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Abstract

Imbalanced data classification suffers from a lack of reliable metrics. This runs primarily
from the fact that for most real-life (and commonly used benchmark) problems, we do not
have information from the user on the actual form of the loss function that should be min-
imized. Although it is pretty common to have metrics indicating the classification quality
within each class, for the end user, the analysis of several such metrics is then required,
which in practice causes difficulty in interpreting the usefulness of a given classifier. Hence,
many aggregate metrics have been proposed or adopted for the imbalanced data classifi-
cation problem, but there is still no consensus on which should be used. An additional
disadvantage is their ambiguity and systematic bias toward one class. Moreover, their use
in analyzing experimental results in recognition of those classification models that perform
well for the chosen aggregated metrics is burdened with the abovementioned drawbacks.
Hence, the paper proposes a simple approach to analyzing the popular parametric metric
Fβ . We point out that it is possible to indicate for a given pool of analyzed classifiers when
a given model should be preferred depending on user requirements.
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1. Introduction

The problem of classifier evaluation has been known and addressed in the literature for
years (Japkowicz and Shah, 2011). One of the critical issues is the selection of appropriate
quality metrics and the proposed experimental protocol. This work will address the first
problem for the imbalanced data classification. In this task (we will consider the most
popular binary problem), we are dealing with the difference in abundance between classes,
specifically referring to the dominant class as the majority class and the less abundant
class as the minority class. Furthermore, we typically presume that an error made in the
minority class has a greater cost than an error made in the majority class. The difficulty
in classifying imbalanced data arises primarily as we lack data on the costs of these errors,
known as the loss function.

Usually, two simple metrics that indicate errors made on a given class are analyzed,
i.e., specificity or sensitivity (also called recall), or recall and precision, which indicates
how many objects are classified in a minority class. Of course, to say anything about the
quality of a given classifier, we need to analyze at least two of these metrics - recall and
precision, which are usually used nowadays. Unfortunately, we can’t determine the best
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classifier without details about the loss function or the significance of each metric in the
user’s context. Additionally, following the common human inclination to communicate in-
formation with a single numerical indicator, many aggregated metrics have been suggested,
merging information about precision and recall, or specificity and sensitivity into an
aggregated metric. Unfortunately, most people do not realize that such an approach has
serious drawbacks, i.e., such metrics are ambiguous (they do not indicate which values of
the simple metrics characterize the evaluated model), and also choosing them as a criterion
often leads to the selection of classifiers biased towards the majority class.

Most researchers employ computer experiments to evaluate the predictive performance
of proposed models. Usually, the results are promising, and the authors conclude that
their classifiers can outperform the state-of-the-art algorithms. However, it should be noted
that Wolpert’s no free lunch theorem concludes that the best learning algorithm does not
exist (Wolpert, 2001), so any conclusions drawn from experiments are conditioned on given
datasets and a chosen experimental protocol, which specifies, among other things, which
metrics are taken into account during the comparison.

Moreover, imbalanced data classification has become an arena for fighting for the best
values of selected metrics, which, as we pointed out, can be biased. According to Goodhart’s
law (Strathern, 1997), ”When a measure becomes a target, it ceases to be a good measure”.
Unfortunately, finding the right metrics for classifying imbalanced data is very difficult
because we generally do not know how costly the errors made on the different classes are.
Often, the assumptions made in the experiments about these costs (expressed in the assumed
set of metrics) are far from reality, and the authors of the papers do not bother to show
comparisons for other cases, i.e., for different costs of the mentioned errors.

Such an approach could be detrimental to the development of classification methods, as
only solutions for a specific relatively standard set of metrics, which express particular (not
always true) expectations about the quality of classifiers, are preferred and published. This
results in solutions that do not perform well for a given set of metrics not being published
and thus not being promoted even if they could be helpful in other metrics settings and
thus find application in specific practical problems.

Of course, one should not be surprised by this approach, as the primary motivation of
most researchers is to publish their work. However, most journals are not interested in
negative results because they are not as attractive to readers and do not seem interesting
1. This means that even if we design a classifier evaluation experiment according to the
guidelines for classifier testing such as (Demšar, 2006; Garćıa and Herrera, 2009; Garćıa
et al., 2010), there is still room for metric manipulation (Stapor et al., 2021).

This work focuses on a proposal to evaluate the classifier quality using the parametric
measure Fβ, which is commonly chosen for the value β = 1 and does not follow the end-user
expectations. The criticism of F1 or F − score can be addressed since the parameter β de
facto indicates how much more critical recall is compared to precision (Hand and Christen,
2018).

