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Abstract

We are concerned with the problem of identifying samples with noisy labels in a given
dataset. Using the predictions of a well-generalizing model to flag incorrectly predicted labels
as noisy is a known method but it is not considered competitive. At the same time, it has
been observed recently that gradient descent fits clean samples first, and the noisy samples
are memorized later. Inspired by related theoretical results, we revisit the idea of using the
predictions of an early stopped model to classify samples as noisy or clean. We offer two key
improvements that allow this strikingly simple approach to outperform some well-known
methods. First, we use the model over its own training set to directly exploit the so-called
clean priority learning phenomenon. Second, we use an ensemble of model checkpoints
around the early stopping point to reduce the variance of the predictions. We also introduce
a novel method that makes use of the same early stopped model ensemble, but classifies
samples based on the per-sample gradient of the loss, motivated by recent theoretical results
on clean priority learning. Our approaches only passively observe a normal training run
and collect checkpoints. No extra input samples are added, no thresholds are tuned, and
no pre-trained models are used. Through empirical evaluations, we demonstrate that our
methods are competitive with other approaches from related work for both detecting noisy
samples and for noise-filtered training.

Keywords: Limited label access

1. Introduction

We are concerned with the problem of identifying corrupted labels in the training dataset of
a given supervised classification task (Northcutt et al., 2021; Pleiss et al., 2020). Solving
this problem has several applications. For example, we can efficiently improve the labeling
of noisy datasets if we can focus only on problematic samples, or we can improve the
generalization of the trained model via removing noisy samples from the training set.

A naive and simple method to detect noisy samples is training a model with good
generalization, and labeling those examples noisy that the model predicts incorrectly. Variants
of this method (e.g., INCV (Chen et al., 2019)) are sometimes used as a baseline, but in
general this approach is not considered state-of-the-art (Northcutt et al., 2021; Pleiss et al.,
2020).

At the same time, results from other areas strongly suggest that well-configured early-
stopped training in itself is capable of filtering noise. This was shown both theoretically (Liu
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et al., 2023; Li et al., 2020) and empirically (Arpit et al., 2017; Dong et al., 2022). In these
works, the common observation is that in the early phases of training, gradient descent
mostly ignores the noisy samples, and memorization begins only in later stages eventually
resulting in overfitting. This has been observed even in the presence of large amounts of
label noise (Arpit et al., 2017; Dong et al., 2022).

These observations raise the question whether, if done right, early stopped models can be
used to identify noisy samples after all. A positive answer would be very desirable, because
that way, the training algorithm would require little or no modification and we could offer a
noise filtering approach that is very simple, natural, and efficient.

In order to answer this question, we revisit the naive method of using early stopped
models. We argue that they are indeed capable of predicting noisy samples well, even
outperforming some well-known baselines, but this requires attention to a number of details:

• The early stopped model needs to be used on its own training set, as opposed to an
independent set. This is acceptable methodologically because the task at hand does
not require us to clean independently sampled sets, the target is the training set.

• We need to use an ensemble of a small number of model checkpoints close to the early
stopping point. This helps us reduce the variance of the predictions, thereby increasing
accuracy.

• We need to consider the learning rate schedule of gradient descent carefully, because it
affects not only the generalization of the early stopped model but also its usability for
noise prediction.

Apart from using the prediction of the early stopped model ensemble directly, we also
introduce a more sophisticated approach directly inspired by the theoretical discussion of
Liu et al. (Liu et al., 2023). Instead of the prediction over a sample, this method is based on
the gradient of the loss over the given sample according to the bias parameters of the feature
layer (the layer before the logit layer) assuming the architecture under investigation has such
parameters. In particular, we use the observation that the sum of the partial derivatives of
these parameters is expected to be negative for clean samples and positive for noisy samples.

We conduct an empirical investigation where we explore the potential effects of learning
rate schedules and ensemble types, and we also present a comparison with related work over
the tasks of noisy label identification and noise-filtered training. We argue that the proposed
approach is competitive with the state-of-the-art, even with models that rely on external
information such as foundation models in the given domain.

1.1. Our Contributions

• We revisit the simple and natural method of using an early stopped model to identify
noisy labels in a classification dataset, and we propose a number of improvements that
make it competitive with state-of-the-art noise detectors.

• Inspired by theoretical results by Liu et al. (Liu et al., 2023), we improve the perfor-
mance of the early stopped models on certain identification tasks by using a novel
metric based on the per-sample gradient of the loss.
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• Based on our empirical evaluation, we argue that our methods are competitive on the
identification task and the filtered training task.

1.2. Related Work

Here, we focus only on those works that tackle the noisy label detection problem, where the
goal is to identify which training samples have corrupted labels in a given dataset.

There are learning-based methods that require training a model. For example, some meth-
ods train multiple models simultaneously to filter out noisy samples, like Co-teaching (Han
et al., 2018) or MentorNet (Jiang et al., 2018). INCV (Chen et al., 2019) uses multiple
iterations of cross-validation to randomly split the dataset and removes examples with large
loss values. CORES2 (Cheng et al., 2021) sieves out corrupted samples with the introduction
of a confidence regularizer. Confident Learning (Northcutt et al., 2021) selects samples with
corrupted labels by ranking samples based on the classification probabilities of a trained
model.

