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Abstract

Speculative decoding is a method for accelerating inference in large language
models (LLMs) by predicting multiple tokens using a smaller ‘draft model’ and
validating them against the larger ‘base model.’ If a draft token is inconsistent with
what the base model would have generated, speculative decoding ‘backtracks’ to
the last consistent token before resuming generation. This is straightforward in
autoregressive Transformer architectures since their state is a sliding window of past
tokens. However, their baseline inference complexity is quadratic in the number of
input tokens. State Space Models (SSMs) have linear inference complexity, but they
maintain a separate Markov state that makes backtracking non-trivial. We propose
two methods to perform speculative decoding in SSMs: “Joint Attainment and
Advancement” and “Activation Replay.” Both methods utilize idle computational
resources to speculate and verify multiple tokens, allowing us to produce 6 tokens
for 1.47⇥ the cost of one, corresponding to an average 1.82⇥ wall-clock speed-up
on three different benchmarks using a simple n-gram for drafting. Furthermore, as
model size increases, relative overhead of speculation and verification decreases:
Scaling from 1.3B parameters to 13B reduces relative overhead from 1.98⇥ to
1.22⇥. Unlike Transformers, speculative decoding in SSMs can be easily applied
to batches of sequences, allowing dynamic allocation of resources to fill gaps in
compute utilization and thereby improving efficiency and throughput with variable
inference traffic.

1 Introduction

Autoregressive large language models (LLMs) require a costly model call to generate each new
token, by processing a long sliding window of input tokens. Several methods have been proposed to
reduce the cost of such ‘decoding’ process; in particular, speculative decoding [23, 27, 14] consists
of ‘drafting’ multiple tokens using a simpler ‘draft model,’ and then ‘verifying’ their consistency
with the original ‘base model.’ When verification fails, speculative decoding backtracks to the most
recent valid token to resume generation. Since drafting and verification introduce overhead cost, the
effectiveness of speculative decoding hinges on leveraging computational resources under-utilized
by the decoding process. Hardware utilization depends on how well the algorithm structure fits the
hardware constraints: Typically, the amount of computation needed to produce a token is small while
the memory bandwidth needed to load weights and activations hits hardware limits. This opens a
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Figure 1: Illustration of the backtracking challenge in applying speculative decoding to State-Space
Models (SSMs). Assume a draft model provides 6 tokens for verification, with the green tokens
being correct and the red ones incorrect. For transformer models, the key-value caches store all the
necessary information to easily backtrack to the state after the last correctly drafted token. However,
for SSMs, the required intermediate states are not instantiated in global memory and cannot be easily
recovered from the final state. As a result, the correct state must be recomputed.

compute gap that can be filled by verifying multiple tokens simultaneously at minimal cost, thereby
increasing arithmetic intensity [26] and decreasing cost with minimal latency.

Unlike Transformers, State Space Models (SSMs) [18, 10] do not re-process past tokens but instead
maintain a separate ‘Markov state’ – a vector which encodes all past tokens for the purpose of
generating new ones. Despite reducing inference complexity from quadratic to linear in the input
size, inference in SSMs is still costly. Furthermore, the diminished cost of producing a token results
in even lower hardware utilization, which makes speculative decoding even more attractive for SSMs
since more computational resources are available at essentially no cost. However, once the state of
an SSMs is causally updated, the old state is no longer needed and therefore not stored. This makes
backtracking not as straightforward as in Transformers, whose state is a sliding window of past tokens
(Figure 1).

Our goal in this paper is to enable speculative decoding in SSMs, by introducing methods to leverage
under-utilized compute resources to generate multiple tokens at a fraction of the cost of multiple
passes through the base model.

1.1 Speculative decoding with SSMs

The technical challenge to enable speculative decoding in SSMs is to devise (i) an efficient mechanism
to verify multiple tokens in a single forward pass, and (ii) a method to backtrack to the most recent
valid state according to (i). For instance, if the first 3 out of 5 draft tokens are considered acceptable by
the verification stage, the state should be updated to reflect the first 3 tokens but not the 2 inconsistent
tokens. This is straightforward in Transformers: All computation but self-attention is independent for
each token, and self-attention can be computed for multiple tokens in a single forward pass due to
causal attention masking. Furthermore, the KV-cache, which represents the state of the Transformer
[32], is already indexed by the input tokens, so to recover a state one can simply discard the cache
beyond the desired index.

