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Abstract

Conventional supervised contrastive learning methods excel in optimising encoders for dis-
criminative tasks. In scenarios where only a few labelled samples are available, however,
they struggle in eliminating the inductive bias when transferring from source to target
classes. This is a byproduct (and inherent limitation) of their underlying optimisation pro-
cess that involves training a representation to maximise class separation, without directly
optimising for within-class cohesion. As a response to this limitation this paper introduces
the Silhouette Distance (SD) loss, a new optimisation objective for supervised contrastive
representation learning. SD aims to enhance the quality of learned embeddings by empha-
sising both the cohesion and separation of representation clusters for each class. We test SD
extensively across several few-shot learning scenarios—where labelled data is limited—and
we compare its performance against supervised contrastive loss and prototypical network
loss for various text and image classification tasks. We also test SD in a cross-domain
manner, by training a model on one dataset and testing it on another, within the same
modality. Our results demonstrate the superior, at worst competitive, performance of the
SD loss compared to its baselines. By leveraging pre-trained models and fine-tuning tech-
niques, our study highlights how the SD loss can effectively improve representation learning
across different modalities and domains. This initial study showcases the potential of the
SD loss as a robust alternative within the few-shot learning setting.

Keywords: Limited label access

1. Introduction

Traditional supervised learning relies on large labelled datasets for training, typically with
test data from similar statistical distributions. Obtaining labelled data, however, is far
from being scalable, especially for new or rare concepts. Few-Shot Learning (FSL) (Wang
et al., 2020) addresses this by allowing pre-trained models to generalise to new data cate-
gories with minimal labelled samples per class. By extending pre-trained models, such as
those trained in a self-supervised manner, to new categories, the need for re-training from
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scratch is eliminated, conserving computational resources. The core challenge of FSL lies
in overcoming the inductive bias from source classes to better adapt to target classes. This
challenge can be tackled by further refining the learned embedding space so that instances
from distinct classes can be effectively differentiated into separate clusters (Tian et al.,
2020).

To this end, we adopt a popular representation learning method, Supervised Contrastive
Learning (SCL) (Khosla et al., 2020). Based on class labelling information, SCL creates
pairs of similar and dissimilar samples. Those pairs are then used to cluster together, in
the embedding space, data points that belong to the same class, and, at the same time,
drive apart clusters of samples from different classes. However, the conventional supervised
contrastive loss (LSC)—used as the training signal for SCL—primarily focuses on creating
dissimilar class representations (Bukchin et al., 2021). While the resulting clusters are
somewhat separated, there is significant potential for further improvement as we can observe
in Fig. 1. One avenue for improvement is directly promoting both high intra-class similarity
and minimal dispersion of representations within a class.

We rely on earlier work (Vapnik, 2013) suggesting that better class separation leads to
better generalisation and allows for training with less labelled data. Thus, in this paper, we
assume that forcing representations to maintain tight and separable clusters of data will be
beneficial for the performance of an SCL process as a whole. With this aim we explore the
efficacy of Silhouette score as an optimisation objective of representation learning for few-
shot learning tasks. Inspired by recent work in this area (Minnehan and Savakis, 2018b,a),
we introduce and test a novel loss for contrastive learning, namely Silhouette Distance (SD)
loss (LSD). Unlike the conventional supervised contrastive loss that prioritises learning
discriminative representations per class, our loss focuses on creating representation clusters,
one per class, by considering both clustering cohesion and separation. We thus test the
hypothesis that through the optimisation of the SD loss, the trained encoders can learn
compact context representations from a limited number of labelled examples. Figure 1
depicts the high level concept of our approach via an illustrative example on a synthetic
dataset.

In this study, we focus on testing the proposed SD loss in an FSL setting. We thus
use only a small number of labelled samples and compare the proposed loss (SD) against
both the vanilla SC loss and the Prototypical Network (PN) loss (Snell et al., 2017)—
an extensively studied method shown to be effective in FSL—on both image and text
classification tasks across four datasets; two for image classification, and two for intent
classification in text. Specifically, we extract representations of images and text using
frozen pre-trained backbone models and we fine-tune a projection layer on top of those
representations with the aforementioned training methods.

