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Abstract
Comparative learning, a recently introduced variation of the PAC (Probably Approximately Correct)
framework, interpolates between the two standard extreme settings of realizable and agnostic PAC
learning. In comparative learning the labeling is assumed to be from one hypothesis class (the
source class) while the learner’s performance is to be measured against another hypothesis class (the
benchmark class). This setup allows for incorporating more specific prior knowledge into PAC type
learning bounds, which are known to be otherwise overly pessimistic. It also naturally represents
model distillation tasks, where a predictor with specific requirements (such as being bounded in size
or being interpretable) is trained on the labels from another model. A first sample complexity analysis
of comparative learning established upper and lower bounds for general comparative learning. In this
work, we propose a more fine grained view on this setting, distinguishing between proper learning
and general (improper) learning. We derive novel upper and lower sample complexity bounds for
both settings. In particular, we identify conditions for each of the regimes, and thereby exhibit how
the rate depends on the relatedness of the two classes in perhaps unexpected ways.
Keywords: PAC learning, sample complexity, comparative learning

1. Introduction

The standard learning theoretic concept of Probably Approximately Correct (PAC) learnability is a
well-studied framework to establish general performance guarantees for statistical learning (Valiant,
1984; Blumer et al., 1989; Haussler, 1992). The main appeal of PAC type guarantees is that they hold
uniformly over all possible data-generating distributions. A PAC learning guarantee provides a finite
sample size (that depends only on the desired error and confidence parameters, and the model or
hypothesis class in use) which suffices for the desired error bound, independently of any properties of
the data-generating distribution. The parameters that determine these distribution-free finite sample
bounds are parameters of the model or hypothesis class, and as such are controlled by the user, rather
than hinging on unknown properties of the data-generation. The original framework and bounds for
binary classification have thus been extended to myriad other tasks and settings such as regression,
multiclass classification, active learning, adversarially robust learning to name a few (Alon et al.,
1993; Ben-David et al., 1995; Daniely et al., 2015; Montasser et al., 2019). Recent years have seen
novel interest in these types of guarantees with novel frameworks developed and long-standing open
questions resolved (Hanneke, 2016; Brukhim et al., 2022; Alon et al., 2021; Attias et al., 2023;
Lechner and Ben-David, 2024).

However, the main merit of the PAC framework, its generality, also constitutes its main drawback.
Since they are required to be valid for all possible data generating distributions, PAC type bounds
are often overly pessimistic. For deep learning methods, they are mostly considered to provide
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vacuous bounds (Zhang et al., 2021; Pérez-Ortiz et al., 2021; Dziugaite and Roy, 2017): methods
often perform much better than predicted through the PAC framework when applied to naturally
generated data (rather than the worst case data-generation that PAC proofs need to hold against).
The standard PAC framework does not allow for naturally modeling prior knowledge about the data
generation, nor does it, in its standard form, allow for incorporating additional requirements on the
learned predictor, such as being interpretable, satisfying fairness requirements, or requiring little
memory to be stored.

The above two issues, namely modeling better-than-worst-case data generation and adding
requirements on the output predictor, are then typically treated separately in the PAC literature. There
are various works that derive PAC type leaning rates under additional distributional assumptions.
Often these are conditions on the noise (Tsybakov, 2004; Steinwart and Scovel, 2005; Massart and
Nédélec, 2006), or assumptions about label-separatedness (cluster assumptions or margin conditions)
for classification tasks (Chapelle and Zien, 2005; Rigollet, 2007; Urner et al., 2011). These are thus
typically assumptions about how the labeling component of the distribution relates to the marginal
over the feature vectors. Requirements on the learned predictor are treated separately, and on a case
by case basis. That is, there is analysis on methods to incorporate adversarial robustness requirements
(Montasser et al., 2019, 2022), other investigations on methods to achieve an interpretable model
(Bressan et al., 2024) etc. One general, practical method to incorporate such additional requirements
is the teacher-student framework (Urner et al., 2011; Frosst and Hinton, 2017; Bastani et al., 2017;
Attias et al., 2022), or the closely related model distillation approach (Hinton et al., 2015; Lopez-Paz
et al., 2016; Phuong and Lampert, 2019). Here, in a first round of learning, an arbitrary (in terms of
requirements) but highly accurate model is trained. The labels (or soft labels) from that model are then
used to annotate an unlabeled data set, with which a model that satisfies the specific requirements (for
example being fast at prediction time, being interpretable, being robust to adversarial perturbations,
or requiring little memory) is trained. In such a scenario, we have specific prior knowledge about the
type of labeling function in the second round of this process. This, however, is not naturally captured
in the existing notions of learning from beyond-worst case distributions.

Comparative learning is a recently introduced variation of the PAC learning framework that
naturally models this scenario (Hu and Peale, 2023). In comparative learning the labeling is assumed
to be from one hypothesis class (the source class) while the learner’s performance is measured against
another hypothesis class (the benchmark class). Thus, this framework facilitates incorporating prior
knowledge about the labeling component of the data generating process distribution (for example,
being from a specific class of models in the teacher-student framework). The initial study that
introduced the framework, provided first upper and lower bounds on the sample complexity of
general comparative learning for classification with binary hypothesis classes in terms of the mutual
VC dimension (Hu and Peale, 2023). Their bounds left a gap between a linear dependence in the
error parameter 1

ϵ for the lower bound, and a quadratic dependence in the upper bound.
In this work, we shift the focus from general comparative learning (where there is no restrictions

on the learner) to comparative learning that is proper with respect to the benchmark class (where
the learner is required to output a predictor from the benchmark class). This setting models the
above discussed techniques of teacher-student learning or model distillation. We prove that in the
benchmark-proper case, the sample complexity of comparative learning is not governed by the
mutual VC dimension, but rather by a novel parameter we introduce, the one-sided (mutual) graph
dimension. Our analysis incorporates the wider frameworks of multi-class predictors (Daniely et al.,
2015; Brukhim et al., 2022) and the source and benchmark class potentially being partial hypothesis
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classes (Alon et al., 2021). For both general and benchmark-proper comparative learning, we also
identify general conditions that yield linear versus quadratic rates in the error parameter. However,
obtaining a full characterization of the rates still remains open.

Overview and Summary of Contributions

Our results can be summarized as follows:

• We propose the focus on benchmark-proper comparative learning to model learning scenarios
of the model distillation type. Our work also broadens the scope of analysis for comparative
learning to multi-class settings with (potentially) partial hypothesis classes.