This work contributes to imbalanced data classifier evaluation, especially it points out
the problem of inadequate comparison of classification methods, which, through an improper
choice of metrics, promotes models with characteristics suitable for only particular user

1. Fortunately, more and more people see the value in publishing negative results as well, and an increasing
number of journals are choosing to do so (see, e.g., https://doi.org/10.15252/embr.201949775)
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Table 1: Confusion matrix for a two-class problem.

predicted class
positive negative

t
r
u
e
c
l
a
ss positive True Positive (TP ) False Negative (FN)

negative False Positive (FP ) True Negative (TN)

preferences, i.e., a specific preference for the cost of errors made on different fractions of the
data. We propose a simple visualization tool indicating which models are helpful depending
on the user’s expectations. The usefulness of such an analysis is demonstrated using a
selected benchmark analysis as an example.

2. Motivations

This section focuses on selected properties of the metrics while realizing that this section
aims not to provide an exhaustive overview of the metrics but to indicate the motivation
for developing a method that allows fair comparison of imbalanced data classifiers.

Many metrics for classifier evaluation have been proposed (Japkowicz and Shah, 2011).
Usually, they are calculated based on confusion matrix, which summarizes the number of
instances from each class classified correctly or incorrectly as the remaining classes. For a
two-class classification task, consider the 2 × 2 confusion matrix (see Tab. 1).

The most popular metric is the Accuracy (Acc):

Acc =
TP + TN

TP + FN + TN + FP
(1)

However, it is easy to show that Acc is heavily biased towards the majority class and
could lead to misleading conclusions. It is a good metric only for tasks that use the so-called
0 − 1 loss function, i.e., when the cost of errors committed on each class is the same. This
observation has led the imbalanced data science community to look for other metrics.

Often we are interested in classifier evaluation on only a part of the data, i.e, positive
or negative data. True Positive Rate (TPR) also known as Recall or Sensitivity), True
Negative Rate (TNR) known as Specificity, and Positive Predictive Value (PPV ) also called
Precision:

TPR =
TP

TP + FN
, (2)

TNR =
TN

TN + FP
, (3)

PPV =
TP

TP + FP
(4)
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It is well known that people do not like to make comparisons based on multiple criteria
(metrics). Moreover, solving such a problem leads to multi-criteria optimization, which may
return not one but several solutions, so-called non-dominated solutions, i.e., solutions for
which none of the metrics can be improved without degrading some of the other criteria.
Usually, to select a solution that suits the user’s preferences, a multiple criteria decision
analysis (MCDA) is employed (Cinelli et al., 2020). However, that is a difficult task that has
been researched for years. MCDA solutions focus on designing a decision-making process
to assist the user in deciding. Such a decision-making process primarily helps identify the
user’s preferences, which could be used in a decision model. An example of such a process
is PROMETHEE, which relies on pairwise comparisons to rank alternatives evaluated on
multiple criteria (Mareschal and Brans, 2005).

An alternative approach is to reduce all criteria to a single one, a function of all used
criteria, and select a solution according to its value. This approach has been widely accepted
in the scientific community and focuses on imbalanced data classification (Luque et al.,
2019).

Many metrics have been proposed, generally aggregating TPR and TNR, or TPR and
PPV. Such metrics include arithmetic, geometric, or harmonic means between the two
components: recall and specificity. There are also other proposals trying to enhance one of
the two components of the mean, for example, Index of Balanced Accuracy (Garćıa et al.,
2009) or Fβscore (Sokolova and Lapalme, 2009). This work focuses on using Fβ, thus let
us present its definition

Fβ =
(β2 + 1) × PPV × TPR

β2 × PPV + TPR
(5)

The β expresses the trade-off between selected simple metrics, i.e., how much more
critical TPR is to the user than PPV . Improper selection of the value of the mentioned
parameter can lead to the choice of an inappropriate classifier, e.g., favor the majority class
for an imbalanced data classification task (Brzezinski et al., 2018).

Interestingly, many practical recommendations for quality metrics note the importance
of the β parameter and suggest using indicators for several values (usually 0.5, 1, and 2).
Unfortunately, papers comparing the quality of classifiers of imbalanced data provide only
the F1 typically.

3. Fβ-plot analysis

The idea of Fβ-plot is to visualize the Fβ values for each of the analyzed classifiers depending
on the β value and then determine the β ranges to indicate which classifier takes the best
values.