The paper presents several notable contributions. First, we introduce a novel approach
by utilising a loss function derived from a clustering quality metric as the optimisation
objective for supervised contrastive representation learning, marking a pioneering endeavour
in this domain. Second, we perform an initial investigation into the properties of SD using
synthetic data. Finally, we extend our investigation to encompass two distinct modalities,
namely images and text. Employing various pre-trained backbones, we conduct experiments
across 6 different scenarios, in terms of the number of samples and classes considered.
Additionally, we conduct cross-domain experiments by training models on one dataset and
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Figure 1: Learning to Contrast Representations via the Silhouette Distance
Loss—Core Concept: t-SNE plots of the embedding spaces generated via op-
timising three different loss functions: the PN (Prototypical Network), SC (Su-
pervised Contrastive), and the introduced SD (Silhouette Distance) loss. Their
shared starting point (top figure) is a synthetic dataset comprising and 20 input
dimensions and three classes (coloured differently). The middle figures display
a snapshot of the optimisation process of a single-layer perceptron at epoch 50,
while convergence is observed after 100 epochs (bottom figures). Parameters a
and b correspond to intra-class distance (lower is better) and inter-class distance
(higher is better) from the nearest class, respectively. Our proposed SD loss,
highlighted in red, demonstrates superior efficacy in separating observations from
different classes into distinct clusters (see Section 3.4).

evaluating them on another dataset, within the same modality. The results consistently
demonstrate that our introduced SD loss method achieves performance levels comparable
to, and often surpassing, those of SC and Prototypical Networks. Importantly, the SD
loss shows significant performance advantages in harder classification tasks involving more
classes and less samples.
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2. Related Work

2.1. Few-Shot Classification

Few-shot classification refers to the learning paradigm that aims to develop computational
models capable of categorizing unseen samples from a few annotated examples (Wang et al.,
2020). Most few-shot learning algorithms can be grouped into three distinct categories based
on their learning strategy: optimization-based algorithms, metric learning approaches, and
hybrid methods.

Optimisation-based algorithms enable the rapid adaptation of models to new tasks with
minimal updates. Indicatively, Finn et al. (Finn et al., 2017) introduced MAML, a model-
agnostic optimisation approach focused on identifying a set of initial parameters capable
of improving the performance of the model on novel tasks using limited data and minimal
updates. This is achieved by iteratively fine-tuning or re-initialising the parameters of the
model across each task. Nichol et al. (Nichol and Schulman, 2018) developed Reptile, a
modified version of MAML. Their method drops the task-specific re-initialisation proposed
of MAML resulting in reduced computational load. Finally, Li et al. (Li et al., 2017)
introduced Meta-SGD that aims to find both optimal initial parameters and learning rate
for each task.

Metric-learning approaches, instead, aim to project the input into a common latent
space and learn a metric to discern between samples from new classes. The main benefit of
such approaches is their simplicity since they do not require fine-tuning for specific tasks.
Notably, Snell et al. (Snell et al., 2017) developed the Prototypical Networks that learn a
prototype for each class in a known metric space, where samples from the same class are
closer to their prototype than to prototypes of other classes. Sung et al. (Sung et al., 2018)
introduced the Relation Networks that attempt to capture the relationship between data
points by learning a deep distance metric that compares a small number of samples per
iteration. Vinyals et al. (Vinyals et al., 2016) utilised an attention mechanism to produce
a weighted nearest neighbour classifier given the support set of an episode. Finally, hybrid
methods combine the benefits of both optimisation-based and metric-learning approaches.
An indicative study under this category is Proto-MAML (Triantafillou et al., 2019), a
method that learns a prototype for each class in a meta-learning framework, allowing for
rapid adaptation to new tasks with limited data.

Unlike the methodologies mentioned above, this work focuses on learning representa-
tions in a few-shot manner and introduces a new contrastive learning loss inspired by the
silhouette cluster validity index that optimises for both inter-class separation and intra-class
cohesion. Hence, we aim to finetune self-supervised trained models to construct few-shot
embedding models for both image and text classification tasks.

2.2. Contrastive Learning

Contrastive Learning (CL) methods have gained significant attention within the study of
representation learning across several domains. Indicatively, Nakamasa and Keita (Inoue
and Goto, 2020) introduced a semi-supervised contrastive learning framework for text-
independent speaker verification. Qin et al. (Qin et al., 2024) proposed a novel distribution-
aware contrastive learning algorithm to address the inconsistencies in medical image seg-
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mentation. Pinitas et al. (Pinitas et al., 2022) employed supervised contrastive learning
for predicting human affect by relying on multiple modalities of user input such as facial
expression and physiology.