In SSMs, (i) requires developing new efficient kernels for multi-step prediction that avoid excessive
memory movement, while the ‘backtracking problem’ (ii) requires novel methods to avoid re-
computing the state anew. We propose two: “Activation Replay” stores partial computation from past
states that facilitate state backtracking, while “Joint Attainment and Advancement” tracks a desired
state and assigns additional computation to predict the next verified state jointly as part of the next
forward pass. The details for each of the approaches are described in Section 3.

Since speculative decoding is all about leveraging under-utilized resources, it is important to be
able to handle the case where available resources fluctuate. If a speculative decoding method can
efficiently generate multiple sequences of varying length, one can modulate the number of sequences,
or their length, depending on resources available at any given time. Yet all existing work is focused
on accelerating a single sequence at a time. For Transformers, multi-sequence parallel speculative
decoding is challenging since the KV-cache grows at different rates for different sequences. In
SSMs, on the other hand, the fixed-size state allows generating sequences with different length
while maintaining a uniform, parallel batched state. Section 4 shows how to extend our method to
multi-sequence generation, and how to adapt the batches to variable inference traffic.
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Figure 2: We propose two approaches for speculative decoding of SSMs, here illustrated on a Mamba
block [10]. Left: Activation Replay solves the state backtracking problem by caching activations
(the inputs to the SSM block) and re-running only the state update kernel until the last verified token.
Right: Joint Attainment and Advancement evaluates an additional sequence of tokens and recovers
the SSM state at the last verified token while performing another verification step.

Our contributions can be summarized as:

1. A new framework for speculative decoding in State Space Models with two methods to
overcome the backtracking challenge, with different memory/compute cost profile. Using a
Mamba-2 7B[7] SSM as the base model, one of our methods have the potential of generating
6 tokens at 1.18⇥ the cost of generating a single token.

2. End-to-end generation benchmark using low-cost, n-gram based drafting that yield a 1.82⇥
wall-clock speed-up on average across MT-Bench [33], GSM8K [6], and HumanEval [5].

3. Empirical analysis with different model sizes, showing favorable scaling in both of our
methods thanks to reduced relative overhead for all configurations tested.

4. The first multi-sequence speculation approach for optimizing variable traffic patterns of
deployed LLMs via apportioned speculation. We achieve an increase in token throughput
for traffic batches ranging from 1-16 sequences up to 29%, as shown in Section 4.

2 Related Work

Speculative decoding consists of using a more efficient model to generate tokens and the original
model to test their consistency [28, 15, 4, 29, 23]. The draft tokens could be generated with
independent models [15, 11], fine-tuned [28, 12, 27], by the base model itself using special ‘self-
drafting’ heads [3, 16, 23, 2], or from the model alone [21, 9]. Different inference methods and
verification strategies have also been considered, with some works focusing on verifying a single
sequence [28], and others using “token-tree verification” [19, 16, 3], which makes use of a special
attention mask to verify a branching set of possible strings in parallel. We refer the reader to [29] for
a general survey on speculative inference methods.

State-Space Models are residual stacking of discrete-time state space models [22] inferred from
observed sequences [18]. Specifically, Mamba stacked input-dependent (bilinear) models [13]
(referred to as ‘selective’ in [10]) with simplified (diagonal) state transition matrices which enabled
scaling to LLM-size [7, 17, 8]. The backtracking challenge in state space models has been studied
extensively in the field of multi-target tracking and data association [1]. For small-scale state space
models, KALMANSAC [24] performed speculative decoding by generating multiple trajectories
with different random mixes of input data. For large-scale SSMs, after submission of this paper we
became aware of concurrent work [25]. To the best of our knowledge, these are the only two existing
methods for speculative decoding in SSMs.