Observing training dynamics is also a commonly used strategy. O2U-net (Huang et al.,
2019) uses a model that cycles between over- and underfitting and also removes samples
with high average loss values. AUM (Pleiss et al., 2020) uses the difference between the logit
value of a sample’s assigned class and the highest logit value from the non-assigned classes
to identify noisy samples. The method of (Jia et al., 2023) trains a model on a dataset with
synthetic noise and then trains an LSTM network for noisy sample detection on the training
dynamics of the first model.

Another approach proposed by (Yu et al., 2023) assumes the availability of a small
amount of reliably clean data that can help find noisy samples by formulating the task as a
multiple hypothesis testing problem.

Recently a more data-centric way was proposed with SimiFeat (Zhu et al., 2022) that uses
a pre-trained model for feature extraction and assumes that samples with similar features
are more likely to share the same clean label.

In our approach, we do not rely on any external information apart from observing a
normal training run.

2. The Problem of Detecting Noisy Labels

We focus on the multi-class classification problem where the task is to find the parameters θ
of a feed-forward neural network f(·; θ) : X → [0, 1]C , where C is the number of classes, and
the value of f(x; θ) is the predicted probability distribution over the classes, given x.

We are given a dataset D = {(xi, yi)|i = 1, . . . , n} where xi ∈ X and yi ∈ {0, 1}C is
the one-hot encoded hard label. We assume that f is trained via solving the optimization
problem

arg min
θ

∑
(x,y)∈D

`(y, f(x; θ)), (1)

where `(y, f(x; θ)) is the loss function.

Ideally, all the (x, y) ∈ D samples are drawn i.i.d. from an underlying noise-free data
distribution p(x, y). However, in practice, datasets contain noise, which we model by
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assuming a noise distribution pnoisy 6= p. Following general practice, we assume that x is
drawn from the true marginal p(x) =

∑
y p(x, y) and only the label y is noisy, that is,

pnoisy(x, y) = pnoisy(y|x)
∑
y

p(x, y). (2)

Dataset D is modeled as the union D = Dclean ∪Dnoisy where Dclean and Dnoisy are disjunct,
and they contain samples drawn from p(x, y) and pnoisy(x, y), respectively.

The task of noisy label detection is to classify a given sample (x, y) ∈ D as noisy or
clean.

3. An Overview of Our Approach

As discussed before, our goal is to investigate whether the simple and natural approach of
using early stopped model checkpoints from a ‘vanilla’ training run can provide state-of-
the-art performance in detecting noisy labels. We can break this approach down into the
following three steps:

Training: Run a training algorithm on a noisy dataset D to find the optimal parameters
θ∗ of the model f(·; θ)

Checkpoint Selection: Select k model checkpoints θ1, . . . , θk from the training run

Noise Detection: Use all the k model checkpoints to classify each training sample as noisy
or clean, and output an ensemble decision for each sample

There are many details that need to be clarified and investigated. For example, what
is the role of the training algorithm hyperparameters, most importantly, the learning rate
schedule? How should we select the best k checkpoints? How exactly should we use a given
model checkpoint to classify a given sample as noisy or clean?

In the following sections, we discuss these issues. We start with the noise detection
methods in Section 4, where we present two possible ways of using a single, well-generalizing
model checkpoint to classify a sample as noisy or clean. In Section 5 we move on to the
problem of checkpoint selection, in the light of the applied training algorithm. Finally,
Section 6.2 studies the effect of the different ensemble hyperparameters such as size and
aggregation method.

4. Noise Detection

Here, we assume that we are given a model checkpoint θ and our task is to propose a method
for using the model f(·; θ) to predict whether a given sample (x, y) has a noisy label or not.

4.1. Prediction-based Method

Perhaps the simplest method for solving this task is to classify (x, y) as noisy if and only if
f(x; θ) 6= y. Our main contribution is that we show empirically that this simple and natural
method is surprisingly competitive when model selection is performed well.
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4.2. Bias Gradient Sum Sign (BGSS) Method

Here, we are directly inspired by ideas from Liu et al. (2023) where it was argued that the
per-sample gradients over noisy and clean samples tend to point in the opposite direction
in the case of uniform label noise during the early phases of learning, called clean priority
learning.

Like the prediction-based method, this method can be used without any parameter
tuning, as we explain later. The only difference is that, instead of the prediction of the
model, we will use a different function of the input sample and the model.

In the following, we will introduce this function that we shall call the bias gradient sum,
or BGS for short. We will argue that for a sample (x, y) and model parameter θ the sign of
BGS(x, y; θ) tends to be positive if the sample is noisy and negative if it is clean. We shall
call the BGS-based noise detection algorithm BGSS that stands for BGS Sign. Let us now
go into the details of the BGSS method.

4.2.1. Assumptions on the Network Architecture for BGSS

The architecture of f is assumed to follow the general practice in deep learning, namely we
assume that the output is computed using the softmax function over the vector of logits,
and the logits are computed using a fully connected layer from the feature vector. That is,

f(x) = softmax(z(x)), and z(x) = θzg(x) + θzb, (3)

where z(x) is the logit vector, g(x) is the feature vector, θz is the weight matrix of the logit
layer, and θzb is the bias vector of the logit layer. Furthermore, we assume that g(x) is given
by

g(x) = max(0, (G(x) + θgb)). (4)

In other words, g(x) is assumed to have a bias vector θgb as a parameter and ReLU activation
is applied. We do not make any further assumptions about earlier layers contained in G(x).
Note that pooling is often performed as well after the ReLU activation. For the sake of
simplicity of notation, we ignore the pooling layer here because it does not change the
discussion in any significant way (but we do not ignore it in our implementation).

