter proportion as:

NP (l) =
Parameters in layer l

Total parameters in the model
(1)

Normalized Entropy: The entropy of a layer indicates its information content, with higher entropy
suggesting a need for greater bit precision. We compute the normalized entropy as:

NE(l) =
Entropy of layer l

Bit-precision of the model
(2)

Normalized Variance: The weight distribution within each layer affects its quantization sensitivity.
Layers with higher variance may require advanced quantization to maintain performance. The
normalized variance is defined as:

NV (l) = log

(
e− 1 +

Variance of layer l
maxk (Variance of layer k)

)
(3)

Layer Importance Calculation: The importance of a layer l is quantified as a weighted sum of the
above criteria, where:
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Importance(l) = wP ·NP (l) + wE · (1−NE(l)) + wV ·NV (l) (4)

Here, wP , wE , and wV are weights for each criterion in the importance score, with NP (l) denoting
the proportion of parameters, NV (l) reflecting weight variance, and 1−NE(l) adjusting importance
inversely with entropy. These weights determine the relative impact of each criterion on layer
importance.

3.2.2 Layer-wise Adaptive Quantization

Bit-width selection per layer is optimized through a search process that aims to minimize overall
bit-width without sacrificing accuracy. Layers are ranked by importance, and quantization starts from
the highest-ranked layers. A bit-width search begins from the minimum value and continues until
performance degradation remains within a predefined threshold margin Tmargin(l), which adapts to
layer importance as follows:

Tmargin(l) = Tmargin × Importance(l)

Importance(lprevQuantized)
(5)

where Tmargin(l) is the threshold margin for layer l, Importance(l) represents the importance of
the current layer l, and Importance(lprevQuantized) is the importance of the previously quantized
layer. The importance ratio ensures controlled adaptation of the threshold margin, allowing efficient
compression with minimal accuracy impact. This iterative adjustment optimally balances bit precision
per layer.

4 Experimental Setup

4.1 Datasets

To evaluate the proposed Layer-wise adaptive quantization (LAQ) method, we conducted experiments
on three benchmark Speech Emotion Recognition (SER) datasets: EMODB, SAVEE, and TESS.
The EMODB dataset (49) consists of emotional expressions from 10 German speakers (5 male, 5
female), covering seven emotions: anger, boredom, disgust, fear, happiness, sadness, and neutral.
The SAVEE dataset (50) includes recordings from 4 British male speakers expressing seven emotions:
neutral, anger, disgust, fear, happiness, sadness, and surprise. Lastly, the TESS dataset (51) features
recordings from two female actresses (aged 26 and 64) in seven emotions: anger, disgust, happiness,
sadness, neutral, pleasant surprise, and fear.

4.2 Implementation Details

In this work, instead of directly using raw audio signals as input to the Multi-Layer Perceptron (MLP)
model (52), we followed existing studies (53) to extract representative audio features. Specifically,
we extracted Mel-frequency cepstral coefficients (MFCCs), Mel-spectrogram, and chroma features.
The MLP model was implemented in PyTorch, with its hyperparameters detailed in Table 1. All
experiments were conducted on the Kaggle platform, utilizing CPUs for model training. The dataset
was split into training (80%), validation (10%), and test (10%) sets, with stratification applied to
ensure balanced representation of each emotion across splits.

Hyperparameters Values
Optimizer Adam
Loss function Cross-Entropy Loss
Batch size 32
Regularization Early stopping (patience=5 epochs)
Learning rate 0.001
Dropout rate 0.1

Table 1: Training hyperparameters of the MLP model.
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4.3 Evaluation Metrics

The primary evaluation metric for model performance is classification accuracy, enabling comparison
with existing methods. Additionally, we report the average bit-width as a metric to assess model size,
especially in quantized models, capturing the trade-off between model size and performance. The
average bit-width provides a measure of bit-precision used across all layers of the model, indicating
the extent of model compression. For a model with L layers, the average bit-width b̄ is calculated as:

b̄ =

L∑
l=1

NP (l) · b(l) (6)

where NP (l) is the parameter proportion for layer l, and b(l) is the bit-width of parameters in layer l.
Thus, b̄ represents the weighted average bit-width across all layers in the model.