3 Method

A verification framework requires two key ingredients: 1) an efficient method for validating speculated
sequences, by computing the output of multiple tokens with a single model call; and 2) the ability to
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Figure 3: Illustration of Joint Attainment verification process with 1 draft sequence with 5 speculated
tokens. The input to the verification model includes an additional sequence of the verified tokens
from the previous verification step the recover the final verified state at the previous iteration. Note
that the initial state at time t is always the last verified state at time t �2.

backtrack to the state corresponding to the last verified token, based on the outcome of the verification
stage. The latter is more challenging due to the causal nature of state-space model (SSM) state
updates, and is a core focus of our framework. In Section 3.1, we introduce two approaches to
address the state backtracking problem. Then, in Section 3.2, we investigate the efficiency of the
original Mamba-2 kernels and propose a new optimized kernel to perform parallel verification on
short sequences. Finally, in Section 3.3, we present additional implementation details that further
optimize the efficiency performance of our framework.

3.1 Backtracking the state

Efficient SSM implementations such as [7] typically avoid instantiating intermediate states in GPU
memory during the forward pass. This minimizes the memory allocation and bandwidth required
for each kernel, outputting only the final state after processing the entire input sequence. This poses
challenges for speculative decoding, where a draft sequence may be only partially correct, and the
state that yielded the last valid token is not readily available. Since it is prohibitive to store all
intermediate states during a multi-step forward pass, we need to backtrack to the last stored state and
advance it based on the number of tokens verified to be consistent with the model’s output before
each forward pass.

Joint Attainment and Advancement. One way to recompute the updated state is to include an
additional sequence in the input to the next verification pass in order to recompute the state at the
last-verified position. Suppose at iteration t, we obtain c < K verified tokens out of K drafted ones.
Since we don’t know the value of c until after the forward pass, we cannot explicitly compute the
desired state in the same pass t. Therefore, in iteration t + 1, in addition to the drafted sequences
for verification, we include a ‘backtracking sequence’ as an additional sequence in the input batch.
This backtracking sequence is used to generate the state after the c verified tokens from the previous
iteration. The other drafted sequences in the same input batch will start with the same c verified
tokens, followed by K newly drafted tokens. Once we obtain the updated state using the backtracking
sequence, we use this as the initial state for all sequences in the next iteration. See Figure 3 for
an illustration of the approach. To perform this efficiently with batch processing, we introduce a
“no-op” token that signals no state update. The backtracking sequence is then left-padded with these
“no-op” tokens, allowing us to compute the updated state in parallel while continuing the verification.
Specifically, we use a mask to set the input-varying state transition matrices Ā to the identity and
the input matrices B̄ and C to zero when processing "no-op" tokens. We also implement a new
kernel that performs the causal convolution operation while accounting for the “no-op” tokens in
the backtracking sequence. In summary, in the input of each forward pass, a padded backtracking
sequence is used to update the SSM states based on the verification result from the previous forward
pass, while the other sequences continue the verification for the current pass. The updated SSM states
are then used as the initial state for all sequences in the next forward pass.

Activation Replay (“ARP”). The Joint Attainment approach requires the full computation of a
block (including input projection, casual convolution, SSM state update, and output projection) to be
repeated on the verified tokens in the next verification step. To reduce this repeated computation, we
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seqlen
BS=1 BS=4 BS=16

SSU CS Ours SSU CS Ours SSU CS Ours

1 0.0074 0.064 0.0074 0.044 0.22 0.044 0.18 0.76 0.18
5 0.027 0.066 0.016 0.23 0.22 0.055 0.89 0.77 0.20
10 0.052 0.067 0.027 0.46 0.22 0.086 1.78 0.79 0.31

Table 1: Run-time (in ms) of different state update kernels under
different batch-size (BS) and multi-token forward sequence length
(seqlen). SSU stands for Selective-Scan kernel; CS for Chunk-
Scan kernel; Ours for Fused Selective-Scan kernel. Since Selective-
Scan kernel only takes input of sequence length 1, we use a for-loop
to iterate through the sequence length.