• In Section 3 we introduce a novel combinatorial parameter that measures the relatedness
between source and benchmark class, the one-sided mutual graph dimension. We prove that
the sample complexity of benchmark-ERM, as well as general benchmark-proper learning,
is upper and lower bounded in terms of this dimension. We further identify conditions for
linear and quadratic dependence on 1

ϵ . Finally, our analysis shows that there are cases of total
binary hypothesis classes, where benchmark-proper comparative learning is impossible, even
though the pair is comparatively learnable. Such phenomena have previously been shown for
multi-class learning with infinitely many labels (Daniely and Shalev-Shwartz, 2014) or for
partial classes (Alon et al., 2021).

• In Section 4 we study the general case of the comparative learning framework. We provide
new upper and lower bounds on the sample complexity for this setting as well, and again show
that both linear and quadratic dependence on 1

ϵ each occur under a broad range of conditions.

• The bounds in Section 4 are derived by relating the comparative learning framework with the
previously established setting of agnostic PAC learning under deterministic labels (Ben-David
and Urner, 2014). In order to make these results applicable to our setting, we generalize
some of the bounds for agnostic PAC learning under deterministic labels from total to partial
hypothesis classes. These results might be of independent interest.

2. Formal Setup

We employ the standard statistical learning theoretic framework and notation. We let X , denote
the domain, and Y ⊆ N the label set of the classification task. In binary classification we have
Y = {0, 1}, for multiclass classification with finitely many labels we can assume Y = [k] =
{1, 2, 3, . . . , k} ⊆ N, otherwise Y can be any set. The environment is modeled as a data-generating
distribution P over X × Y . We use PX to denote the marginal distribution of P over X and use
supp(P ) to denote the support of a distribution P .

A classifier is a function h : X → Y . A partial classifier is a function h : X → Y ∪ {⋆}, where
⋆ /∈ Y (Alon et al., 2021). Assigning label ⋆ is sometimes interpreted as abstaining from prediction
(and is always an inaccurate label assignment in terms of the classification task). For ease of notation,
we set Ỹ = Y ∪ {⋆}. Equivalently, a partial classifier can be viewed as a function h : Z → Y , where
Z ⊆ X is a subset of the domain. This subset, namely Z = h−1(Y), is also referred to as support of
h. We also refer to (partial) classifiers as hypotheses and we call a set of such a hypothesis class H.
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Following the literature, we call H a partial (hypothesis) class if its members are partial classifiers.
Otherwise, we also refer to H as a total (hypothesis) class.

The binary loss measures the correctness of a classifier h on labeled point (x, y) ∈ X × Y as

ℓ(h, x, y) = 1 [h(x) ̸= y] ,

where 1 [·] denotes the indicator function. Note that the loss is only defined on points with a proper
label (and only such can be generated by the environment P ), and thus ℓ(h, x, y) = 1 for all points x
with h(x) = ⋆. The goal of learning is to identify a classifier h with low expected or true loss

LP (h) = E(x,y)∼P [ℓ(h, x, y)].

A learner takes in a finite sequence of labeled data points S = ((x1, y1), (x2, y2), . . . , (xn, yn)) ∈
(X × Y)n, for some n ∈ N and outputs a (partial) classifier. The empirical loss of h with respect to
data S is defined as LS(h) =

1
n

∑n
i=1 ℓ(h, xi, yi). A learner is called an Empirical Risk Minimizer

(ERM) with respect to class H if it always outputs a hypothesis from the class H with minimal
empirical loss within that class.

In the standard PAC (Probably Approximately Correct) learning framework (Valiant, 1984;
Blumer et al., 1989; Shalev-Shwartz and Ben-David, 2014), the success of a learner is evaluated
against the best possible performance within a fixed hypothesis class H, the approximation error of
the hypothesis class H:

optP (H) = inf
h∈H

LP (h)

We call a distribution P realizable by hypothesis class H if optP (H) = 0. In the standard PAC
framework, finite sample based learning success is required to hold uniformly (in terms of the
sufficient sample sizes) over all possible data-generating distributions (for reference, see Definition
19 in Appendix, Section A). This can lead to overly pessimistic conclusions since natural data-
generating environments rarely possess the qualities of a worst-case scenario for a given method, and
thus success is in practice typically achieved with much smaller sample sizes than what is predicted
by PAC theory. Comparative Learning, a PAC type learning framework recently introduced (Hu and
Peale, 2023), allows for naturally modeling prior knowledge about the labeling component of the
data-generating process.

2.1. The Comparative Learning Framework

The comparative learning framework invloves two hypothesis classes, the source class S and the
benchmark class B. The source class incorporates the prior knowledge about the data generation in
that learning success is only required for distributions P realizable by S. The source class can thus
be viewed as a class containing the true labeling rule of the classification task. The learner’s success
is then measured against the approximation error of the benchmark class B. The following definition
is due to Hu and Peale (2023), while adapted to our terminology.

Definition 1 (Comparative PAC Learner) We say that a learner A is a comparative PAC learner
for source and benchmark classes (S,B) if for every ϵ, δ > 0, there is a sample-size nS,B(ϵ, δ) such
that, for all n ≥ nS,B(ϵ, δ), and all distributions P with optP (S) = 0 we have

Pr
S∼Pn

[LP (A(S)) ≤ optP (B) + ϵ] ≥ 1− δ.
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We call A a benchmark-proper comparative learner for (S,B) if it is a learner as above that always
outputs a hypothesis from B.

If such a learner (or benchmark-proper learner) exists, we call the pair (S,B) comparatively
(benchmark-proper) PAC learnable, and the function nS,B : (0, 1)2 → N an upper bound to the
sample complexity of comparatively learning (S,B). The sample complexity is the pointwise
smallest such upper bound and we will use the notation ngenS,B(·, ·) for the sample complexity of
general comparative learning, npropS,B (·, ·) for the benchmark-proper case and nERM

S,B (·, ·) to denote the
sample complexity of learning with any empirical risk minimizing learner (ERM) .

Standard PAC learning in the realizable case can be viewed as comparative leaning when source
and benchmark class coincide, that is the case S = B. PAC learning under deterministic labels
corresponds to comparative learning when the source class contains all functions from domain to
label set, that is S = YX (Ben-David and Urner, 2014).

The study that introduced the comparative PAC learning framework provided a first upper and
first lower bound for the sample complexity ngenS,B(·, ·) of this learning problem in terms of the
mutual VC dimension vc(S,B) of the two classes involved. The mutual VC dimension vc(H,H′)
of two hypothesis classes H and H′ is defined as the largest possible size of a set of points that is
simultaneously shattered by both classes (see Appendix, Section A for a formal definition). The
following citation summarizes these initial bounds, omitting log-factors.

Theorem 2 (Hu and Peale (2023), Theorem 3.1) Let S,B ⊆ {0, 1, ⋆}X be two hypothesis classes
with vc(S,B) ≥ 2. Then the sample complexity of comparatively learning the pair (S,B) satisfies:

Ω

(
vc(S,B) + log(1/δ)

ϵ

)
= ngenS,B(ϵ, δ) = Õ

(
vc(S,B) + log(1/δ)

ϵ2

)
.