4.4 Model Architecture

In this study, we explored multiple lightweight MLP architectures with varying depths and widths to
find an optimal balance between complexity and performance. The tested configurations are shown
in the Table 2:

Number of Hidden Layers (HL) Configuration
2 [256, 64]
3 [256, 512, 64]
5 [256, 512, 256, 128, 64]
7 [256, 512, 384, 256, 128, 96, 64]
9 [256, 512, 384, 256, 192, 128, 96, 72, 64]

Table 2: Configuration of different MLP architectures.

5 Results

To validate the effectiveness of the proposed LAQ method, we conducted experiments using three
speech emotion recognition (SER) datasets: TESS, EMODB, and SAVEE. This section presents
the results of various configurations of the Multi-Layer Perceptron (MLP) architecture, specifically
focusing on hidden layer (HL) variants ranging from 2HL to 9HL. Our first objective is to identify
the optimal HL configuration for subsequent experiments. Following this, we detail the results
of our adaptive layer-wise quantization method, evaluating the performance of quantized models
against their full-precision counterparts, with an emphasis on accuracy and model size. Layers were
ranked based on their importance, as computed using Equation (4), and each layer was quantized
sequentially according to this ranking. We tested several bit precisions, including 8, 7, 6, 5, 4, 3,
2, and 1 bits, selecting the lowest bit precision that maintained model accuracy within a specified
margin Tmargin(l) for each layer l.

5.1 Hidden Layer Configuration

The results in Fig. 3 illustrate the relationship between model accuracy and bit-width for various
configurations of hidden layers (HL), specifically 2HL, 3HL, 5HL, 7HL, and 9HL, across the three
datasets: TESS, EMODB, and SAVEE. The analysis reveals that increasing the number of hidden
layers from 2 to 3 consistently enhances model performance. However, beyond the 3HL configuration,
a noticeable decline in accuracy occurs as the depth increases to 5HL, 7HL, and 9HL. This trend
indicates a diminishing return on accuracy with added complexity, leading us to select the 3HL
configuration for further experiments. Additionally, our proposed method, indicated by star markers
in the plot, demonstrates superior accuracy at lower bit-widths across all datasets.

5.2 Layer Importance Weights Configuration

We further evaluated the impact of different weight parameters used in the layer importance computa-
tions. Table 3 compares the average bit-width and accuracy across various layer importance weight
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(a) TESS (b) EMODB (c) SAVEE

Figure 3: Comparison of model accuracy vs. bit-width for different variants of MLP. Performance of
the proposed LAQ method is highlighted with star markers.

Layer Importance Weights TESS EMODB SAVEE
WP WE WV Bit-width Accuracy (%) Bit-width Accuracy (%) Bit-width Accuracy (%)

0 0 0 2.412 99.29 2.375 74.07 1.933 81.25
1 0 0 2.347 99.29 2.375 74.07 1.933 81.25
0 1 0 2.412 99.29 2.891 75.93 1.933 81.25
0 0 1 1.771 99.29 2.025 75.93 1.936 81.25

0.5 0.5 0 2.347 99.29 2.375 74.07 1.933 81.25
0.5 0 0.5 1.226 99.29 2.025 75.93 2.696 81.25
0 0.5 0.5 1.771 99.29 2.025 75.93 1.936 81.25

0.33 0.33 0.33 1.226 99.29 2.025 75.93 2.696 81.25
0.11 0.01 0.88 1.226 99.29 2.000 75.93 1.933 81.25

Table 3: Comparison of average bit-width (b̄ in bits) and accuracy (%) across various combinations
of statistical parameters used in layer importance computation.

configurations (WP , WE , WV ) for the TESS, EMODB, and SAVEE datasets. For TESS, accuracy re-
mains consistently high at 99.29% across configurations, with average bit-widths ranging from 1.226
to 2.412, indicating robustness to quantization variations. Conversely, EMODB and SAVEE exhibit
greater sensitivity to layer importance weight configurations; for instance, EMODB achieves peak
accuracy (75.93%) at 2.891 bits with WE = 1, while SAVEE maintains an accuracy of 81.25% with
a balanced weight of 0.33 across parameters. Although selecting optimal layer importance weights
is challenging, our empirical analysis suggests that the configuration of WP = 0.11, WE = 0.01,
and WV = 0.88 yielded the best results, achieving the highest accuracies at the lowest bit-widths
across all datasets. These findings indicate that dataset-specific optimal combinations for effective
quantization warrant further investigation.