Method Time (ms)

Joint attainment 34.26
+ Fused-SSU 28.17
+ JIT-state-copy 27.41
+ both 20.74

Table 2: Incremental gains (in
ms) of applying different com-
ponents of our framework (#
of draft = 2, # of spec. = 6).
Fused-SSU stands for Fused
Selective-Scan-Update kernel.

# drafts = 1 # drafts = 2 # drafts = 3 # drafts = 4

# of spec. ARP Joint ARP Joint ARP Joint ARP Joint

1 19.93 16.72 20.72 17.33 21.28 17.94 21.82 19.85
2 20.50 17.14 21.51 18.79 22.04 19.21 22.74 20.14
4 21.57 17.99 22.63 19.72 25.03 21.85 24.97 22.20
6 22.36 18.82 23.57 20.74 25.09 22.57 26.23 24.49
8 22.89 19.86 24.77 21.55 26.06 24.68 30.19 25.52

0 (Mamba2) 14.10 14.10 14.10 14.10 14.10 14.10 14.10 14.10

Table 3: Verification framework speed (in ms/decoding step) using our framework with Mamba-2-
2.7B with different # of speculations and drafts on 1xA10G Nvidia GPU. Last row is for Mamba-2
auto-regressive generation.

propose Activation Replay. In this method, the values required for recalculating the intermediate state
after the last verified state (the inputs for the SSM block) are stored in an activation cache. At the end
of an iteration, once we know the number of verified tokens, we can use the cached input activations
to recompute the verified state with a separate forward pass focusing only on the state update kernel.
Algorithm 2 in the Appendix shows a modified abstracted Mamba-2 block that performs activation
replay. Using cached activations avoids the need to recompute dense operations associated with
the input and output projection layers. After the Activation Replay forward pass, sequence states
are updated to the last verified token in the draft. Then, we use this state to continue verifying new
sequences of speculated tokens. With ARP, the input batch does not need to contain a padded verified
sequence. The number of steps of the multi-step kernel do not depend on the value of c and instead
have a fixed sequence length of K. By comparison, in Joint Attainment and Advancement the number
of input tokens in time t +1 can be in the range [1+K,1+2K] inclusive, forcing CUDA graph, an
optimization technique to be covered in Sec. 3.3, to cache K +1 distinct computation graphs for the
K +1 possible verification outcomes. Moreover, a fixed input sequence length K with no spurious
padded sequence is amenable to further kernel optimization since we don’t need to handle the padded
sequence differently. This also simplifies multi-sequence speculation described in Section 5.3.

Comparison between the two approaches. In terms of run-time, Joint Attainment has an edge as
the backtracking step is performed in parallel with the verification step while the backtracking step for
ARP happens sequentially after the verification step. Meanwhile, in terms of memory footprint, both
approaches incur extra memory requirements as compared to auto-regressive generation. Specifically,
as we compute the N different drafted sequences in the batch dimension, we need N copies of the
states during inference. Joint Attainment requires N +1 copies of the states as there is 1 extra padded
sequence used for backtracking. ARP, on the other hand, does not rely on an extra copy of the
states but requires storing the activations from the last iteration. Since the necessary activations for
recomputing the states are much smaller than the states themselves, the Joint Attainment approach
actually has a larger memory requirement than ARP, given the same number of sequences and tokens
per sequence being verified in one forward pass.

5



# Params = 1.3B # Params = 2.7B # Params = 7B # Params = 13B

# of spec. ARP Joint ARP Joint ARP Joint ARP Joint

Speed
6 10.23 (1.98⇥) 6.84 (1.32⇥) 15.39 (1.58⇥) 11.82 (1.21⇥) 26.66 (1.31⇥) 24.04 (1.18⇥) 44.07 (1.22⇥) 41.99 (1.16x)

0 5.17 5.17 9.74 9.74 20.33 20.33 36.15 36.15

Memory
6 3.95 (1.05⇥) 4.61 (1.22⇥) 6.78 (1.02⇥) 7.51 (1.13⇥) 14.65 (1.03⇥) 15.40 (1.08⇥) 26.52 (1.02⇥) 27.26 (1.04⇥)