We view these bounds as a starting point for our investigations. We note that while both bounds
are in terms of the same combinatorial complexity parameter relating the source and benchmark
class, namely their mutual VC dimension, there is a gap in the 1

ϵ -dependences, namely linear versus
quadratic. We will identify general conditions for both cases and exhibit how they depend on more
fine grained relatedness properties between the two classes at hand.

3. Proper Comparative Learning

In this section we consider general multiclass classification tasks with a potentially countably infinite
label set Y . Furthermore, unless otherwise stated, we consider general, partial hypothesis classes for
source and benchmark classes so that they are a subset of ỸX .

The initial comparative learning bounds in Theorem 2 hold for any learner, in particular learners
that are not proper for the benchmark class. However, the comparative learning framework is espe-
cially suitable for modeling learning settings where we are interested in outputting a classifier with
specific properties, which is most suitably modeled with the benchmark-proper setting. Moreover,
we note that practical methods are typically set up to minimize an empirical loss over a training data
set, and are thus ERM (or approximate ERM) methods for a specific class of predictors. We start by
showing that for such methods the sample complexity can be significantly higher than what is stated
in Theorem 2. For this, we define a novel relatedness parameter between the source and benchmark
class, and term it the one-sided graph dimension.
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Definition 3 (One-sided Mutual Graph Dimension) A set U ⊆ X is one-sided graph-shattered
by (S,B) if there exists a function s ∈ S, which is a total function when restricted to U , such that
for all V ⊆ U , there exists b ∈ B such that

b(x) = s(x) for all x ∈ V, and b(x) ̸= s(x) for all x ∈ U\V.

The one-sided mutual graph dimension of (S,B) is the maximum size of a set that can be one-sided
graph-shattered and is denoted by d→G (S,B). We define d→G (S,B) = ∞ if the pair (S,B) one-sided
graph-shatters sets of arbitrary size.

For two partial binary classes, it is easy to see that the one-sided mutual graph dimension is always
an upper bound to their mutual VC dimension, i.e., vc(S,B) ≤ d→G (S,B). The next observation
shows that the gap between these two parameters can be arbitrarily large.

Observation 1 There exist total, binary classes S and B with vc(S,B) = 0, while d→G (S,B) = ∞.

Proof Let X be an infinite set, e.g., X = N. Consider the classes S = {h0}, where h0(x) = 0 for
all x ∈ X , and B = {0, 1}X (or any binary class with vc(B) = ∞). We get vc(S,B) = 0. To see
that d→G (S,B) = ∞, consider any set U ⊆ X of any size that is shattered by B. For any V ⊆ U ,
choose s = h0 ∈ S, and b ∈ B such that b is 0 on V and is 1 on U\V . Such b exists because U is
shattered by B. Thus any such set of arbitrary size is shattered by (S,B) in the sense of Definition 3,
and thus the one-sided mutual graph dimension is ∞.

Benchmark-ERM comparative learning

We start by analyzing the sample complexity of benchmark-ERM learners for comparative learning.
We define the benchmark-ERM sample complexity to be the smallest sample size function nERM

S,B :

(0, 1)2 → N such that the conditions of Definition 1 are satisfied for all ERM learners for the
benchmark class with this function.

The following Theorem summarizes the upper and lower bounds for benchmark-ERM compara-
tive learning and establishes that this setting is governed by the one-sided mutual graph dimension:

Theorem 4 For any pair of partial classes (S,B) the sample complexity of benchmark-ERM is
determined by the one-sided graph dimension and satisfies:

Ω

(
d→G (S,B) + log(1δ )

ϵ

)
= nERM

S,B (ϵ, δ) = Õ

(
d→G (S,B) + log(1δ )

ϵ2

)
.

As noted above, the one-sided mutual graph dimension always upper bounds the mutual VC
dimension of two partial binary hypothesis classes and Observation 1 above shows that the gap
between these two parameters can be arbitrarily large. This implies that, for the case of ERM learners,
our lower bound is a significant strengthening of the lower bound for arbitrary learners from Theorem
2. It also implies that the sample complexity of ERM for comparative learning can differ significantly
from the general sample complexity of the task (where no properness restrictions are imposed). The
theorem is established through the bounds in Lemma 5 and 6 below.

Examples 2 and 3 in Appendix B illustrate how benchmark-ERM learning in the comparative
setting relates to learning the benchmark class in the usual PAC setting.

We now proceed to prove Theorem 4:
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Lemma 5 For any pair of partial classes (S,B), the sample complexity of benchmark-ERM satisfies

nERM
S,B (ϵ, δ) = Ω

(
d→G (S,B) + log(1δ )

ϵ

)

Proof [Proof sketch] We need to show that there exist benchmark-ERM learners that do not succeed
in the sense of Definition 1 with less than the stated sample sizes. Let d = d→G (S,B) and let
U = {x1, . . . , xd} be a set that is one-sided graph-shattered by (S,B) and also let s∗ ∈ S be the total
function on U that witnesses this shattering. By definition, this means there exists b∗ ∈ B such that
s∗(x) = b∗(x) for all x ∈ U . We now consider distributions over X × Y whose marginal on X has
support included in U with labeling s∗. Since s∗ = b∗ on U we have infb∈B Pr[b(x) ̸= s∗(x)] = 0
for all such distributions. Consider a “bad” benchmark-ERM learner that for sample points V ⊆ U ,
returns b ∈ B with b(x) = s∗(x) on V and b(x) ̸= s∗(x) on U\V . Such b exists due to the definition
of shattering. Also, note that this is a valid ERM since it has error 0 on samples. Now, for a given
ϵ > 0, we we define a distribution with marginal support in U as follows:

Pr[x1] = 1− 2ϵ,Pr[xi] =
2ϵ

d− 1
∀i ∈ [d]\{x1}

Standard arguments show that as long as the learner receives less than d−1
12ϵ +

1
4ϵ log(

1
δ ) many samples

from this distribution, it will not see a significant portion of the “light” points in the training sample,
and thus misclassify them, yielding an error larger than ϵ. The remaining details, which follow the
same line of argument as the proof of Theorem 9 by Daniely et al. (2015), can be found in the full
version in Appendix C.

Next, we show the one-sided graph dimension also yields an upper bound on nERM
S,B (and thus npropS,B ).

Lemma 6 For any pair of partial classes (S,B) the sample complexity of benchmark-ERM satisfies

nERM
S,B (ϵ, δ) = Õ

(
d→G (S,B) + log(1δ )

ϵ2

)
.