Although research at the intersection of few-shot learning (FSL) and contrastive learn-
ing (CL) has been active in recent years, the literature remains relatively sparse. Liu et
al. (Liu et al., 2021) used CL with noise contrastive estimation to develop a few-shot
embedding model for image classification. Chen et al. (Chen et al., 2022) proposed Con-
trastNet, a contrastive learning framework aimed at addressing overfitting in few-shot text
classification. Zhen et al. (Zheng et al., 2022) introduced mixed-supervised hierarchical
contrastive learning to differentiate videos at various levels and employed weak supervision
to align discriminative temporal clips or spatial patches. Lastly, Jian et al. (Jian et al.,
2022) combined supervised CL with standard masked language modelling loss in prompt-
based few-shot learners across 15 diverse language tasks. In this paper, we introduce a new
contrastive learning loss based on a clustering validity metric. We showcase the robustness
of the proposed method across dissimilar datasets and few-shot learning settings.

2.3. Learning via Silhouette Score

While the Silhouette score is a widely used clustering validity index, research on Silhouette-
based optimisation objectives is limited. Minehan et al. (Minnehan and Savakis, 2018b)
introduced a simplified Silhouette score (Sil) as a regularisation term on cross-entropy loss
for improved image classification. The authors also (Minnehan and Savakis, 2018a) de-
veloped a framework combining Sil loss with a retraction onto the Grassmann manifold,
enhancing performance in smaller network architectures. Vardakas et al. (Vardakas et al.,
2024) introduced a deep learning clustering method incorporating a probabilistic Silhouette
score to improve clustering accuracy.

Unlike the works mentioned above, our proposed SD loss is differentiable in the embed-
ding space. It also considers the actual Silhouette score and calculates distances across all
samples. We show how the typical silhouette score is converted into a smooth loss suitable
for few-shot representation learning without the need for additional optimisation objectives.

3. Method

3.1. Problem Setting

Few-shot classification aims to teach models to adapt to new, unseen categories with min-
imal labeled examples. We define Dtrain, Dval, and Dtest as the non-overlapping training,
validation, and test sets, respectively. In each iteration, termed episode or task, data is
drawn from Dtrain, Dval, or Dtest for training, validation, or test. Each episode involves
N classes (referred to as N -way) and K samples per class (referred to as K-shot). Within
an episode, a support set (S) with labeled samples for training and a query set (Q) with
labeled samples for evaluation are defined. The model is then trained to classify samples
in the query set based on insights gained from the support set. Formally, we denote the
i-th sample in the support and query sets as (xsi , y

s
i ) and (xqi , y

q
i ), respectively. It’s worth

noting that both N (classes) and K (samples/shots) are hyperparameters affecting the few-
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Figure 2: The overall setting of our evaluation process. S and Q represent the support and
query sets, respectively. We first extract embeddings using a pre-trained frozen
feature extractor. Following this step we pass the extracted embeddings through
a trainable projection layer, and perform L2 normalisation. Finally we optimise
on the tested loss functions using the resulting S and Q sets.

shot setting’s difficulty, increasing the number of comparisons and reducing support set
information per episode, respectively.

3.2. Representation Components

The overall methodology employed in this paper is illustrated in Figure 2. In the context
of representation learning an encoder model refers to a neural network architecture capable
of projecting high-dimensional data into a lower-dimensional latent space. Therefore, post-
training, it serves as an efficient coding function, that generates low-dimensional high-level
representations of the input space. In this work, we test the predictive power of the learnt
representations within the domain of few-shot learning across two modalities (image and
text). We employ 4 different backbones (2 for each modality) which are then finetuned to
tackle few-shot learning problems. The first encoder, employed in both the text and image
classification tasks, is the base version of CLIP (Radford et al., 2021), with a patch size of 16
and an embedding size of 512 in both scenarios. When it comes to the image classification
tasks the second tested encoder is the small version of DINOv2 (Oquab et al., 2023), with a
patch size of 14 and an embedding size of 384. In the case of text encoders, we also test the
base uncased version of BERT (Devlin et al., 2018) with an embedding size of 768. During
the finetuning phase, a ReLU-activated layer is added on top of the frozen backbones which
is optimised by the learning objectives described in the next Section (see Section 3.3). The
trainable layer is of the same dimension as the backbones’ output while L2-norm is applied
to project the embeddings on the unit sphere.

3.3. Learning Objectives

The primary contribution of this paper lies in introducing a supervised contrastive learn-
ing (SCL) loss derived from the silhouette score for constructing representations capable of
learning few-shot classification tasks. In particular, we first employ self-supervised trained
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models to extract representations for each sample. The extracted embeddings are then fine-
tuned via the Silhouette Distance (SD) Loss within a few-shot classification setting. The
proposed loss is compared against two additional optimisation objectives namely Prototyp-
ical Network (PN) Loss and Supervised Contrastive (SC) Loss.