0 3.76 3.76 6.60 6.60 14.21 14.21 26.06 26.06

Table 4: Verification framework speed (in ms/decoding step) and memory footprint (in GigaByte
(GB)) using our framework with # draft = 1 with Mamba-2 models of different sizes on 1xL40S
Nvidia GPU. ARP stands for Activation Replay and Joint stands for Joint Attainment

3.2 Efficient multi-token generation

In Mamba-2, there are two implemented modes of state-update computation: auto-regressive mode
via the Selective-Scan-Update (SSU) kernel designed for inference, and parallel mode via the Chunk-
Scan (CS) kernel designed for training. The Chunk-Scan kernel formulates state update as matrix
multiplications which enables efficient performance for updating the states with very long sequences.
On the other hand, the SSU kernel can only compute a single update via the state dynamics of Mamba.
We benchmark CS and SSU for our settings (predicting a short sequence of new tokens) and observe
in Table 1 that the Chunk-Scan kernel is sub-optimal for shorter sequences, while the SSU kernel
must be called repeatedly, resulting in unnecessary memory movement from GPU High-Bandwidth-
Memory (HBM) to the compute cores. To remedy this, we implement a fused multi-step scan-update
kernel that takes a short sequence as input. It iteratively loads the input into the compute cores one
step at a time, performs state update using the state dynamics, and stores the output of the state
update out to HBM. The kernel is hardware-aware because we avoid storing the large SSM state out
to HBM at each step, which reduces the cost of memory transfer. We refer the reader to Sec. A in the
Appendix for a detailed algorithm for the kernel. The kernel gives a consistent boost compared to the
un-fused SSU and to the CS counterpart for sequence lengths of up to length 10.

3.3 Implementation

Complying with the kernel execution graph A kernel execution graph such as the CUDA
Graph [20] captures the launching of a set of kernels that are part of an underlying computation in
order to eliminate their launch overhead. During LLM inference, where each computation is relatively
modest, this is paramount for enabling a more efficient utilization of the hardware. For instance, the
Mamba-2 implementation utilizes CUDA Graph to improve inference efficiency by more than 3x.
While dramatically speeding up inference, a kernel execution graph significantly limits flexibility and
the type of operations one can use. First, any computation with a variable sized tensor is forbidden,
making the variable advancement steps of speculative decoding difficult to implement. In addition,
indexing operations that can use information from the verification stage must be implemented with
IndexSelect or an Embedding operation. Finally, dynamic control flow during run-time is not
allowed. As we implement our framework, we make sure to adhere to these requirements to enable
CUDA Graph optimization for high efficiency

Just-In-Time (JIT) state copying During regular SSM inference, at the end of each iteration the
last SSM state is produced by the kernel and is being stored in a cache. As discussed above, with
speculation, we don’t know which state to store until after the verification is done. Once we attain
the state with either of the two approaches, we can copy it eagerly to update the states for all of the
speculative sequences (e.g. in Joint Attainment) to prepare for the next iteration. However it can also
be performed Just-In-Time (JIT) before the state needs to be used in the next iteration. We compare
the run-time of the two options in Table 2 and find that JIT state copying is significantly faster than
the eager approach since the state copying operation with JIT state copying is captured within the
kernel execution graph and therefore has a reduced CPU launch overhead.
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Inference strategy MT-Bench GSM-8K HumanEval

Baseline 70.36 70.37 70.26
Joint + PNG(6,2) 112.67 (1.60⇥) 137.49 (1.95⇥) 133.64 (1.90⇥)
ARP + PNG(6,2) 103.80 (1.47⇥) 122.73 (1.74⇥) 120.66 (1.72⇥)

Table 5: Inference speed (in tokens/sec.) of our framework using a simple prompt n-gram (n = 6,
d = 2 drafts) draft mechanism with Mamba-2 on 1xA10G Nvidia GPU.