Proof We will show that the benchmark class B enjoys uniform convergence (see Definition 21)
when restricted to the set of distributions that are realizable by the source class S . This implies that
any benchmark-ERM learner is successful in the sense of Definition 1. To see this, let us view both
source class S and benchmark class B as collections of subsets of X × Y . Note that realizability
with respect to the source class S implies that we are only considering distributions P over X × Y
whose support is included in one of the sets s ∈ S, let’s denote this set s∗. The benchmark-proper
comparative learning task then is to choose a set b ∈ B with largest (in terms of probability weight)
intersection with this set s∗.

Note that the definition of the one-sided graph dimension implies that for each s ∈ S, the VC
dimension of the collection of subsets Bs = {s ∩ b | b ∈ B} is finite. Moreover, the VC dimension
of these collections is uniformly upper bounded by the one sided mutual graph dimension. That is
vc(Bs) ≤ d→G (S,B) for all s ∈ S . This implies that, restricted to the class of distributions realizable
by S , the benchmark class enjoys uniform convergence. This yields the upper bound on the sample
complexity of any benchmark-ERM learner stated in the theorem.
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General benchmark-proper comparative learning

The lower bound in Theorem 4 is established through worst case benchmark-ERM learners, which
are a special type of benchmark-proper learners. One might ask whether allowing general benchmark-
proper learners yields a lower sample complexity. In Lemma 7 below we provide an example
of two hypothesis classes for which the sample complexity lower bound in Theorem 4 holds for
any benchmark-proper learning algorithm. As a corollary, we show that there exist classes (and
in particular binary total classes) that are comparatively learnable, but cannot be learned by any
benchmark-proper learner.

Lemma 7 For any d ∈ N, there exists a pair (S,B) of total, binary classes with d→G (S,B) ≥ ⌊d2⌋

and vc(S,B) = 0 such that npropS,B (ϵ, δ) = Ω

(
d→G (S,B) + log(1δ )

ϵ

)
.

Proof [Proof sketch] Let Xd = {x1, . . . , xd}, X = {x0}∪Xd. Let S = {h1} consist of only the all-1
function and let B = {1U∪{x0} | U ⊆ Xd, |U | = d/2} where we have used 1U to denote a function
defined as 1U (x) = 1 [x ∈ U ]. It is not hard to see that d→G (S,B) = d/2. Fix any benchmark-proper
algorithm and let m be its sample complexity. Fix ϵ > 0 and 0 < δ ≤ ϵ. Let ϵ′ = 2ϵ

1−exp(−1/24) . For

U ⊆ Xd with |U | = d/2, let PU be a distribution on X such that PU (x0) = 1−4ϵ′ and PU (x) =
8ϵ′

d
for x ∈ U . Then we can show that for the learner to be successful on all of these distributions,

we need Ω

(
d→G (S,B) + log(1δ )

ϵ

)
samples. The main intuition is that while the true labeling is

constant 1, a benchmark proper learner that has only seen a quarter of the relevant domain points,
would need to “guess” where the other quarter with positive probability mass sits, which is not
possible. The technical details of this argument can be found in the full proof in Appendix C.

Corollary 8 There exists a pair (S,B) of total, binary classes that is comparatively learnable, but
cannot be learned by any benchmark-proper learner.

Proof Let (Sd,Bd) be as in Lemma 7 defined on Xd. Let X = {x0}
⋃
∪d∈NXd where Xd’s are

mutually exclusive. Let B = ∪d∈NBd where b ∈ Bd labels each point in Xd′ with 1 for d′ ̸= d and
let S = {h1}. Then, for each d ∈ N there exists a distribution such that any proper learner needs

Ω(
d+log( 1

δ
)

ϵ ) samples. Considering the limit d → ∞ establishes the impossibility for benchmark-
proper learning. However, vc(S,B) = 0 and thus, the pair is comparatively learnable.

Linear versus quadratic dependence on the error parameter

Our upper and lower bound in Theorem 4 still exhibit a gap in terms of their dependence on the error
parameter 1

ϵ (linear versus quadratic). We now show that bothrates can occur for proper comparative
learning and provide a general condition that enforces quadratic dependence (a slow rate). When the
two classes coincide (that is, S = B), the comparative learning task reduces to proper PAC learning
in the realizable case (see Definition 19 in the Appendix). Note that in case both the source and
benchmark are total binary classes the one-sided mutual graph dimension corresponds to the VC
dimension of the benchmark class, and thus in case S = B the proper learning sample complexity is
npropS,B (ϵ, δ) = Θ̃

(
(d→G (S,B) + log(1δ ))/(ϵ)

)
, corresponding to the lower bound in Theorem 4. On
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the other hand, if the source class contains all binary functions S = {0, 1}X , then the comparative
learning task corresponds to PAC learning with deterministic labels, and it has been shown that there
are classes whose ERM sample complexity and proper learning sample complexity exhibit quadratic
dependence on 1

ϵ (Ben-David and Urner, 2014; Ben-David and Ben-David, 2011).
Interestingly, whether the proper learning sample complexity exhibits a 1

ϵ or 1
ϵ2

dependence
hinges on the relatedness between the two classes rather than merely on the complexity of the source
class (one might expect that a more complex source class corresponds to a more challenging learning
problem).

It has been shown that proper learning can require quadratic dependence on 1
ϵ even if the

true labeling of the distribution is known to the learner (Ben-David and Ben-David, 2011). This
corresponds to comparative learning with a source class that is a singleton.

With the following definition and theorem we provide a sufficient condition for quadratic
dependence in benchmark-proper comparative learning setting. We show that they are induced by the
following relatedness parameter, which we term the mutual star dimension of source and benchmark
class. It is closely related to the hollow star number (Bousquet et al., 2020). For a hypothesis h and a
set K, let h|K be the restriction of h to K. Similarly, for a hypothesis class H, let H|K be a class
including hypotheses from H restricted to K.

Definition 9 (Mutual Star Dimension) A mutual star of size k for a pair of classes S,B ⊆ ỸX

consists of a set of k + 1 points K = {x1, . . . , xk+1} ⊆ X , s ∈ S and b1, . . . , bk+1 ∈ B with the
following properties:

• s|K is a total function,

• s|K is not realizable by B|K , and

• s(xi) ̸= bi(xi) and s(xj) = bi(xj) for each i, j ∈ [k + 1] with j ̸= i.

We define the mutual star dimension of (S,B), denoted by s(S,B), to be size of the smallest mutual
star of this pair, if at least one such star exists. Otherwise, the mutual star dimension is defined to be
s(S,B) = ∞.

Theorem 10 For any pair of hypothesis classes (S,B), with finite mutual star dimension s(S,B) =
k, npropS,B (ϵ, δ) = Ω( 1k

1
ϵ2
log(1δ )).