5.3 Comparison of Fixed-Quantization with the proposed LAQ approach

We present the results for various fixed-quantization methods alongside our proposed LAQ method.
Table 4 compares accuracy and model size, represented as average bit-width (b̄), for different
quantization levels applied to the baseline model across the TESS, EMODB, and SAVEE datasets.

The baseline model, which operates at full 32-bit precision, achieves high accuracy rates of 99.29% on
the TESS dataset, 74.07% on the EMODB dataset, and 81.25% on the SAVEE dataset. However, its
large model size of 676 KB for each dataset underscores the necessity for more efficient quantization
techniques. Fixed-bit quantization was applied, ranging from 8-bit down to 1-bit, leading to substantial
reductions in model size while maintaining comparable accuracy levels at higher bit precisions. For
instance, on the TESS dataset, the 8-bit quantization retained the baseline accuracy of 99.29% while
reducing the model size to 169 KB. Accuracy decreased to 97.86% at 4-bit and 96.43% at 1-bit, with
the model size reducing to 21 KB. A similar trend was observed on the EMODB dataset, where
accuracy was maintained at 74.07% across 8-bit, 7-bit, and 6-bit quantization, with a slight decline to
72.22% at 5-bit and further decreases to 64.81% at 1-bit, along with a reduction in model size. On
the SAVEE dataset, 8-bit quantization achieved an accuracy of 81.25%, with a gradual decrease to
68.75% at 2-bit and 70.83% at 1-bit, coupled with a reduction in model size.

In contrast, the proposed LAQ method, which assigns varying bit-widths to different layers based
on their importance, achieves near-baseline accuracy while substantially reducing both the average
bit-width and model size. For the TESS dataset, the proposed method attains an accuracy of 99.29%
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TESS EMODB SAVEE
Model Size (KB) Accuracy (%) Size (KB) Accuracy Size (KB) Accuracy
32-bit Baseline 676 99.29 676 74.07 676 81.25
8-bit Fixed Quantization 169 99.29 169 74.07 169 81.25
7-bit Fixed Quantization 147 99.29 147 74.07 147 81.25
6-bit Fixed Quantization 126 99.29 126 74.07 126 81.25
5-bit Fixed Quantization 105 99.29 105 72.22 105 81.25
4-bit Fixed Quantization 84 99.29 84 74.07 84 81.25
3-bit Fixed Quantization 63 99.29 63 75.93 63 79.17
2-bit Fixed Quantization 42 97.86 42 75.93 42 68.75
1-bit Fixed Quantization 21 96.43 21 64.81 21 70.83
Proposed LAQ 25 99.29 43 75.93 40 81.25
Avg. Bit-Width (b̄) 1.23 2.00 1.93

Table 4: Comparison of model size (KB) and accuracy (%) across different quantization variants
applied to the baseline model. The average bit-width per parameter (b̄) is also reported (in bits).

(a) TESS (b) EMODB (c) SAVEE

Figure 4: Confusion matrices for test data across individual emotions for three benchmark datasets.

with an average bit-width of 1.23 and a model size of 25 KB. On the EMODB dataset, it achieves
an accuracy of 75.93% with an average bit-width of 2.00 and a model size of 43 KB. Similarly,
for the SAVEE dataset, the proposed method achieves an accuracy of 81.25% with an average
bit-width of 1.93 and a model size of 40 KB. These results highlight the effectiveness of the proposed
adaptive quantization approach in maintaining high accuracy while significantly reducing model size,
establishing it as a more efficient alternative to fixed-bit quantization methods for neural networks.

The confusion matrix for the TESS dataset, as shown in Fig. 4a, reveals that the LAQ model achieves
perfect classification (1.00) for the emotions of anger, fear, neutrality, sadness, and surprise. However,
there is a minor misclassification, with 3% of happy samples incorrectly identified as surprise. This
confusion likely stems from subtle similarities in the vocal expressions associated with these positive
emotions. Likewise, the LAQ model demonstrates acceptable performance across various emotions
for both the EMODB (Fig. 4b) and SAVEE (Fig. 4c) datasets.