3.3.1. Prototypical Network Loss

The Prototypical Network loss, which serves as the first baseline, was first introduced by
Snell et al. (Snell et al., 2017). Using that loss, the authors aim to learn a metric space
in which classification can be performed by computing the distances between the query
samples and the prototypes derived for each of the N classes within the support set. The
Prototypical Network loss is defined as

LPN = − 1

|Q|
∑

(xqi ,y
q
i )∈Q

Nq∑
n=1

(yqi = n) log(pθ(y
q
i = n|xqi )), (1)

where pθ(y
q
i = n|xqi ) = softmax(−d(fθ(x

q
i ), c

s
n) is the probability of a query sample xqi to

fall into the class n and csn = 1
|Sn|

∑
(xsi ,y

s
i )∈S(ysi = n)fθ(x

s
i ) is the prototype of class n.

It should be noted that d(·) corresponds to the Euclidean distance, fθ(·) represents the
learnable embedding functions and |Sn| is the number of samples of class n in the support
set. Finally, |Q| is the cardinality of the query set.

3.3.2. Supervised Contrastive Loss

The optimisation objective of SC (Khosla et al., 2020) is to learn representations that
make positive pairs (i.e. samples with the same label) more similar and negative pairs
(i.e. samples with different labels) more dissimilar by, respectively, minimising the distance
between representations of positive samples and maximising the distance between negative
samples. The minimisation of this loss yields distinct and separable representations for each
class. Inspired by previous work in few-shot representation learning for classification (Liu
et al., 2021)(Section 2.2) we formulate SC as follows:

LSC =
1

|S|
∑
s∈S

−1

|P qs |
∑
p∈P q

s

log
exp(rs · rp/τ)∑
q∈Q exp(rs · rq/τ)

, (2)

where S is a set that includes all samples in the support set and P qs is the set that includes
only the query set samples that are assigned to the same class as s while q ∈ Q denotes
any element in the query set. With rs, rp and rq we denote the latent representations
produced from a function fθ that samples xs, xp and xq, respectively. Finally, τ stands for
a non-negative temperature hyperparameter that transforms the representation similarity
distribution. Finally, s, p and q correspond to the index of the current support set sample,
a query set sample positive to the current support sample and a sample in the query set,
respectively. As it can be discerned from Eq. 2, SC primarily focuses on creating dissimilar
class representations.
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3.3.3. Silhouette Distance Loss

In a supervised context, the Silhouette score is adapted to encourage representations that
not only consider the separability of classes but also the cohesion within each class. The
Silhouette Distance (SD) loss as introduced here evaluates the quality of clustering patterns
based on labels by measuring the average Euclidean distance within the same class (intra-
class cohesion) and the average nearest-class Euclidean distance (inter-class separation).
The term “Silhouette Distance” was chosen because the loss function draws inspiration from
the silhouette score, providing an intuitive understanding of its operation. While it does
not meet the criteria to be classified as a metric distance, it can be considered a non-metric
distance, similar to cosine distance. The minimisation of this loss yields representations that
consider both the separability of classes and the compactness within each class. Formally,
the SD loss is defined as:

LSD =
1

|Q|
∑
q∈Q

1− Sil(q, S)

2
, (3)

where

Sil(q, S) =
b(q, S)− a(q, S)

maxδ{a(q, S), b(q, S)}
(4)

denotes the silhouette score. Given a query sample (xq, yq), a(q, S) corresponds to the
average distance between the representation of xq and the representations of all the support
set samples xs that have label ys = yq. Furthermore, b(q, S) is the average Euclidean dis-
tance between the representation of xq and the nearest support set class. maxδ{a(·), b(·)} =
max{a(·), δ} when b(·) ≤ a(·) and maxδ{a(·), b(·)} = b(·) when b(·) > a(·) ensuring that S(·)
is differentiable for all samples. δ is a small scalar value guaranteeing numerical stability
when a(·) = b(·) = 0 and is empirically set to 0.001. It is important to note that we apply
L2 normalisation to all embeddings (see Fig 2). This normalisation ensures that the result-
ing Euclidean distances are proportional to cosine distances, making them approximately
equivalent. (Qian et al., 2004)