Proof Fix 0 < ϵ < 1
k+1 and 0 < δ < 1

4 . Consider a mutual star of size k with parameters
K = {x1, . . . , xk+1} ⊆ X , s ∈ S and b1, . . . , bk+1 ∈ B as defined in Definition 9. Consider a set
of k + 1 distributions whose support lies in K and are defined as follows: Pi(xi) =

1+ϵ
k+1 − ϵ and

Pi(xj) =
1+ϵ
k+1 for all i, j ∈ [k + 1] with j ̸= i. Then as s is not realizable by the benchmark class,

OPTi = infb∈B LPi(b) =
1+ϵ
k+1 − ϵ which is attained by bi. On the other hand, if the learner outputs

any other hypothesis in B that differs with s on any point other than xi, it will occur loss of at least
1+ϵ
k+1 which is bigger than OPTi + ϵ and means the learner is not a valid comparative learner. Thus,
if the adversary picks the distribution uniformly random between Pi’s, a successful learner must find
out which point xi has the smallest mass. We can thus reduce the weighted dice problem with k sides
to this learning problem, and the sample complexity of this problem has been shown to be lower
bounded by Ω( 1k

1
ϵ2
log(1δ )) (Theorem 2 by Ben-David and Ben-David (2011)).

The following simple example illustrates the phenomenon.

9
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Example 1 Consider a domain containing two points X = {x0, x1}, a source class S = {h01},
and benchmark class B = {h00, h11}, where the index of the function indicates which labels the
function assigns to the two points. The set K = X , s = h01 and b1 = h00, b2 = h11 form a mutual
star of size 1 and thus s(S,B) = 1. Now consider the class of distributions that are realizable by the
source (thus label x0 with 0 and x1 with 1) and assign probability weights 1

2 ± ϵ to the two points,
for all ϵ > 0. A benchmark proper learner then has to estimate which of the two points has heavier
probability weight, in order to choose the optimal classifier among {h00, h11}. The proper learning
problem over this set of distributions thus reduces to estimating the bias of a coin flip, which is known
to require sample sizes of Ω(1/ϵ2) (Anthony and Bartlett, 2002).

4. General Comparative Learning

We now consider the general comparative learning setting, where no properness requirement is
imposed. We start by again noting that both linear and quadratic dependence in the error parameter
1
ϵ can occur even in the case of total binary classes: as noted above, the case where source and
benchmark coincide, S = B, yields sample complexity ngenS,B(ϵ, δ) = Θ̃(vc(B)+log(1/δ)

ϵ ) in the
realizable case (see Theorem 22 in Appendix A). The case where the source consists of all binary
functions, S = {0, 1}X corresponds to agnostic PAC learning with deterministic labels. For binary
total classes it has been shown that this setting has sample complexity with quadratic dependence
Ω(1/ϵ2) if and only if the hypothesis class has infinite diameter (Ben-David and Urner, 2014). The
diameter diam(H) of a total hypothesis class H is defined to be the largest set on which two functions
from the class disagree:

diam(H) = sup{k ∈ N | ∃U ⊆ X , |U | = k, ∃h1, h2 ∈ H such that h1(x) ̸= h2(x)∀x ∈ U}

Thus, for the benchmark class B = {h0, h1} containing only the constant 0 and constant 1 functions
(or any benchmark class including {h0, h1}), the comparative learning sample complexity with
source S = {0, 1}X (or any source class that shatters arbitrarily large sets) is ngenS,B(ϵ, δ) = Ω(1/ϵ2).

We start by generalizing some of the results for agnostic learning under deterministic labels to
partial classes to derive more fine grained bounds for comparative learning of partial classes.

4.1. Agnostic learning with deterministic labels for partial classes

We start by extending the notion of diameter to partial hypothesis classes. Recall that for a partial
hypothesis h ∈ ỸX , we define the support of h to be the subset of the domain, where h assigns
labels, that is supp(h) = {x ∈ X | h(x) ∈ Y}.

Definition 11 (Diameter and joint diameter for partial classes) Let H ⊆ ỸX be a partial binary
hypothesis class. We define the diameter of the partial class as

diam(H) = sup
h,h′∈H

|{x ∈ supp(h) | h(x) ̸= h′(x)}|.

We further define the joint diameter of the partial class as

diam′(H) = sup
h,h′∈H

|{x ∈ supp(h) ∩ supp(h′) | h(x) ̸= h′(x)}|.

10
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Note that for any binary partial class H we have vc(H) ≤ diam′(H) ≤ diam(H) where VC-
dimesion of a partial class, denoted by vc(H), is defined in Appendix A. In case H is a total class,
the two latter notions of diameter coincide and equal the diameter for total classes as defined above.

We will now show that bounded diameter implies a fast rate, Õ(1ϵ ) while infinite joint diameter
implies a slow rate of Ω( 1

ϵ2
)

Theorem 12 Let H ⊆ ỸX be a partial hypothesis class with finite diameter diam(H) = d < ∞.
Then the sample complexity of agnostically PAC learning H under deterministic labels is upper
bounded by

O(
d

ϵ
[log(

d

ϵ
) + log(

1

δ
)])

Proof Let h0 ∈ H be an arbitrary function in the hypothesis class. Similar to the proof of
Theorem 9 in Ben-David and Urner (2014), we consider the following learner A: given a sample
S = ((x1, y1), (x2, y2), . . . (xn, yn)) the learner outputs a classifier f = A(S) with f(x) = yi in
case x = xi for some i ∈ [n] and f(x) = h0(x) otherwise. Note that this is not a proper learner for
the class H (even if H is a total class).

Now consider any deterministic distribution P over X × Y and let h∗ ∈ H be the hypothesis
that achieves the approximation error of the class, that is LP (h

∗) = optP (H). A sample of size
O(dϵ [log(

d
ϵ ) + log(1δ )]) contains every point with mass at least ϵ

d with probability more than 1− δ.
To see this, note that the probability of a point with mass at least ϵ

d not appearing in a sample of size
m is upper bounded by (1− ϵ

d)
m ≤ exp(−m ϵ

d). There are at most d
ϵ such points, thus, probability

that at least one of them does not appear in the sample is upper bounded by d
ϵ exp(−m ϵ

d) by a union
bound. Setting this to be less than δ gives the desired results. We now condition the rest of the proof
on this event and show that the learner achieves error at most LP (f) ≤ optP (H) + ϵ (the failure
probability is thus bounded by δ as required).

Since the distribution P is deterministic, the classifier f = A(S) will not make any mistake on
points from S. Further, due to the finite diameter, outside of the sample the classifier f disagrees
with h∗ on at most d = diam(H) points from the support supp(h∗) of the optimal classifier (since f
classifies according to the default function h0 ∈ H on these points). As we assumed that the sample
contained all points with probability mass at least ϵ/d, the d points on which f and h∗ disagree have
joint mass at most d · ϵ/d = ϵ. This implies LP (f) ≤ LP (h

∗) + ϵ, which completes the proof.