The ranking of the evaluated methods will vary with the value of the β parameter. Clas-
sifiers with a preference for the majority class (and, therefore, achieving a higher precision
value) will be superior as the value of the β parameter decreases. While the β is converging
to 0, the Fβ value will approach the precision score of the classifier. Similarly, the Fβ value
will approximate the TPR component, with a higher value of the β parameter increasing
to infinity. The point of balance between the components is 1 – the value for which the Fβ
function is equivalent to the harmonic mean.
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Figure 1: Example of relations between Fβ and β

Fβ-plot is a tool for observing changes in ranking depending on the β parameter. Figure 1
shows a simulation of such a relationship. The β values are presented on a logarithmic scale
to make the results more readable.

Five different scenarios considering different configurations of TPR and PPV were
simulated. As one can observe, it is affirmed that for values of β = 1, a perfectly balanced
classifier is preferred. However, even with slight differences in the β parameter’s value,
the curves’ ranking changes significantly, preferring results more biased towards one of the
parameters. Biased solutions are preferred as well for strongly deviating β values.

Noteworthy is the fact that β values where curves are intersecting are easily determined

(1 + β2) · PPVA · TPRA

(β2 · PPVA) + TPRA
=

(1 + β2) · PPVB · TPRB

(β2 · PPVB) + TPRB
(6)

β =

√
(TPRA · TPRB · (PPVB − PPVA)

(PPVA · PPVB · (TPRA − TPRB)
(7)

where indexes A and B refer to exemplary classifiers.
Nevertheless, the representation of the achieved scores in their entire range, along with

an indication of the intersections (thus, ranking changes), allows a more thorough evaluation
of the quality of tested models. At the same time, the Fβ-plot provides guidelines to the
system designer – indicating the method that achieves the best performance according to
the preference of the system’s end user, which should determine the proportion between the
cost of errors.

Interpreting Fβ-plot

To better explain and give practical example of Fβ-plot, we conducted simple experiment
considering a well-known imbalanced dataset – Thyroid Disease (Quinlan, 1987). We trained
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92 models using k-nearest neighbors algorithm (kNN) combined with various SMOTE-based
oversamplers presented in (Kovács, 2019).
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Figure 2: Fβ-plot for Thyroid Disease with hold-out evaluation.
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Figure 3: Fβ-plot for Thyroid Disease with cross-validation.

Firstly, the performance of the models was determined on a 20% hold-out choosen at
random from dataset. The Fβ-plot for the obtained results is presented in Figure 2, along
with a scatter plot of TPR and PPV of selected methods. The colored elements indicate
the methods that achieved the best result for changing β value in analysis range.

We may observe that, depending on the configuration of the β parameter, it is possible to
distinguish six models for which result in the best in terms of Fβ value. The most balanced
method (β = 1) is the ADOMS oversampler, for which we can also notice, that it has a slight
majority class preference. The other discovered algorithms that prefer the majority class
are Borderline SMOTE2 and DEAGO, although their curve characteristics are similar and are
reflected in the close distance in the scatter plot. From β = 1.26, which we can describe
as a preference towards the minority class, the LVQ SMOTE, LN SMOTE, and DSOMTE are the
best performing algorithms. We should also point out that the selected models constitute
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a boundary in TPR - PPV space and it is relative to the point (1, 1) - which would be
considered a ideal model.

Statistical analysis on Fβ-plot

Many experiments use more rigorous experimental protocols commonly based on k-fold
cross-validation. Fβ-plot can be easily adapted to such protocol by extending plots of stan-
dard deviation values and proper region marking. An example is presented in Figure 3.
The plot now includes standard deviations, and to explain their meaning, the scatter plot
marked all values obtained by the considered method. The colored plots indicate the meth-
ods whose average Fβ was the highest in the given range, and the black strip on the bottom
axis marks a range in which the selected method is the best and the results are statistically
significant (considering t-test with the α < 0.05).

As expected, the list of selected methods has changed over repeated evaluations. The
reoccurring algorithms are DSMOTE and ADOMS. However, for other oversamplers, the ranking
has changed. Better or similar ones replaced the previously selected methods. The observed
change reflects using a broad set of oversampling algorithms, which tend to follow similar
principles, thus generating similar synthetic samples for the model to be prepared. To
distinguish statistically better algorithms on the sampled interval, following the results of
the performed statistical test is essential. It can be determined that in the case of an extreme
preference against recall (β > 7.56), DSMOTE based models are the only ones to achieve the
TPR oriented result. This information might be practical and useful if the system designer
aims to provide a system biased toward the minority classes (e.g., a screening test system).
As for the other preferences, we have to consider that there is a model that might act similar
to the one marked on Fβ-plot. Nevertheless, based on the statistical tests, it is also possible
to indicate a subset of similar methods. Consequently, for a practical example, it is also
possible to consider their computational complexity to select the best-suited method.