4.2.2. The Sign of the Bias Gradient Sum

Our detection method is based on the gradient of the loss according to the feature layer bias
θgb in Equation (4). More precisely, we compute the sum of the partial derivative values
over the feature bias parameters, and we take the sign of this sum.

Let us introduce a name for this quantity for easier reference. For a sample (x, y),

BGS(x, y) =
∑
j

∂`(y, f(x; θ))

∂θgb,j
, (5)

where BGS stands for bias gradient sum.
We empirically find that the clean samples have negative BGS and the noisy samples

have positive BGS on average extremely reliably. In Figure 1, we illustrate the dynamics of
the average BGS value for the clean and noisy examples in a number of settings. Note that
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Figure 1: The average BGS of clean and noisy samples with uniform label noise with different
noise rates during training a ResNet-18 network on CIFAR-10. The training setup
is described in Section 6. The early stopping point is a few epochs after epoch
100 for all the noise rates.

the BGS curves begin to approach zero after the early stopping point, which is a few epochs
after epoch 100 for all the noise rates.

Let us apply the approach used in (Liu et al., 2023) to understand this empirical
observation better. The vector ∇θ`(y, f(x; θ)) is called the per-sample gradient of the loss
with respect to the neural network parameters θ. For a sample (x, y), let c(x) be the class
label of x such that yi = 1 if i = c(x), otherwise yi = 0. Then, assuming cross-entropy loss,
we have

∇θ`(y, f(x; θ)) = ∇θ − log f(x; θ)c(x) =

C∑
i=1

(f(x; θ)i − yi)∇θz(x; θ)i.
(6)

This expression was also used in (Liu et al., 2023). Now, the partial derivative according to
the bias of the jth feature θgb,j for a sample (x, y) using Equations (3), (4) and (6) is

∂`(y, f(x; θ))

∂θgb,j
=

C∑
i=1

(f(x; θ)i − yi)θz,ij1gj>0, (7)

where θz,ij is the weight between the ith logit neuron z(x; θ)i, and the jth feature g(x; θ)j .
Function 1gj>0 is the indicator function of the jth feature being ‘on’, in other words, the
corresponding ReLU being positive.

Let us introduce a shorthand notation θ̂ij = θz,ij1gj>0. We can now write

BGS(x, y) =
C∑
i=1

(f(x; θ)i − yi)
∑
j

θ̂ij . (8)
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Figure 2: Scatter plot, where one dot is defined by the BGS and BGSc∗(x) of a training
sample, and the BGSc∗(x) = BGS line. The data belongs to the early stopping
epoch during training a ResNet-18 network on CIFAR-10 with 20% uniform label
noise. For the training setup see Section 6.

In addition, let BGSi(x, y) denote the ith member of the sum.

If all the features are active (the indicator function is always on) then the sign of
the BGS does not depend on whether the example is noisy or not because in this case∑

j θ̂ij =
∑

j θz,ij , which does not depend on the sample (x, y) for any class i. In other
words, the only dependence on (x, y) is introduced by the fact that x determines which
features are active and which ones are turned off.

Let us now focus only on the logit of the true class c∗(x) of an example (x, y). We have
c(x) = c∗(x) if and only if the sample is clean. Now, BGSc∗(x)(x, y) has an opposite sign
for clean and noisy samples. For a clean example, where yc∗(x) = 1, the coefficient of the
true class is f(x; θ)c∗(x) − 1, based on Equation (8), which is non-positive. Similarly, for an
example with an incorrect label, where yc∗(x) = 0, the coefficient that belongs to c∗(x) is
f(x; θ)c∗(x), which is non-negative. This observation has also been made in Liu et al. (2023).

The remaining requirements for BGS(x, y) to be positive if and only if the sample is
noisy is to have

∑
j θ̂c∗(x)j > 0 and BGSc∗(x)(x, y) ≈ BGS(x, y). This is important, because

c∗(x) is unknown, but BGS(x, y) can be easily computed. We find that both of these rather
natural requirements are empirically supported, both implicitly (via the performance of the
BGSS method on the label noise detection task) and explicitly. Figure 2 illustrates this,
visualizing the relationship of BGS(x, y) and BGSc∗(x)(x, y) in an example scenario. Indeed,
the mass of the distribution is close to the BGS(x, y) = BGSc∗(x)(x, y) line and the decision
based on the sign of BGS separates the clean examples reasonably well.
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5. Training and Checkpoint Selection

Now that we have defined two methods for using a model checkpoint to filter noisy input
samples (Prediction and BGSS), we need to decide on what checkpoints to select from
the training. Here, our main insight is that the training algorithm, and in particular, the
learning rate schedule has a large influence on the utility for early stopped checkpoints for
noise identification.