3.4. Analysing the behaviour of LSD

This section aims to provide a deeper insight into the behaviour of the Silhouette Distance
Loss during optimisation. Hence we primarily focus on the two main components that
constitute the SD loss, namely inter-class and intra-class distance. In particular, we generate
two synthetic classification scenarios that vary in terms of class separation. The first scenario
focuses on a setting where there is a clear separation between classes while the second
scenario features slight to no separation across classes. Moreover, we train a simple ReLu
layer with L2-normalised activations on both scenarios by focusing on either one or both
components of the SD loss. It should be noted that the generation process creates clusters
of points normally distributed (σ = 1) on vertices of a 20-dimensional hypercube. The class
separation parameter h is a multiplicative factor that controls the size of the hypercube.
In this experiment, h is set to 0.9 and 2 for the No Separation and the Clear Separation
scenario, respectively.
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Figure 3 showcases the influence of each component on the properties of the latent space.
Specifically in the clear separation scenario where the data generation process yields well-
separated classes, it is evident, both visually and numerically (silhouette scores), that the
separation is retained across both components of the SD loss. On the other hand, in the no
separation scenario, the role of each component is clearer. The intra-class distance yields
more tight yet less separated clusters and the inter-class distance results in better separated
yet less cohesive representation clusters per class. The limitations of these individual com-
ponents are also more apparent. While there is some enhancement of clustering compared
to the initial space, as highlighted by silhouette scores, it is not as remarkable as observed in
the prior situation. Overall, the SD loss optimisation leads to higher quality clusters than
the initial state, as indicated by silhouette scores in both scenarios. However, the cluster
shape and separability are closely tied to the input space’s geometrical properties.

An additional analysis involves investigating the differences between the representations
learned by optimising across all tested losses on synthetic data. Once again, we follow the
same data generation process, however, in this case we set the class separation parameter
to h = 1.1. It is evident from Figure 1—presented earlier in the introduction of the paper—
that all losses facilitate learning discriminating representations in a supervised setting. We
argue, however, that LPN focuses on finding a boundary between the query sample and its
corresponding prototype, thus acting as a cross entropy minimisation objective. Further-
more, LSC places a primary emphasis on creating separable clusters for each class whereas
LSD considers the overall clustering quality resulting in cohesive and separable representa-
tion clusters. This is also illustrated in Figure 1 where SD marks the lowest intra-class and
the highest inter-class distance.

4. Experiments

4.1. Datasets

We conduct experiments on four datasets in total: two for text classification (Banking77
and Clinic150) and two for image classification (FC100 and mini-Imagenet). Specifically,
Banking77 (Casanueva et al., 2020) is a fine-grained dataset specific to single-domain
banking for intent classification. It consists of 13083 customer service queries labelled with
77 classes, in which some categories are similar and may overlap with others. Clinic150
(Larson et al., 2019) contains 150 classes and 23, 700 examples across 10 domains. It features
22, 500 user utterances evenly distributed in every class and 1, 200 out-of-scope queries.
We discard out-of-scope examples and only use 22, 500 data points. Shifting to image
classification datasets, FC100 (Oreshkin et al., 2018)—also known as Fewshot-CIFAR100—
consists of 60, 000 samples labelled with 100 classes (600 samples per class). A common
split consists of 60 categories for training, 20 categories for validation and 20 categories
for testing. The RGB images of FC100 are resized to 224x224 pixels for the experiments
presented here. Finally, mini-Imagenet (Vinyals et al., 2016) is a subset of Imagenet
consisting of 100 categories; each category contains 600 samples. These categories are split
into train, validation and test sets with 64, 16 and 20 classes, respectively, following the
same partition as (Liu et al., 2021). Once again the RGB images are resized to 224x224
pixels. The detailed statistics of all four datasets employed in this paper are shown in
Table 1.
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Figure 3: Analysis of the SD loss components, visualised with t-SNE plots, along with
their respective silhouette scores in two scenarios. Initial state corresponds to
the dataset input space. Intra-class and inter-class, respectively, refer to the
projection of data optimised for intra-class distance minimisation and inter-class
distance maximisation. Silhouette refers to a latent space that minimises the sil-
houette distance. It can be observed, both visually and through silhouette scores,
that using individual components as loss functions slightly improves the cluster-
ing of different classes within the embedding space. However, when combined
into the SD loss they exhibit notable enhancements (rightmost t-SNE plots).