4 Multi-Sequence Speculation for Dynamic Inference Traffic

In many deployment scenarios, user requests are batched to increase the throughput of generation.
In addition, as discussed in the introduction, our framework’s flexibility means that we can allocate
different speculation budgets in accordance with the volume of requests to the system. For example, if
only a single request is processed by the system, there should be ample idle compute for large amount
of speculation. On the other extreme, when the system is overwhelmed with a surge of requests, it
may be beneficial to completely halt speculation to increase the volume of sequences processed in
parallel. While these two extremes are fairly well studied (single-sequence speculation and maximum
batch sizes), there is a spectrum of traffic scenarios with different compute utilization and speculation
opportunity. Without delving into continuous batching techniques [31] (which currently rely on the
transformer architecture), when a user makes an API request for LLM generation, a service has
two possible options: immediately process the generation request, or place it in a “periodic-clearing
queue” for batching. For the latter, the queue is cleared and sent for processing, either when it reaches
a capacity threshold Cbatch or after exceeding a waiting threshold Twait. When traffic patterns are very
high it is likely that the queue becomes full in the majority of cases and generations are processed
with maximal batches. However, for medium and low levels of traffic, the queue will be cleared based
on the Twait to avoid introducing further latency.

Locally, user requests can be modelled by a Poisson distribution with a local traffic volume of ltraffic
requests per second. Then for a time threshold Twait, we can model the number of requests to be
processed r to be less than K as P(r(Twait) K) = ÂK

n=0
exp(ltraffic·Twait)

n! (ltraffic ·Twait)n. In particular
when 1 < ltraffic ·Twait <Cbatch, we expect partially filled queues and the opportunity for speculation.
For latency requirements, we have that Ttotal = Tprocessing +Twait, so Twait typically has a small margin
before regressing total waiting. For our setting, (more in Section 5.3) we prepare multiple execution-
graph optimized pipelines with varying levels of speculation to address varying traffic outcomes and
seek to optimize throughput by varying the speculation settings for each batch size.

Extending speculation to multi-sequence generation. Unlike the sliding window of tokens in
Transformers, the state of an SSM encodes the entire history of past tokens with a fixed dimension.
This allows the state of different sequences to evolve as a batch, changing the number of tokens
while keeping a uniform and parallel batched state representation. This is well-fit to our ARP method
that supports evolving the state of different sequences in the batch by different amounts in parallel,
followed by uniform multi-step speculation. At the start of the generation, we process the prompt in
parallel using the “no-op” token we implemented for Joint Attainment to pad different prompts to
the same length. Then, decoding N sequences with M drafts turns into an N ⇥M batch generation.
During model forwarding, we need to cache N states corresponding to each sequence along with the
activations for all N ⇥M speculations. In the replay phase, based on the outcome of the speculation
we mask the right activations to replay for each sequence to evolve the states in parallel.

5 Experimental Results

Since all generated tokens in our methods are verified against the base model, their effectiveness is
measured by improvement in decoding speed relative to that model. We use the open-source Mamba-2
as a reference implementation for ease of reproducibility, and because it is already optimized with
custom Triton kernels and CUDA Graph integration [20], thus providing a robust baseline. In Sec-
tion 5.1 we benchmark inference time of the speculative decoding step under different configurations
for the Activation Replay and Joint Attainment approaches, with different ablations. In Section 5.2
we benchmark an end-to-end speculation system by integrating an n-gram drafting mechanism within

7



our framework. We then turn our focus to multi-sequence generation to fill variable compute gaps
while increasing throughput in Section 5.3.

5.1 Verification framework speed

To benchmark verification speed, we measure the per-step latency, to avoid the confounding factor
associated to different drafting methods. Specifically, each speculative decoding step is divided into
four phases: (1) drafting; (2) model forward; (3) verification; (4) state copying. We then measure the
average run-time of phases (2), (3), and (4) when running generation for 100 tokens on an Nvidia
A10G GPU (24GB HBM). The results are shown in Table 3, with 0 corresponding to no-speculation
reference run-time. For drafting 2 sequence with 6 speculated tokens with Joint Attainment, we can
generate 7 tokens with an 1.47⇥ overhead.