Training setup. We experiment with the CIFAR-100 (Krizhevsky, 2009) dataset that
contains 60,000 images that belong to 100 classes. The network architecture we used was
ResNet-18 (He et al., 2016). Training was implemented with mini-batch SGD with a batch
size of 128 for each dataset. Since the learning rate schedulers we are focusing on behave
similarly on different learning tasks, we present only this setup here.

Learning rate schedulers. We experiment with three different learning rate schedules.
The multistep scheduler uses an initial learning rate of 0.1 which is divided by 10 after
epochs 100 and 150. The linear scheduler also sets the initial value of 0.1 that is linearly
decreased to 0.001 during 200 epochs. The restarted cosine scheduler applies identical
schedules for 5 consecutive 40 epoch intervals. In each interval a cosine scheduler decreases
the learning rate from 0.1 to 0.001. That is, the learning rate in epoch i ∈ {1, . . . , 200} is
(1− 0.001) · cos(πi/80) + 0.001.

Early stopping. We will indicate the early stopping epoch given by the checkpoint with
the best validation loss until the epoch when the validation loss has not improved for 20
consecutive epochs. To implement early stopping, we do not need a clean dataset. We use
a held-out validation set from the same noisy distribution. In the case of the multistep
scheduler, early stopping waited for at least the first learning rate drop. Note that we do
not actually stop training here at the early stopping epoch, we always complete the 200
epochs for the sake of the analysis.

5.1. Empirical Observations

Models from the memorization phase are useless. The results are shown in Figure 3.
We can observe that recall of noise detection dramatically decreases after the early stopping
point for both detection methods. This is because memorization causes the model to classify
more and more training examples correctly, eventually memorizing the entire training set,
and the model becomes useless for predicting noise.

The best generalizing model might be useless. The double-descent phenomenon in
time (Nakkiran et al., 2020) can be seen especially well in the case of the linear schedule.
Here, the model checkpoint with the best generalization is useless for detecting noise. The
restarted schedule acts very similarly to the linear schedule in each 40 epoch interval.

The important checkpoints coincide only for multistep. Most importantly, for
continuous schedules like the linear or the cosine schedule, the different critical points: early
stopping, best precision and best recall, might be far from each other. At the same time, in
the case of a well-calibrated multi-step scheduler these important points all coincide.
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Figure 3: CIFAR-100, 20% uniform noise, with three schedulers: multistep, linear, and
restarted cosine. Metrics of noise detection over the training data, when using the
model checkpoint at the given training epoch, are shown as a function of training
epochs for our two methods: Prediction and BGSS (see Section 4). Regarding the
CIFAR-100 training dynamics, the early stopping epoch and the maximum test
accuracy epoch over all the 200 epochs are also shown.

5.2. Design Decisions

We need a multistep scheduler. It is rather clear that our approach works best with
a learning rate scheduler where the best checkpoints according to the different metrics
(precision, recall, and F1 measure of noise detection, and test accuracy) coincide. This is
the case if the multistep scheduler is used.

We avoid the second descent. It is important that we need the first local early stopping
point, and not the best generalizing model. This is because the learning dynamics can
exhibit the double descent phenomenon in time (Nakkiran et al., 2020), and in this case, the
best generalization could be the result of the second descent. However, at that point, the
training data has already been memorized and generalization is due to the so-called benign
overfitting phenomenon (Sanyal et al., 2021; Bartlett et al., 2020).
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We aggregate over the best k models. Since the metrics are clearly rather noisy,
smoothing might be necessary. We select the best k models according to the validation loss
from the epoch checkpoints until the 20th epoch after the early stopping epoch (where 20
is the early stopping tolerance parameter). We then compute the predictions for all these
models and aggregate the result. The aggregation method can be either the mean of the
raw predicted values (the BGS or the predicted class distribution) or a majority vote. This
technique resembles temporal ensembling (Laine and Aila, 2017).

Table 1: Accuracy, F1 measure, precision and recall of several methods over different datasets
and noise distributions. Voting and mean ensemble aggregation is denoted by V
and M, respectively. The best result is highlighted in green and in boldface in each
setup. The two runner-up results are highlighted in yellow.

noise (%) 10% uniform 20% uniform 10% flip 20% flip

Acc. F1 Prec. Recall Acc. F1 Prec. Recall Acc. F1 Prec. Recall Acc. F1 Prec. Recall

C
IF

A
R

-1
0

ES-BGSS (T1) 0.961 0.828 0.733 0.952 0.957 0.897 0.861 0.936 0.951 0.796 0.684 0.953 0.951 0.886 0.833 0.947

ES-BGSS (T5-V) 0.979 0.902 0.858 0.951 0.974 0.935 0.930 0.939 0.974 0.881 0.819 0.954 0.970 0.929 0.907 0.952

ES-BGSS (T5-M) 0.972 0.873 0.797 0.965 0.972 0.930 0.911 0.950 0.958 0.821 0.716 0.963 0.960 0.907 0.862 0.957

ES-BGSS (T10-V) 0.985 0.924 0.922 0.925 0.976 0.938 0.959 0.917 0.982 0.913 0.895 0.933 0.975 0.938 0.941 0.936

ES-BGSS (T10-M) 0.977 0.892 0.835 0.958 0.974 0.936 0.929 0.943 0.964 0.841 0.751 0.955 0.963 0.913 0.876 0.953

ES-Prediction (T1) 0.961 0.835 0.731 0.972 0.956 0.897 0.833 0.972 0.966 0.851 0.754 0.976 0.965 0.919 0.867 0.977