Table 1: High level statistics of the four datasets used in this paper. For the two text
datasets (top two rows), the size column refers to the average sentence length.
For the two image datasets (bottom two rows), instead, it refers to the number of
colour channels, width and height of images.

dataset #samples size #train / valid / test

FC100 (Oreshkin et al., 2018) 60, 000 3x224x224 60 / 20 / 20
mini-Imagenet (Vinyals et al., 2016) 60, 000 3x224x224 64 / 16 / 20

Banking77 (Casanueva et al., 2020) 13, 083 12 25 / 25 / 27
Clinic150 (Larson et al., 2019) 22, 500 9 50 / 50 / 50

4.2. Experiment Protocol

In this initial study, we compare models optimised by the losses mentioned in Section 3.3,
using the N -way K-shot FSL evaluation setting. For each episode, we randomly sample N
classes and K samples per class for both training and validation. Following best practices
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Table 2: Image classification: The 5-way, 10-way and 20-way 1-shot and 5-shot image
classification mean accuracy on the FC100 and mini-Imagenet datasets obtained by
Prototypical Network Loss (PN), Supervised Contrastive Loss (SC) and Silhouette
Distance Loss (SD). The bold values indicate the highest absolute accuracy while
the underlined values demote which methods perform on par with SD based on
95% CI.

Method Backbone
FC100 mini-Imagenet

5-way 10-way 20-way 5-way 10-way 20-way
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

PN
CLIP

42.56 65.76 38.26 55.53 35.80 48.99 80.34 93.67 73.07 91.13 71.48 88.86
SC 48.34 69.83 40.19 58.83 37.23 51.67 84.46 94.43 77.82 90.19 71.45 89.11
SD (ours) 53.14 62.14 43.79 59.89 39.05 53.83 84.52 94.54 69.97 91.07 76.83 90.5

PN
DINOV2

54.80 74.70 43.77 65.94 41.07 60.11 86.22 94.73 79.17 92.86 74.31 91.71
SC 54.84 75.12 44.45 64.19 40.73 59.56 88.16 96.10 81.63 94.59 79.05 92.78
SD (ours) 44.26 74.6 42.98 65.38 42.74 60.68 84.58 96.02 81.59 94.44 78.90 93.21

Table 3: Text classification: The 5-way, 10-way and 20-way 1-shot and 5-shot text clas-
sification mean accuracy on the Banking77 and Clinic150 datasets.

Method Backbone
Banking77 Clinics150

5-way 10-way 20-way 5-way 10-way 20-way
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

PN
BERT

60.21 82.63 50.91 75.46 47.20 70.52 78.76 95.15 70.46 92.35 64.05 89.50
SC 66.94 87.40 61.62 79.80 55.59 70.68 85.22 96.55 77.35 92.55 69.37 90.89
SD (ours) 60.94 87.52 64.71 83.45 61.22 79.24 87.74 96.51 83.34 94.72 77.47 92.92

PN
CLIP

72.94 89.77 65.41 84.41 61.72 79.95 78.14 96.48 71.76 94.27 73.33 92.96
SC 78.41 91.78 71.25 86.67 66.46 80.26 78.20 96.46 80.06 95.37 72.74 92.91
SD (ours) 82.32 91.46 74.43 87.46 69.62 84.32 90.08 97.47 82.23 95.74 77.82 93.8

from earlier studies (Chen et al., 2022; Liu et al., 2021), we report results on 5-way using both
1-shot and 5-shot settings, and we extend this evaluation protocol for the more challenging
10-way and 20-way settings.

The models are trained using a protocol that stops training after 10 epochs (or 60-
300 episodes, depending on the setting) if there is no improvement in validation accuracy,
returning the best-performing model.SGD is used for optimisation, with a learning rate
scheduler that halves the learning rate every 5 epochs. The optimal learning rate varies
by model and setting, with values between α ∈ (10−3, 10−1) benefiting SD, while in other
configurations, the optimal range is α ∈ (10−6, 10−3).

All hyperparameters are selected via a greedy search on the validation set. The perfor-
mance of the models is evaluated in terms of accuracy score following the evaluation protocol
of prototypical networks to promote a fair comparison across the presented methodologies.
We repeat the model training experiments 5 times and we sample 1, 000 test episodes per
run. All reported significance tests are measured at 95% confidence level (CI) with p < 0.05.

4.3. Few-Shot Learning

The proposed methodology is tested extensively across four datasets and 6 few-shot settings.
Table 2 showcases the average accuracy of the models for the two image datasets and
backbone architectures employed. SD performs on par with the top-performing models in 3
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out of 12 settings while achieving the highest accuracy in the majority of settings (i.e. 7 out
of 12 settings; significantly outperforming both baselines in 5 out of 7 settings) in the FC100
dataset. Furthermore, SC marks significantly higher accuracy than SD only in 2 settings
while PN performs on par with SD only in 1 setting. Observing the performances obtained
in the mini-Imagenet dataset, once again, SD achieves the same levels of accuracy with
the best models in 5 out of 12 settings while achieving the highest accuracy in those settings
(significantly outperforming both baselines in 3 out of 5 settings). SC performs on par with
SD in half (6 out of 12) of the settings while it significantly outperforms the latter in 2
settings. PN performs on par with SD only in a few cases (2 out of 12 settings) while it
does not manage to outperform it in any setting.