5.4 Comparison of Proposed LAQ approach with existing studies

Finally, we compare existing approaches with the proposed LAQ method. Table 5 summarizes
the performance of the proposed method alongside several studies on the TESS, EMODB, and
SAVEE datasets. For the TESS dataset, the proposed LAQ method achieves the highest accuracy of
99.29% with only 169K parameters, surpassing other models such as CNN (52) (98.0%) and Vision
Transformer (3) (98.0%), both of which have significantly larger parameter counts. Additionally,
it outperforms methods like SVM (14) (96%) and Quaternion-valued CNN (67) (97%). For the
EMODB dataset, the proposed LAQ model demonstrates strong performance with an accuracy of
75.93%, surpassing several methods, including ANN (56) (74.6%) and DBN (62) (72.4%), while
maintaining a lower parameter count. For the SAVEE dataset, the proposed method achieves an
accuracy of 81.25%, outperforming various models such as TIM-Net (55) (77.3%) and DCNN (60)
(82.1%), which have higher parameter counts. Moreover, the average bit-width (b̄) for each parameter
is reduced to 1.22 for TESS, 2.00 for EMODB, and 1.93 for SAVEE using our layer-importance-
based adaptive quantization approach. These results highlight the efficiency of the proposed method,
achieving state-of-the-art accuracy with fewer parameters compared to more complex models.
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Model Year TESS Model Year EMODB Model Year SAVEE
CNN (52) 2024 98.0% (4M) Logistic Model Tree (54) 2020 80.0% (58M) TIM-Net (55) 2023 77.3% (10M)

LSTM (52) 2024 77.0% (2M) ANN (56) 2014 74.6% (1M) TSP+INCA (57) 2021 83.4% (75M)
Transformer (58) 2023 98.2% (100M) DNN (59) 2011 79.1% (7M) DCNN (60) 2020 82.1% (62M)
EMD+LDA (61) 2021 93.3% (-) DBN (62) 2018 72.4% (3M) CPAC (63) 2022 83.7% (7M)

Vision Transformer (3) 2024 98% (4M) MCNN (64) 2017 50% (1.3M) GM-TCN (65) 2022 83.9%(-)
SVM (14) 2016 96% (-) DCNN-DTPM (14) 2017 76.3% (5.2M) PSOBBO+ELM (66) 2017 62.5% (2M)

Quaternion CNN (67) 2023 97% (5M) RDBN (68) 2017 82.3% (3M) RDBN (68) 2017 53.6% (3M)
Proposed LAQ - 99.29%(169K) Proposed LAQ - 75.93% (169K) Proposed LAQ - 81.25% (169K)

Table 5: Comparison of the proposed LAQ with existing studies on three benchmark SER datasets:
TESS, EMODB, and SAVEE. (Classification accuracy (in %) and number of model parameters (in
brackets) are provided for each dataset).

Overall, the results underscore the potential of our adaptive layer-wise quantization approach for
deploying deep neural networks on resource-constrained edge devices. By optimizing the bit-width
adaptively, our method ensures that models remain both lightweight and efficient while retaining
high accuracy, making it a valuable framework for practical applications where computational and
memory resources are limited.

6 Conclusion

This study introduces a lightweight multilayer perceptron (MLP) neural network featuring a layer
importance-guided adaptive quantization scheme. The network comprises three hidden layers and is
specifically designed for the classification of seven emotions across three benchmark speech emotion
recognition (SER) datasets. We extracted three audio features—Mel-frequency cepstral coefficients
(MFCC), Mel-spectrogram, and chroma—from the speech audio samples. The proposed adaptive
quantization (LAQ) method achieves classification accuracies of 99.6%, 75.9%, and 81.3% for the
TESS, EMODB, and SAVEE datasets, respectively. Our approach not only provides comparable or
superior results to existing models but also does so with significantly fewer parameters, totaling only
169K. The model maintains an average bit-width between 1.22 and 2.00, resulting in a maximum
model size of 43 KB. While this model demonstrates high efficiency and accuracy, it has a limitation:
the lack of cross-dataset validation, which is necessary to assess its generalizability and robustness.
Future research will focus on extending the adaptive quantization technique to attention-based models
for speech emotion recognition tasks across diverse datasets.
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