4. Experiments

The experimental study will present the characteristics of Fβ plots for selected benchmark
imbalanced datasets (Derrac et al., 2015). A vast pool of oversampling algorithms will
be compared (Kovács, 2019), which will be used to preprocess the data, followed by the
k-NN classifier. For the evaluation protocol, we choose 2x5-fold stratified cross-validation.
Table 2 presents the eight datasets chosen for this experiment. The code for experiments
reproduction, as well as Fβ plot code, is publicly available 2. The experiment aims to
investigate observable relationships and discuss their interpretation. The experiment results
are presented in Figure 4.

For most datasets, no statistically significant best classifier was observed throughout
the analyzed range, and it is only possible to highlight AMSCO on the β > 2.36 interval for
the vehicle1 dataset. Other methods achieve the best values on the analyzed ranges, but it
should be remembered that other oversampling can be identified to obtain similar results.

Additionally, it could be observed that for most problems, the value of the Fβ remains
high, not falling below 0.6. However, the exception is the strongly imbalanced set of poker-8-

2. https://github.com/w4k2/fb-plot
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Figure 4: Fβ-plots of selected datasets

9 vs 5, for which it is difficult to identify a method to achieve a satisfactory result, preferring
precision. Such behavior may be related to the pool of preprocessing methods themselves,
which - by design - seek to equalize (or outweigh) the model’s bias against the minority
class. Another factor that may also affect the observed result is the problem’s difficulty,
which is not always related to the degree of imbalance, but, for example, the number of
objects of the borderline class (Napierala and Stefanowski, 2012; Skryjomski and Krawczyk,
2017). A similar effect is also observed for the sets vechicle1 and glass-1-6 vs 5, and the
opposite effect is observed for the set segment0, where we can almost always indicate the
method for which the Fβ is near 1. As for the other sets, the curve assembled from best
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Table 2: Main characteristics of the chosen benchmark datasets
Name Samples Features IR

vehicle1 846 18 2.90
segment0 2308 19 6.06
yeast-0-2-5-6 vs 3-7-8-9 1004 8 9.14
cleveland-0 vs 4 173 13 12.31
ecoli4 336 7 15.80
glass-0-1-6 vs 5 184 9 19.44
abalone-21 vs 8 581 8 40.50
poker-8-9 vs 5 2075 10 82.00

algorithms forms a ”V” shaped curve, where the lowest Fβ values are achieved in the near
surroundings of β = 1 with a slightly higher tendency towards the minority class.

5. Conclusion

The issue of selecting suitable metrics for imbalanced data problems remains pertinent.
On one hand, it is recommended to avoid aggregated metrics and instead rely on simple
metrics for analysis. On the other hand, it should be acknowledged that analyzing multiple
criteria simultaneously may be challenging, especially for less experienced users or those
who cannot determine the costs of incorrect decisions related to selected data fractions.
This paper presents a simple Fβ − plots method to visualize the results of the experiments,
allowing simultaneous evaluation of the quality of multiple methods for different values of β,
i.e., the end user’s expectation of the validity of TPR against PPV . The Fβ−plots method
identifies the costs at which a particular method is beneficial. Additionally, it indicates the
tasks for which a given classifier may be suitable, such as values of imbalance ratio that are
proportional to costs between simple metrics, as suggested by Brzezinski et al. (Brzezinski
et al., 2020). Such an analysis provides a broader perspective on the quality and scope of
the tested classifiers.
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Figure 5: Example of different F1 values in PPV -TPR space.

However, selecting an aggregate metric can be challenging due to its limited inter-
pretability (Hand et al., 2021) and potential ambiguity, i.e., even if we use the different β
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values, we still face the problem of aggregated metric ambiguousness because the same Fβ
value may be taken for different PPV and TPR values (see Figure 5). Thus, one might
suspect that machine learning methods that use such an aggregated metric as a criterion
will be biased toward specific values of simple metrics without providing the information
that there are equally good solutions (in terms of a given metric) for other values of PPV
and TPR. Additionally, Fβ ignores the number of true negatives (Christen et al., 2023). The
abovementioned issues were not discussed in this paper and are still waiting to be properly
addressed.
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