Table 3 illustrates the average accuracy of the models obtained in text classification
tasks. When it comes to the Banking77 dataset, SD performs on par with the best-
performing models only in 1 case while it marks the highest accuracy in the vast majority
of settings (i.e., 10 out of 12). SC performs on par with SD twice while it outperforms it
significantly only once. PN once again performs on par with SD in 2 settings and does not
manage to outperform it. Similarly, in the Clinics150 dataset, SD achieves the highest
accuracy in the vast majority of settings (i.e., 11 out of 12) performing significantly higher
than the rest of the models in this dataset. SC performs on par with SD only in 1 setting
while PN does not outperform or perform on par with SD in any setting.

Importantly, SD loss tends to outperform other optimisation objectives as the number of
classes (N) increases. In tasks with a higher number of classes, such as 20-way classification,
distinguishing between many categories becomes more difficult. Unlike PN, that aims to
find decision boundaries where the query samples closer to their prototypes, and SC, which
focuses on creating discriminative representations per class, SD addresses both within-
class cohesion and between-class separation. This dual focus helps the model better define
boundaries between many classes, leading to higher classification accuracy.

4.4. Testing Across Datasets

To further assess the quality of the representations learned we also perform experiments
across datasets using the models trained on dataset A to predict samples from dataset B
(A→ B). In particular, we focus on the 5-way and 20-way settings since they are the most
common and most difficult scenarios, respectively. Table 4 showcases the average accuracy
of the models across image datasets and backbone architectures. When we evaluate the
capacity of the FC100 trained models to test mini-Imagenet dataset (see FC100→mini-
Imagenet) we observe that SD performs on par with the best-performing models in 1 out
of 8 settings marking the highest accuracy in half (4 out of 8) of the settings. SC performs
on par with SD in 3 settings (significantly higher in 2) while PN performs on par with SD
in 3 settings. When it comes to mini-Imagenet→FC100 SD performs on par with the
best models in 2 settings and achieves the highest accuracy in 3 settings. SC performs on
par with SD in 2 settings while it significantly outperforms the latter in 3. PN performs on
par with SD in half of the settings (4 out of 8).

In a similar vein, Table 5 showcases the average accuracy of the models across text
datasets and backbone architectures. Particularly, in the case of Banking77→Clinics150
SD marks the highest accuracy in most settings (5 out of 8) yielding significantly higher
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Table 4: Image Classification Across Datasets: The 5-way and 20-way (1-shot and 5-
shot) image classification mean accuracy on experiments across datasets obtained
by Prototypical Network Loss (PN), Supervised Contrastive Loss (SC) and Sil-
houette Distance Loss (SD). The right arrow (→) points at the dataset used for
testing. The bold values indicate the highest absolute accuracy while the under-
lined values demote which methods perform on par with SD based on 95% CI.

Method Backbone
FC100→mini-Imagenet mini-Imagenet→FC100
5-way 20-way 5-way 20-way

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

PN
CLIP

77.66 93.85 71.09 88.60 46.96 66.64 34.24 49.24
SC 75.44 94.18 71.35 88.99 49.90 67.07 32.45 48.06
SD (ours) 82.67 89.70 71.90 89.65 46.38 63.09 35.86 51.44

PN
DINOV2

82.10 94.75 71.60 91.82 54.12 74.43 41.34 59.59
SC 82.44 94.90 72.64 92.26 57.90 74.51 41.99 59.35
SD (ours) 74.12 94.86 72.89 91.51 52.14 74.46 41.76 60.47

Table 5: Text Classification Across Datasets: The 5-way and 20-way (1-shot and 5-
shot) text classification mean accuracy.