ES-Prediction (T5-V) 0.975 0.884 0.814 0.966 0.968 0.923 0.885 0.964 0.979 0.901 0.838 0.975 0.975 0.941 0.909 0.976

ES-Prediction (T5-M) 0.977 0.892 0.828 0.966 0.969 0.925 0.891 0.962 0.980 0.907 0.849 0.973 0.976 0.944 0.914 0.975

ES-Prediction (T10-V) 0.983 0.915 0.887 0.946 0.973 0.934 0.923 0.945 0.986 0.931 0.901 0.963 0.981 0.954 0.943 0.966

ES-Prediction (T10-M) 0.983 0.918 0.890 0.947 0.974 0.935 0.926 0.945 0.987 0.935 0.906 0.965 0.981 0.954 0.943 0.965

C
IF

A
R

-1
00

ES-BGSS (T1) 0.922 0.695 0.576 0.875 0.866 0.732 0.616 0.904 0.907 0.648 0.521 0.857 0.887 0.738 0.693 0.789

ES-BGSS (T5-V) 0.951 0.771 0.736 0.809 0.921 0.828 0.738 0.943 0.945 0.753 0.686 0.833 0.917 0.788 0.809 0.769

ES-BGSS (T5-M) 0.941 0.744 0.665 0.844 0.906 0.805 0.695 0.957 0.927 0.702 0.593 0.860 0.906 0.773 0.753 0.794

ES-BGSS (T10-V) 0.951 0.725 0.833 0.642 0.949 0.872 0.893 0.852 0.955 0.769 0.796 0.743 0.913 0.759 0.865 0.676

ES-BGSS (T10-M) 0.942 0.731 0.688 0.779 0.939 0.860 0.804 0.924 0.932 0.708 0.621 0.824 0.906 0.765 0.767 0.764

ES-Prediction (T1) 0.903 0.665 0.513 0.943 0.735 0.600 0.432 0.982 0.904 0.653 0.509 0.908 0.889 0.756 0.677 0.855

ES-Prediction (T5-V) 0.934 0.732 0.622 0.888 0.770 0.636 0.468 0.993 0.932 0.710 0.616 0.837 0.901 0.758 0.745 0.772

ES-Prediction (T5-M) 0.939 0.744 0.650 0.872 0.853 0.729 0.581 0.980 0.936 0.722 0.640 0.828 0.905 0.763 0.764 0.762

ES-Prediction (T10-V) 0.945 0.727 0.734 0.720 0.919 0.824 0.733 0.941 0.944 0.713 0.734 0.693 0.896 0.706 0.823 0.618

ES-Prediction (T10-M) 0.945 0.717 0.757 0.682 0.929 0.837 0.781 0.903 0.948 0.725 0.759 0.694 0.898 0.707 0.835 0.612

T
in

y
Im

a
ge

N
et

ES-BGSS (T1) 0.791 0.472 0.317 0.921 0.833 0.682 0.550 0.898 0.745 0.393 0.259 0.815 0.736 0.524 0.410 0.724

ES-BGSS (T5-V) 0.839 0.543 0.381 0.944 0.878 0.752 0.634 0.923 0.799 0.462 0.317 0.851 0.786 0.588 0.479 0.760

ES-BGSS (T5-M) 0.804 0.497 0.336 0.953 0.865 0.734 0.605 0.933 0.739 0.403 0.263 0.870 0.749 0.554 0.430 0.779

ES-BGSS (T10-V) 0.873 0.599 0.440 0.935 0.902 0.789 0.695 0.912 0.838 0.506 0.367 0.818 0.819 0.617 0.536 0.726

ES-BGSS (T10-M) 0.810 0.504 0.343 0.952 0.874 0.747 0.622 0.934 0.739 0.404 0.263 0.873 0.755 0.563 0.438 0.787

ES-Prediction (T1) 0.646 0.363 0.222 0.994 0.653 0.534 0.365 0.995 0.674 0.377 0.234 0.975 0.686 0.552 0.387 0.966

ES-Prediction (T5-V) 0.668 0.378 0.234 0.995 0.667 0.545 0.375 0.995 0.699 0.398 0.250 0.983 0.706 0.569 0.403 0.968

ES-Prediction (T5-M) 0.695 0.398 0.249 0.994 0.689 0.560 0.390 0.994 0.732 0.425 0.272 0.978 0.732 0.590 0.426 0.962

ES-Prediction (T10-V) 0.706 0.407 0.256 0.995 0.705 0.574 0.404 0.994 0.741 0.434 0.279 0.977 0.742 0.600 0.436 0.962

ES-Prediction (T10-M) 0.735 0.432 0.276 0.992 0.739 0.603 0.433 0.992 0.775 0.466 0.307 0.971 0.774 0.629 0.469 0.952
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Table 2: Accuracy, F1 measure, precision and recall of several methods over different datasets
and noise distributions. ES-BGSS and ES-Prediction are our proposed methods.
The best result is highlighted in green and in boldface in each setup. The two
runner-up results are highlighted in yellow.

noise (%) 10% uniform 20% uniform 10% flip 20% flip

Acc. F1 Prec. Recall Acc. F1 Prec. Recall Acc. F1 Prec. Recall Acc. F1 Prec. Recall