We test our framework across different model sizes (1.3B, 2.7B, 7B, 13B) on an Nvidia L40S GPU
(48GB HBM) in Table 4 and observe that the relative overhead of our framework decreases with
larger models. With 1 draft and 6 speculated tokens, the overhead drops from 1.98⇥ in a 1.3B
model to 1.22⇥ in a 13B model for Activation Replay and from 1.32⇥ to 1.16⇥ for Joint Attainment.
Meanwhile, we also recorded the memory footprint of each approach on models of different size.
Activation Replay only uses slightly more memory than baseline inference with no speculation,
decreasing from 1.09⇥ memory for a 1.3B model to 1.02⇥ for a 13B model. Joint Attainment uses
slightly more memory due to the cached copies of the state, but also showed a decreasing trend with
increasing model size.

Last, we ran different studies to measure the effect of different features of our methods. In Table 1,
we measure the run-time of different kernels given the same input. All numbers are an average of
10 independent trials after warm-up. We find that the Chunk-Scan kernel has a constant run-time at
short sequence length, but pays a large overhead as compared to the SSU kernel. Our Fused SSU
kernel achieves the same run-time at sequence length 1 but is much faster than both kernels used by
Mamba-2 at sequence length of 5 and 10. In Table 2, we ablate the effect of our fused scan kernel as
well as JIT state copy. The baseline is the Joint Attainment method with ‘eager’ state copying and
Mamba-2 CS kernel. Running Mamba-2-2.7B on a A10G GPU using a Fused Scan kernel instead of
CS improves per-step runtime by 17.8% and using JIT state copy instead of eager state copy improves
runtime by 20.0%. Used together, they are reduce runtime by 39.4%.

5.2 End-to-end generation

We measure end-to-end generation speed by integrating our framework with a baseline low-cost
speculation strategy, the corpus+prompt n-gram drafting method which we refer to as PNG3 [30].
With PNG and our framework, we can run a number of speculations at a time to increase acceptance
rates. To benchmark the system we measure the wall-clock time to generate 100 tokens for each
sample in the benchmark using the following common inference benchmarks: MT-Bench [33] (80
samples), GSM8K [6] (test set 1319 samples), HumanEval dataset (162 samples) [5] on one Nvidia
A10G GPU. The results are shown in Table 5. We can see that our joint attainment method achieves
an average 1.82⇥ speed up across the three benchmarks. With ARP, it achieves an average 1.64⇥
speed up, with an advantage of well formatted input that facilitates multi-sequence generation.

5.3 Multi-sequence throughput

For multi-sequence generation, we group sequences in the benchmark datasets into different batch
sizes to simulate different levels of traffic and measure the wall-time taken to generate at least 400
tokens for each sequence under different degree of speculation. Throughput is computed by dividing
the total number of generated tokens across all sequences by the wall-time and we drop the last batch
in the benchmark if it is not divisible by the batch size. We follow the same hardware and setup as the
end-to-end generation experiments. Notice that speculative decoding is able to boost the throughput
across all input batch sizes, while the gains diminish with larger batch sizes as expected (Figure 4
Right). We also observe that in Figure 4 Left, with a higher batch size, the benefits brought by having

3See for instance https://github.com/apoorvumang/prompt-lookup-decoding,https:
//huggingface.co/blog/dynamic_speculation_lookahead.
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Figure 4: (Left): Relative and absolute improvements in throughput (in tokens/sec.) obtained by
applying our framework on a batch of input sequences using the optimal number of drafts. (Right):
Throughput (in tokens/sec.) vs. varying number of drafts, for different batch sizes.

multiple speculation drafts for each input sequence are out-weighed by the increase in computation
burden starting at BS=8.

6 Conclusion

We propose two approaches for speculative decoding in State Space Models with different perfor-
mance profile: Activation Replay and Joint Attainment, along with an efficient kernel for verifying
sequences of short length to enable fast end-to-end speculation. In addition, we also extend our
framework to multi-sequence generation to exploit the availability of variable computational resources
due to fluctuating inference traffic. In this work, we only tested our framework with a simple n-gram
drafting methods using the reference implementation of Mamba-2 as a base model. More powerful
draft models could easily be combined with our framework.
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A Algorithm for Multi-step Selective-Scan-Update kernel

Algorithm 1 Fused multi-step State-Update kernel. This Algorithm is simplified with the only input
being x,A,B,C,D,h in reference to the implementation of [10].