We now show that infinite joint diameter implies a slow rate for learning under deterministic labels:

Theorem 13 Let H ⊆ ỸX be a partial hypothesis class with infinite joint diameter diam′(H) = ∞.
Then the sample complexity of agnostically PAC learning H under deterministic labels is lower
bounded by Ω

(
1
ϵ2

)
.

Proof Since diam′(H) = ∞, for any ϵ > 0, there exist two hypotheses h0, h1 ∈ H and a set U with
cardinality Ω( 1

ϵ3
) such that U ⊆ supp(h0) ∩ supp(h1) and h0(x) ̸= h1(x) for all x ∈ U . We now

consider the set of all label-deterministic distributions P over X ×Y with marginal support included
in U , that is supp(PX ) ⊆ U . Learning the class H with respect to this set distributions requires at
least as many samples as learning the smaller class {h0, h1}. Thus, by Lemma 3 and Remark 5 in
Ben-David and Urner (2014), restated in Lemma 23 in the Appendix, and noting that restrictions of
h0 and h1 to U are total hypotheses, the sample complexity is lower bounded by Ω

(
1
ϵ2

)
.

11
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4.2. Fast and slow rates in general comparative learning

We now use the results from the previous section to derive novel bounds for the comparative learning
scenario. We state out main results in this section for the case where the source and benchmark are
both partial binary classes, but in Remark 18, we discuss how they can be generalized for general
label spaces. As in the original work on the comparative setting, we will employ the agreement class
of source and benchmark.

Definition 14 (Agreement Class, due to Hu and Peale (2023)) For two (partial) hypotheses s
and b, we define their agreement hypothesis as follows:

as,b(x) =

{
y s(x) = b(x) = y ∈ Y
⋆ otherwise

Furthermore, for two (partial) hypothesis classes S and B, their agreement hypothesis class is
defined as AS,B = {as,b | s ∈ S, b ∈ B}.

Note that the agreement class is a partial class (except for degenerate cases) even if both S and B
are total classes. It has been shown that the VC dimension of the agreement class coincides with
the mutual VC dimension of the two involved classes, vc(AS,B) = vc(S,B), and that any agnostic
learner for the agreement class comparatively learns source and benchmark in the sense of Definition
1 (Hu and Peale, 2023, Lemma 8, p. 72:18). Combining this with our upper bound in Theorem 12,
and known sample complexity bounds for learning partial classes in the realizable case, yields:

Theorem 15 Let S , B be two partial binary classes, and d = min {vc(S),diam(B), diam(AS,B)} .
Then the sample complexity of comparatively learning the pair (S,B) is upper bounded by

ngenS,B(ϵ, δ) = Õ

(
d+ log 1/δ

ϵ

)
.

Proof If the source has finite VC dimension, then the sample complexity of learning this partial class
in the realizable case is upper bounded by Õ(vc(S)+log 1/δ

ϵ ) (Alon et al., 2021), and realizably learning
the source class satisfies the success criterion of comparative learning. Similarly, if the agreement
class or the benchmark class have finite diameter, we can learn these classes with sample complexity
Õ(

diam(AS,B)+log 1/δ
ϵ ) and Õ(diam(B)+log 1/δ

ϵ ) respectively, and in those cases the resulting learner
satisfies the success criterion for comparative learning. Thus, the sample complexity of comparatively
learning (S,B) will be determined by the sample complexity of learner that achieves smallest sample
complexity among these three.

One might ask how the three dimensions that play a role in Theorem 15 relate to each other. In
Example 4, in Appendix B, we show that each of them can be finite while the other two are infinite.
Finally, we identify a general condition which yields sample complexity growing quadratically in 1

ϵ .

Definition 16 (Mutual VC-Diameter) The mutual VC-Diameter of a pair of partial classes (S,B)
is defined as follows:

vcdiam(S,B) = sup{n ∈ N | ∃U ⊆ X , |U | = n,S VC-shatters U, and diam′(B |U ) = n}

12
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Theorem 17 If vcdiam(S,B) = ∞, the comparative sample complexity is ngenS,B(ϵ, δ) = Ω( 1
ϵ2
).

Proof This bound follows directly from the quadratic lower bound of Theorem 13.

Remark 18 The result of Theorem 15 can be generalized to any label space if we replace vc(S)
by a dimension that characterizes PAC learning of S in the realizable setting for that label space.
Theorem 17 can be generalized to any label space if we replace VC-shattering in Definition 16 with
the following: for all A ⊆ U , there exist s ∈ S such that s(x) = b0(x) for x ∈ A and s(x) = b1(x)
for x ∈ U\A where b0, b1 ∈ B and b0(x) ̸= b1(x) for x ∈ U .

5. Conclusion

We have provided novel upper and lower bounds for the comparative learning for both the benchmark-
proper and the general learning setting. Distinguishing between these two has shown that there is
a more varied and nuanced landscape of learning rates than what was known before. We note that
while we have shown that both linear and quadratic dependence on 1

ϵ occur under general conditions
in both proper and general comparative learning, and have provided some sufficient conditions for
these, we currently lack a full characterization of the rates. We hope that our work will inspire further
investigations into this framework.
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Appendix A. Background Definitions and Concepts

Definition 19 (PAC Learner (Valiant, 1984; Shalev-Shwartz and Ben-David, 2014)) We say that
a learner A is an (agnostic) PAC learner for hypothesis class H if for every ϵ, δ > 0, there is a
sample-size n(ϵ, δ) such that, for all n ≥ n(ϵ, δ), and all distributions P we have

Pr
S∼Pn

[LP (A(S)) ≤ optP (H) + ϵ] ≥ 1− δ.

We call A a PAC learner for H in the realizable case if the above requirement holds restricted to all
distributions P with with optP (H) = 0. If such a learner exists, the class H is called PAC learnable.
The learner is called a proper PAC learner if it always outputs a function from H (and the class H is
then called properly PAC learnable).

It is well known that for total binary hypothesis classes, PAC learnability is equivalent to finiteness
of the VC dimension of the class (Vapnik and Chervonenkis, 1971; Shalev-Shwartz and Ben-David,
2014).

Definition 20 (VC dimension) A set U = {u1, . . . , ud} ⊆ X is shattered by a total binary hypoth-
esis class if H|U = {0, 1}|U |, where H|U = {

(
h(u1), . . . , h(ud)

)
: h ∈ H}. The VC dimension of

H, denoted by vc(H), is defined as the maximum cardinality of a set that is shattered by H. If H
shatters sets of arbitrary size, vc(H) = ∞.