C
IF

A
R

-1
0

ES-BGSS (T10-V) 0.985 0.924 0.922 0.925 0.976 0.938 0.959 0.917 0.982 0.913 0.895 0.933 0.975 0.938 0.941 0.936

ES-Prediction (T10-M) 0.983 0.918 0.890 0.947 0.974 0.935 0.926 0.945 0.987 0.935 0.906 0.965 0.981 0.954 0.943 0.965

AUM 0.971 0.870 0.791 0.966 0.966 0.919 0.882 0.960 0.971 0.869 0.798 0.954 0.958 0.896 0.888 0.905

CL (Cỹ,y∗) 0.960 0.806 0.780 0.835 0.940 0.849 0.850 0.848 0.960 0.815 0.761 0.877 0.949 0.876 0.860 0.892

CL (C+NR) 0.967 0.846 0.791 0.910 0.952 0.886 0.848 0.927 0.958 0.806 0.747 0.875 0.943 0.863 0.845 0.881

SimiFeat-V 0.957 0.821 0.701 0.990 0.962 0.912 0.847 0.989 0.956 0.818 0.696 0.992 0.958 0.905 0.839 0.982

SimiFeat-R 0.958 0.826 0.709 0.990 0.960 0.909 0.839 0.991 0.956 0.818 0.694 0.994 0.950 0.889 0.812 0.983

C
IF

A
R

-1
00

ES-BGSS (T10-V) 0.951 0.725 0.833 0.642 0.949 0.872 0.893 0.852 0.955 0.769 0.796 0.743 0.913 0.759 0.865 0.676

ES-Prediction (T10-M) 0.945 0.717 0.757 0.682 0.929 0.837 0.781 0.903 0.948 0.725 0.759 0.694 0.898 0.707 0.835 0.612

AUM 0.945 0.783 0.654 0.974 0.951 0.888 0.821 0.965 0.929 0.721 0.593 0.919 0.871 0.677 0.684 0.671

CL (Cỹ,y∗) 0.833 0.474 0.349 0.738 0.791 0.581 0.490 0.714 0.839 0.476 0.353 0.732 0.797 0.594 0.497 0.737

CL (C+NR) 0.844 0.518 0.377 0.828 0.817 0.648 0.530 0.832 0.847 0.507 0.374 0.789 0.797 0.592 0.496 0.732

SimiFeat-V 0.847 0.568 0.398 0.989 0.870 0.754 0.611 0.986 0.844 0.556 0.388 0.983 0.854 0.723 0.586 0.944

SimiFeat-R 0.764 0.462 0.300 0.997 0.790 0.658 0.491 0.998 0.764 0.456 0.296 0.994 0.769 0.629 0.464 0.976

T
in

y
Im

ag
eN

et

ES-BGSS (T10-V) 0.873 0.599 0.440 0.935 0.902 0.789 0.695 0.912 0.838 0.506 0.367 0.818 0.819 0.617 0.536 0.726

ES-Prediction (T10-M) 0.735 0.432 0.276 0.992 0.739 0.603 0.433 0.992 0.775 0.466 0.307 0.971 0.774 0.629 0.469 0.952

AUM 0.847 0.561 0.395 0.966 0.852 0.722 0.579 0.959 0.837 0.531 0.375 0.913 0.790 0.576 0.484 0.711

CL (Cỹ,y∗) 0.734 0.332 0.223 0.652 0.688 0.464 0.353 0.674 0.736 0.340 0.228 0.671 0.700 0.468 0.363 0.660

CL (C+NR) 0.751 0.389 0.259 0.784 0.732 0.538 0.411 0.781 0.746 0.374 0.249 0.749 0.700 0.466 0.363 0.653

SimiFeat-V 0.847 0.541 0.389 0.886 0.869 0.716 0.632 0.826 0.842 0.527 0.378 0.867 0.843 0.662 0.584 0.764

SimiFeat-R 0.554 0.312 0.185 0.999 0.596 0.497 0.331 0.998 0.551 0.310 0.184 0.996 0.577 0.482 0.320 0.982

6. Empirical Evaluation of Noise Detection

Armed with the design choices presented so far, we explore the hyperparameters of ensemble
smoothing, and perform an exstensive comparison of our approach to several competing
solutions for noise detection from related work over different noise models and datasets.

6.1. Experimental Setup

The setup was the same as in Section 3, but here we used only the multistep scheduler. We
experiment with three datasets: CIFAR-10 and CIFAR-100 (Krizhevsky, 2009), and Tiny
ImageNet (Le and Yang, 2015). The CIFAR datasets contain 60,000 images that belong
to 10 and 100 classes, respectively. The Tiny ImageNet dataset contains 100,000 images
divided into 200 classes.

The presented metrics are based on a single run in each setup. Our complete empirical
evaluation took approximately 1000 GPU hours. We used mainly NVIDIA RTX 3070 and
A6000 GPUs. For efficiency, the BGS values were computed during the underlying training.
That is, we used live gradients on training batches from the given epoch and not saved
checkpoints.
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Noise models. On all the datasets, we implemented the two most common noise models
applied in related work. These were the uniform model and the flip model (also called
symmetric and asymmetric, respectively). In the uniform model pnoisy(y|x) is selected to be
the uniform distribution over the labels other than the ground truth label in the original
clean dataset. In the flip model the labels of the noisy samples are shifted by one class
relative to the ground truth labels. That is, if the ground truth class is c then the noisy
class will be c+ 1 mod C, where C is the number of classes.