Notation Z⇤  Z: load Z into shared memory for computation. Z  Z⇤: Storing Z out to
High-Bandwidth-Memory (HBM). Any variable with ⇤ means that this variable is in shared memory,
everything else is in HBM.

Shapes B - Batch, L - Sequence Length, H - Num heads, P - State Dimension , D - Head
Dimension, G - Num groups

Input: h0 : (B,H,D,P) - initial state, x : (B,L,H,D) A : (H,D,P), B : (B,L,G,P), C : (B,L,G,P),
D : (B,L,H,D)

Output: y : (B,L,H,D) - Output, ĥ : (B,H,D,P) - updated state
1: h⇤  h0
2: i 0
3: while i < L do
4: x⇤  x[:, i, :, :]
5: D⇤  D[:, i, :, :]
6: B⇤  B[:, i, :, :]
7: C⇤  C[:, i, :, :]
8: A⇤  A
9: Ā⇤  exp(D⇤ ⇥A⇤)

10: B̄⇤  D⇤ ⇥B⇤
11: h⇤  h⇤ ⇥ Ā⇤+ B̄⇤ ⇥ x⇤ . State is not stored out to HBM at this point
12: y⇤  C⇤ ⇥h⇤
13: y[:, i, :, :] y⇤
14: end while
15: ĥ h⇤

B Algorithm for Activation Replay

Line 1, 3, 5, 8 are performed by the original Mamba-2 block to get the output and update the states.
The added operations are the extra Conv1d_update and SSM_update at line 2 and 5 to attain the
updated states using the correct cached activations. Line 4 and 7 saves the activation of the current
iteration for the use of next iteration.
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Algorithm 2 Abstracted Mamba-2 block with Activation Replay. The two functions are simplified
abstraction of what is actually used in the implementation.

Notation A[a : b] : a-th position to b-th position of A in the sequence length dimension
function Conv1d_update(x,B,C,M) :

return (x0,B0,C0,M0) . Performs 1d convolution on x, B, C, and update conv state M
function SSM_update(x,B,C,dt,S) :

return (y,S0) . Performs SSM update with x, B, C, dt to get output y and update SSM state S
Input: E : token embedding, S : SSM state, M : Conv state, c : number of correct tokens

(xpre_conv
cache ,Bpre_conv

cache ,Cpre_conv
cache ) : Cached activation for Conv states from last forward pass

(xpost_conv
cache ,Bpost_conv

cache ,dtcache) : Cached activation for SSM states from last forward pass
Output: Ê : New token embedding, Ŝ : SSM state after the i-th correct token, M̂ : Conv state

after the i-th correct token
1: xpre_conv,Bpre_conv,Cpre_conv,dt in_pro jection(E)
2: (_,_,_,M̂) Conv1d_update(xpre_conv

cache [0 : c],Bpre_conv
cache [0 : c],Cpre_conv

cache [0 : c],M) . Getting
updated Conv state

3: (xpost_conv,Bpost_conv,Cpost_conv,_) Conv1d_update(xpre_conv,Bpre_conv,Cpre_conv,M̂) . Actual
Conv1d update

4: (xpre_conv
cache ,Bpre_conv

cache ,Cpre_conv
cache ) (xpre_conv,Bpre_conv,Cpre_conv) . Saving activations for next

forward pass
5: (_, Ŝ) SSM_update(xpost_conv

cache [0 : c],Bpost_conv
cache [0 : c],dtcache[0 : c],S) . Getting the updated

state using the correctly predicted tokens
6: (y,_) SSM_update(xpost_conv,Bpost_conv,Cpost_conv,dt, Ŝ) . Actual SSM update
7: (xpost_conv

cache ,Bpost_conv
cache ,dtcache) (xpost_conv,Bpost_conv,dt) . Saving activations for next forward

pass
8: Ê out_pro jection(y)
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