Before stating the main results of PAC learning for binary hypothesis classes, we should state the
definition of uniform convergence which plays an important role. It is easy to see any hypothesis
class that satisfies the uniform convergence property is PAC learnable by any ERM (see, for example,
Section 4.1 in Shalev-Shwartz and Ben-David (2014))

Definition 21 (Uniform Convergence, Shalev-Shwartz and Ben-David (2014)) We say a hypoth-
esis class H satisfies the uniform convergence property, if there exists a function nUC : [0, 1]2 → N
such that for all ϵ, δ > 0 and for all distributions P , samples S ∼ Pn with n ≥ nUC(ϵ, δ) satisfy
|LP (h)− LS(h)| < ϵ for all h ∈ H simultaneously, with probability more than 1− δ over samples.

Theorem 22 (Theorem 6.7, 6.8 in Shalev-Shwartz and Ben-David (2014)) The fundamental the-
orem of binary classification
For any binary total hypothesis class H the followings are equivalent.

• vc(H) < ∞.

• H satisfies the uniform convergence property.

• H is agnostically PAC learnable with sample complexity Θ(
vc(H)+log( 1

δ
)

ϵ2
).

• H is realizably PAC learnable with sample complexity Θ̃(
vc(H)+log( 1

δ
)

ϵ )

• H any ERM is a PAC learner (both in the agnostic and in the realizable setting) with sample
the same sample complexity up to logarithmic factors.
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Alon et al. (2021) extended the definition of VC dimension for partial hypothesis classes.
The definition is the same as above with the modification that a set U is shattered if H|U ⊇
{0, 1}|U |, meaning that H can produce all binary patterns on U . They show that VC dimension
still characterizes PAC learnability both in the agnostic and in the realizable setting. They show the

sample complexity of agnostic learning is Θ̃(
vc(H)+log( 1

δ
)

ϵ2
) and the sample complexity of realizable

learning is Θ̃(
vc(H)+log( 1

δ
)

ϵ ) (Please refer to Appendix C in Alon et al. (2021) for more details). It is
worth noting that they achieve their results using an improper algorithm and show there are learnable
partial classes that cannot be learned by a proper learner. This is in contrast to the results for total
classes where any learnable class can be learned by any ERM.

Ben-David and Urner (2014) studied the agnostic learning of binary classes when distributions
have deterministic labels. Here we restate the following lemma from Ben-David and Urner (2014),
which we use in proof of Theorem 13.

Lemma 23 (Essentially Lemma 3 in Ben-David and Urner (2014)) Let 0 < ϵ < 1
4 and 0 < δ <

1
32 . Let H be a hypothesis class defined on X with |X | ≥ 1

ϵ3
such that there exists two hypotheses h0

and h1 in H that disagree on X . Then (ϵ/2, δ)-PAC learning this class in the agnostic setting with
deterministic labels requires Ω( 1

ϵ2
) samples.

Note that Lemma 23 was originally proved for hypothesis classes that contain the constant all 1 and
all 0 functions. However, as the authors in Ben-David and Urner (2014), the proof can be generalized
to classes that contain two hypotheses that disagree everywhere. This can be proven by simply
adapting the current proof to set of distributions that label (1/2 + ϵ)-fraction of domain according to
h0 and the rest according to h1 or vice versa.

The VC dimension and the above results on sample complexity of PAC learning have been
generalized to also work for multiclass classification. Natarajan (1989) introduced two dimension
referred to as the Natarjan dimension (Definition 24) and the Graph dimension (Definition 25), and
showed they give lower bound and upper bound on sample complexity of multiclass classification,
respectively. Ben-David et al. (1995) later showed that when label space is finite, the Natarjan
dimension also gives an upper bound. Daniely et al. (2015) showed that the ERM sample complexity
of multiclass learning is characterized by the graph dimension.

Definition 24 (Natarjan dimension Natarajan (1989)) A set U ⊆ X is Natarjan-shattered by a
class H ⊆ YX if for any A ⊆ U , there exist two hypotheses f and g in H such f(x) = g(x) for
all x ∈ A and f(x) ̸= g(x) for all x ∈ U\A. The Natarjan dimension of a class H is the size of
the largest set that is Natarjan-shattered by H and is denoted by dN (H). We say dN (H) = ∞ if H
Natarjan-shatters sets with arbitrarily large cardinality.

Definition 25 (Graph dimension Natarajan (1989)) A set U ⊆ X is Graph-shattered by a class
H ⊆ YX if there exists a hypothesis g ∈ YX such that for any A ⊆ U , there exist h ∈ H such that
h(x) = g(x) for all x ∈ A and h(x) ̸= g(x) for all x ∈ U\A. The Graph dimension of a class H is
defined as the size of the largest set that is Graph-shattered by H and is denoted by dG(H). If H
Graph-shatters sets with arbitrary size, then we defined dG(H) = ∞.

We conclude this section by defining the mutual VC dimension of two hypothesis classes defined
by Hu and Peale (2023).
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Definition 26 (Mutual VC Dimension) A set U ⊆ X is said to be mutually shattered by (H,H′) if
it is VC-shattered by both H and H′. The mutual VC dimension of (H,H′), denoted by vc(H,H′), is
the maximum cardinality of a set that is mutually shattered by (H,H′). If (H,H′) mutually shatter
sets of arbitrary size, vc(H,H′) = ∞.

Appendix B. Examples

Example 2 When both source and benchmark are total, binary classes, S,B ⊆ {0, 1}X , we have
d→G (S,B) = vc(B). Thus, by Theorem 4, any pair (S,B) of total binary classes is benchmark-ERM
comparative learnable if and only if B is agnostic PAC learnable.

Example 3 If S = {h0} (the source contains only the all-0 classifier) and B = {1, 2}X , then
d→G (S,B) = 0. However, the Natarjan dimension and the usual Graph dimension of the benchmark
are both infinite, i.e., dN (B) = ∞ and dG(B) = ∞. Please refer to Definition 24 and Definition 25
for definitions of these two dimensions. This, again by Theorem 4, implies that as soon as we allow
more than two labels, benchmark-ERM comparative learning can be easier than agnostic PAC
learning of the benchmark.

Example 4 For y ∈ {0, 1, ⋆}, let hy denote a function that labels every point in the domain with y.

• Let S = {h0} and B = {h0, h1} so that AS,B = {h0, h⋆}. Then vc(S) = 0 < ∞, but
diam(B),diam(AS,B) = ∞.

• Let S = {0, 1}X and B = {h0} so that AS,B = {0, ⋆}X . Then diam(B) = 0 < ∞, but
vc(S), diam(AS,B) = ∞.