6.2. Ensemble Smoothing

So far, we have focused only on predictions based on individual models. Here, we explore
the benefit of using more than one model in an ensemble fashion.

Given an ensemble size k > 0, we define the members of the ensemble to be the top-k
models based on validation loss, selected from the epoch checkpoints up until 20 epochs
after the early stopping point (that is, from all the available epochs after the early stopped
training).

There are two hyperparameters: the number of epochs k used for smoothing, and the
aggregation method. Table 1 compares the performance of the combination of three values
of k for the number of top-k epochs: 1, 5, and 10, and two aggregation methods: mean and
voting.

The detection methods combined with the model selection method described above define
a noise detection solution. From now on, we shall call these solutions ES-Prediction and
ES-BGSS, where ES stands for early stopping.

Top-10 is a good choice. In general, aggregating a larger number of epochs seems to
offer a better performance. However, this number has a limit, because we need high quality
models from around the early stopping point. Indeed, for CIFAR-100 using only the top-5
models is sometimes preferable. In this sense, using the top-10 models is a robust choice.

The aggregation method. For ES-BGSS the voting method is clearly preferable, while
for ES-Prediction the mean is consistently better. This could be due to the fact that
ES-BGSS works with gradients that could have more extreme outliers than the softmax
vector has that is used by ES-Prediction.

Comparing ES-BGSS and ES-Prediction. ES-Prediction is better in terms of recall
overall, and tends to be weaker in precision. This is consistent with Figure 3. This indicates
that most examples with noisy labels are misclassified, but there are some clean examples
that are misclassified as well. ES-BGSS is better at differentiating between hard clean
examples and noisy examples, which also shows in the better aggregated metrics (accuracy
and F1 measure), with some exceptions in the case of flip noise.

6.3. Comparison with Related Work

Let us now compare our method with a few well-known recent baselines from related work.
For all the methods we include, we used the implementations provided by the authors, along
with the proposed hyperparameters for the datasets in our evaluation. In the following, we
briefly describe the algorithms we used.
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Area under Margin (AUM) (Pleiss et al., 2020). The method is based on integrating
the logit margin over the training epochs. In addition, extra training samples are added in
order to estimate the correct decision threshold.

Confident Learning (CL) (Northcutt et al., 2021). Here, the main idea is to
statistically approximate the so called confident joint Cỹ,y∗ that determines the distribution
of the label errors in detail, using a prior and the prediction errors of a model trained on
noisy samples. Several statistical techniques are applied to improve the results. The method
assumes that the tested sample is not in the training set so several rounds of training are
necessary on different splits so that for each sample we have at least one independent model.
Apart from the method based on Cỹ,y∗ , we also include a variant called C +NR that also
performed well.

SimiFeat (Zhu et al., 2022). This approach relies purely on clustering using a pre-
trained foundation model that computes features for the input examples. We include both
the voting and ranking-based variants in our comparison. The features were provided by
the ViT-B/32 (Dosovitskiy et al., 2021) feature extractor used by the authors, pre-trained
by CLIP (Radford et al., 2021). We stress here, that all the other methods, including ours,
use only the noisy dataset and no additional external knowledge.

Discussion. Table 2 contains our experimental results. Clearly, ES-BGSS is competitive
with the rest of the methods, in many cases winning important categories like the aggregated
F1 score. It is quite surprising that ES-Prediction is also rather competitive, beating
specialized methods in several cases. SimiFeat is clearly the best in terms of recall, but at
the cost of a relatively low precision. In fact, considering Table 1, with smaller ensembles the
ES-Prediction method is competitive with SimiFeat in terms of recall as well. Clearly, the
method of choice depends on the requirements of the specific applications at hand, where
precision and recall might have different priorities.

7. Empirical Evaluation of Noise-Filtered Training

We also evaluate our noise detection approach in the context of noise-filtered training. Note
that robust training under label noise is a specialized area with a large literature, where
the methods often involve a modified training algorithm, adaptive filtering or modification
of samples, and so on. A few examples include layer-wise early topping (Bai et al., 2021),
outlier detection during training based on the gradients (Yang et al., 2022; Sedova et al.,
2023), logit adjustment during training (Fu et al., 2023), assessing the influence of examples
on the training (Kwon and Zou, 2022; Pruthi et al., 2020) and so on. A recent survey can
be found in (Song et al., 2023).

Here, we focused specifically on noise detection, but it is still interesting to evaluate
the performance of the different methods when applied on their own as a noise filter before
normal vanilla training. That is, we apply each noise detector on the training set, remove
the examples that are flagged noisy and run the training algorithm on the cleansed training
set.
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Table 3: Filtered test accuracy (F.A.), and noise detection metrics: accuracy, F1 measure,
precision and recall of several methods over CIFAR-10N and CIFAR-100N. The
best result is highlighted in green and in boldface in each setup. The runner-up
result is highlighted in yellow.

CIFAR-10N CIFAR-100N

F.A. Acc. F1 Prec. Rec. F.A. Acc. F1 Prec. Rec.