Method Backbone
Banking77→Clinics150 Clinics150→Banking77
5-way 20-way 5-way 20-way

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

PN
BERT

78.78 95.57 62.88 89.84 59.76 80.01 46.1 67.86
SC 82.4 96.21 64.0 90.48 60.34 80.68 46.88 69.32
SD (ours) 80.32 96.16 66.53 91.63 61.92 81.77 50.88 71.73

PN
CLIP

78.62 97.1 69.61 93.14 69.86 87.57 59.02 77.38
SC 86.54 97.44 72.55 93.69 72.64 88.46 59.45 78.5
SD (ours) 83.92 97.64 73.97 93.83 72.36 88.6 60.52 79.28

performances than the other models in 3 settings. SC performs on par with SD in 3
settings while significantly outperforming it only once while PN performs on par with SD in
2 settings. When it comes to Clinics150→Banking77 once again SD marks- statistically
the same accuracy with the best model in 1 setting and marks the highest accuracy in
the vast majority of settings. SC and PN perform on par with SD in 6 and 4 settings,
respectively, but they do not outperform it significantly.

Once again, the capacity of the proposed SD method is more evident in the more chal-
lenging 20-way scenario. SD performs on par or even outperforms the other two losses in
15 out of 16 settings with SC performing on par or better than the former just in 7 out of
16 cases. PN marks the worst performance in the 20-way scenarios since it performs on par
with SD in 5 settings and it does not manage to outperform any of the methods in any of
the 20-way settings.
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5. Discussion

This work introduced a novel contrastive loss based on silhouette score and investigated the
potential of this loss in handling few-shot classification tasks. In particular, we compare SD
with SC and PN losses across different modalities and datasets. The core findings indicate
that the SD encoders yield more robust few-shot learners. A worthwhile discussion is our
choice of not applying any data augmentation in this paper. We particularly decided to
omit this step since our backbone models are pretrained in a self-supervised manner and
thus are robust across an array of augmentations. However, it is worth exploring whether
data augmentations based on feature manipulation such as the addition of noise and feature
gating can be beneficial for the models.

Another aspect worth addressing involves the selection of silhouette score over other
clustering validity indexes such as Calinki-Harabasz (Caliński and Harabasz, 1974) and
Davies-Buldin (Davies and Bouldin, 1979) for representation learning. Silhouette is inter-
pretable which, in turn, makes it advantageous for evaluating the training process (loss
value inspection). It can also be easily converted to a smooth loss function suitable for
gradient-based optimization. Lastly, according to previous research (Arbelaitz et al., 2013)
silhouette can be regarded as the most robust and resilient clustering validity index.

Although, we can argue with relative confidence that our approach achieves SOTA per-
formance in mini-Imagenet 5-way settings and FC100 5-way 5-shot among the metric and
contrastive learning approaches and performs on par with the SOTA in the 5 way-5 shot
setting of Clinics 150 (Hu et al., 2023; Liu et al., 2021), we particularly refrain from making
such claims. This decision stems from the challenges we encountered in reproducing the
results of other methods. Factors such as computational constraints and code availability
posed significant obstacles in our attempts to validate or compare against existing bench-
marks such as CAML and BAVARDAGE (Fifty et al., 2023; Hu et al., 2023). Additionally,
most of the representation learning papers that focus on few-shot learning tasks usually
treat the representation learning objective as an auxiliary loss and not as the main optimi-
sation objective (Chen et al., 2022; Liu et al., 2021). Consequently, our focus remains on
the insights gained from our approach, and comparison with methodologies that optimise
for similar objectives.

We foresee several important directions for future research based on the results obtained
in this paper. First, it is essential to test the efficacy of the proposed loss in predicting
other modalities such as sound and graph-based structures. Another crucial area involves
exploring the potential of the proposed loss as an auxiliary objective in other few-shot
learning algorithms to improve adaptability and performance across various domains. We
also plan to assess our method’s effectiveness in producing representations for tasks like
classification, segmentation, and preference learning. Additionally, a comprehensive analysis
is needed to evaluate the behavior of the proposed loss with data imbalances and noise.
Despite these open research directions, we highlight that the introduced loss is versatile
and applicable to any representation learning domain where the downstream task can be
framed as a classification problem.
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6. Conclusion

This paper introduced the Silhouette Distance Loss, a loss function that encourages rep-
resentations to form tight clusters for samples that belong to the same class (e.g., same
object) and large separations between representation clusters from different classes. By
leveraging pre-trained backbone models, we were able to learn high-level representations
that accurately classify unseen classes across 6 different few-shot image and text classifi-
cation settings and 4 different datasets. Comparing the performance of the proposed loss
against the supervised contrastive loss—the standard optimisation objective for supervised
contrastive learning—we observe that the former yields models that are superior, especially
when the number of classes increases, by constructing tight and separable representation
clusters. These results hold even in cases where the train and test data come from different
datasets. While our initial findings already suggest that the method is generic and appli-
cable to any few-shot classification task, its promise and full potential remains to be tested
across more diverse datasets and downstream tasks.
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