Clean 0.95 - - - - 0.77 - - - -

Noisy 0.91 0.00 0.00 0.00 0.00 0.62 0.00 0.00 0.00 0.00

Ground Truth 0.94 1.00 1.00 1.00 1.00 0.71 1.00 1.00 1.00 1.00

ES-Pred. (T1) 0.91 0.93 0.78 0.86 0.72 0.64 0.82 0.76 0.81 0.71

ES-Pred. (T5-V) 0.93 0.95 0.86 0.87 0.85 0.63 0.80 0.72 0.84 0.63

ES-Pred. (T5-M) 0.92 0.95 0.86 0.87 0.84 0.63 0.80 0.71 0.85 0.61

ES-Pred. (T10-V) 0.92 0.95 0.85 0.91 0.80 0.62 0.77 0.63 0.87 0.49

ES-Pred. (T10-M) 0.92 0.95 0.85 0.91 0.79 0.61 0.75 0.59 0.88 0.44

ES-BGSS (T1) 0.91 0.92 0.74 0.89 0.63 0.60 0.73 0.58 0.80 0.45

ES-BGSS (T5-V) 0.91 0.93 0.78 0.94 0.67 0.59 0.72 0.53 0.79 0.40

ES-BGSS (T5-M) 0.91 0.94 0.80 0.92 0.70 0.59 0.71 0.53 0.77 0.41

ES-BGSS (T10-V) 0.91 0.94 0.81 0.94 0.71 0.58 0.69 0.44 0.78 0.31

ES-BGSS (T10-M) 0.92 0.94 0.83 0.92 0.75 0.58 0.69 0.49 0.73 0.37

CL (Cỹ,y∗) 0.91 0.89 0.72 0.66 0.79 0.60 0.73 0.67 0.67 0.67

CL (C+NR) 0.91 0.90 0.75 0.67 0.85 0.60 0.76 0.69 0.71 0.67

AUM 0.91 0.87 0.69 0.60 0.83 0.63 0.78 0.65 0.89 0.52

SimiFeat-V 0.93 0.96 0.89 0.86 0.93 0.64 0.82 0.77 0.81 0.74

SimiFeat-R 0.93 0.96 0.89 0.87 0.91 0.64 0.82 0.80 0.74 0.86

7.1. Experimental Setup

The datasets we used were two recent human-annotated benchmarks proposed by Wei et
al. (Wei et al., 2022): CIFAR-10N and CIFAR-100N. These contain labels given by humans,
and a label is considered noisy if it is different from the official CIFAR10 and CIFAR100
label. More precisely, we used the ‘fine’ variant of CIFAR-100N that contains 40.2% noise
and the ‘random2’ variant of CIFAR-10N that contains 18.12% noise. The training setup
was otherwise identical to the one used in Section 6. Each configuration is measured in a
single run.

7.2. Results

Table 3 contains the results. The ‘Clean’ row is the original clean CIFAR10/100 result trained
without noisy labels. The rest of the table uses the CIFAR-10N/100N labels from (Wei
et al., 2022). The ‘Noisy’ row represents the extreme case when we detect no noisy samples,
so no samples are removed from the training set. The ‘Ground Truth’ method represents the
case of perfect detection when exactly the noisy samples are removed from the training set.

ES-Prediction is competitive. It is clear from the table that in terms of test accuracy
on the CIFAR tasks after filtering (column ‘A.F.’), the ES-Prediction method is capable of
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reaching the same performance as SimiFeat, despite of the fact that SimiFeat has access
to a powerful foundation model, while our method uses only information from the training
data. Again, the key to achieve this result lies in the selection of model checkpoints, based
on early stopping. On CIFAR-100N, ES-BGSS is not among the best methods, indicating
that ES-Prediction is more robust to this type of noise.

Early stopping can beat filtering. It is also striking that filtering can actually decrease
the model quality compared to the case when all the samples are included in the training
data. Note that when there is no explicit filtering, the noise is still filtered implicitly due to
the application of early stopping in our training setup (Liu et al., 2023; Li et al., 2020).

8. Conclusions and Limitations

We have demonstrated that merely observing normal training and using a carefully selected
set of model checkpoints using early stopping can lead to competitive noisy label detection
across several settings. Even the simple and natural method of using the predictions of the
selected checkpoints to filter noisy samples is very competitive in both synthetic and natural
noise scenarios.

This is somewhat surprising, because state-of-the-art methods use specialized techniques
such as optimizing thresholds, external foundation models, or dedicated training procedures,
yet these extra techniques do not seem to yield a convincing advantage.

The key idea behind achieving these results is to carefully select an appropriate early
stopping checkpoint and to apply smoothing over the noisy prediction by using several good
checkpoints around the early stopping point.

As for limitations, our methods rely on the underlying training procedure. We have
demonstrated that certain components such as the learning rate schedule have a very
significant influence on the quality of the early stopping point in terms of noise filtering.

While the multistep scheduler worked very well in the scenarios we studied, in order
to understand the scope of our method better, we could benefit from further theoretical
progress on understanding implicit noise filtering beyond the present state-of-the-art, because
currently the influence of learning rate schedulers is not yet taken into account (Liu et al.,
2023; Li et al., 2020).
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