• Let X = X1 ∪ X2 where X1 and X2 are disjoint and both have an infinite cardinality. Let S
be such that S|X1 = {0, 1}X1 and S|X2 = {h1}. Moreover, let B be such that B|X1 = {h⋆}
and B|X2 = {0, ⋆}X2 . In this case AS,B = {h⋆} and thus diam(AS,B) = 0 < ∞. However,
vc(S), diam(B) = ∞.

Appendix C. Full Proofs

Proof [Proof of Lemma 5] We need to show that there exist benchmark-ERM learners that don’t
succeed in the sense of Definition 1 with less than the stated sample sizes. Let d = d→G (S,B) and
let U = {x1, . . . , xd} be a set that is one-sided graph-shattered by (S,B) and also let s∗ ∈ S be
the total function that witnesses this shattering. By definition, this means there exists b∗ ∈ B such
that s∗(x) = b∗(x) for all x ∈ U . Let the source function to be equal to s∗ on U . Since s∗ = b∗ on
U this also means infb∈B Pr[b(x) ̸= s∗(x)] = 0 for all distributions whose support is restricted to
U . Consider a “bad” benchmark-ERM learner that for sample points V ⊆ U , returns b ∈ B such
that b(x) = s∗(x) on V and b(x) ̸= s∗(x) on U\V . Such b exists due to the definition of shattering.
Also, note that this is a valid ERM since it has error 0 on samples. Define a distribution on U as
follows:

Pr[x1] = 1− 2ϵ,Pr[xi] =
2ϵ

d− 1
∀i ∈ [d]\{x1}

We now prove the lower bound by showing that the bad benchmark-ERM needs to see as many
samples as the maximum of d−1

6ϵ and 1
4ϵ log(

1
δ ) which is greater than their average, d−1

12ϵ + 1
4ϵ log(

1
δ ).
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Let m be the size of the sample and let ϵ < 1
12 and δ < 1

100 . We first show m > d−1
6ϵ . To see this,

suppose m ≤ d−1
6ϵ . Then using a simple Chernoff’s bound, it is not hard to see that the sample points

will be equal to x1 except for at most d−1
2 of them with probability more than 1

100 > δ. However, if
this happens, since the learner has not seen at least d− 1− d−1

2 = d−1
2 light points, its probability of

error will be at least d−1
2

2ϵ
d−1 = ϵ. This means the probability of failure is more than δ and thus the

algorithm cannot (ϵ, δ)-PAC learn. To see that m > 1
4ϵ log(

1
δ ), note that with probability (1− 2ϵ)m,

the sample will contain only x1. This means the learner will make an error on all light point which
have mass 2ϵ, which is a failure. Thus, we need to ensure this probability is less than δ. However, if
m ≤ 1

4ϵ log(
1
δ ), then (1− 2ϵ)m ≥ e−4ϵm ≥ δ.

Proof [Proof of Lemma 7] Here we assume d is even and for odd d we can replace d with d− 1 in
the rest of the proof. Let Xd = {x1, . . . , xd}, X = {x0} ∪ Xd. Let S = {h1} consists of only the
all 1 function and let B = {1U∪{x0} : U ⊆ Xd, |U | = d/2} consists of all functions that label half
the domain and x0 with 1 and the rest with 0. Here we have used 1U to denote a function defined as
1U (x) = 1 [x ∈ U ]. It is not hard to see that d→G (S,B) = d/2. Fix any benchmark-proper algorithm
and let m be its sample complexity. Fix ϵ > 0 and 0 < δ ≤ ϵ. Let ϵ′ = 2ϵ

1−exp(−1/24) . For U ⊆ Xd

with |U | = d/2, let PU be a distribution on X such that PU (x0) = 1 − 4ϵ′ and PU (x) =
8ϵ′

d for
x ∈ U . First note that with probability (1− 4ϵ′)m all samples equal x0. In this case, for any learner
that outputs a hypothesis corresponding U then there exists a distribution PX\U which makes the
error of learner 1. Thus, we need to make sure the probability of this event is less than δ. Thus,

we must have e−8mϵ′ ≤ (1− 4ϵ′)m < δ which means m = Ω(
log( 1

δ
)

ϵ′ ) = Ω(
log( 1

δ
)

ϵ ). We now show
m ≥ d

32ϵ′ = Ω(dϵ ). Assume m < d
32ϵ′ .

Define Pk(A) := {E ⊆ A : |E| = k}. For a sequence SX , let set(SX ) denote its unique
elements. We choose U ∈ Pd/2(Xd) uniformly and get m samples from PU . We would like to lower
bound the following:

EU∼Unif(Pd/2(Xd))ESX∼Pm
U
[LPU

(A(SX ))] (1)

We can decompose U in the above into two parts. The part that is present in our sample and the
rest of it. The number of sample points that fall into Xd are distributed as N ∼ Bin(m, 4ϵ′). Then
the samples are distributed as SX ∼ Unif(XN

d ) where we have ignored the samples that are x0 for
simplicity. The rest of the support is chosen uniformly from rest of the domain. However, note that
the sample is a sequence and not a set. Thus, only l = |set(SX )| ≤ N points have been chosen so
far. Thus, the rest of the support is chosen as A ∼ Unif(Pd/2−l(Xd\set(SX ))). Therefore, we can
equivalently write 1 in the following form.

ENESXEA[LPSX∪A
(A(SX ))] (2)

≥ENESXEA[LPSX∪A
(A(SX ))|N ≤ d/4] Pr[N ≤ d/4] (3)

Using a Chernoff bound, we can see that Pr[N ≥ d/4] ≤ exp(− d
24) ≤ exp(− 1

24) for m ≤ d
32ϵ′ . Fix

any N ≤ d/4 and SX ∈ XN
d . Note that |set(SX )| ≤ N ≤ d/4. Let 1{x0}∪V = A(SX ). W.l.o.g. we

assume V = set(SX ) ∪ B because the learner makes a mistake on any point in the sample that is
not in its output set. Let r = d/2− |set(SX )| be the size of the rest of the support which satisfies
r ≥ d/4. Then EA|A ∩ B| = E

∑
b∈B 1b∈A = rPr[b ∈ A] = r

2 and EA[A\B] = r
2 . Therefore,

EA[LPSX∪A
(A(SX ))] =

r
2
4ϵ′

d/2 ≥ ϵ′. Putting it all together we have:

EU∼Unif(Pd/2(Xd))ESX∼Pm
U
[LPU

(A(SX ))] ≥ (1− e−
1
24 )ϵ′ = 2ϵ
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Therefore, there exists U such that ESX∼Pm
U
[LPU

(A(SX ))] ≥ 2ϵ. Thus, PrSX∼Pm
U
[LPU

(A(SX )) >

ϵ] ≥ ϵ ≥ δ, which contradicts (ϵ, δ)-comparative learning. Thus, m = Ω(
d+log( 1

δ
)

ϵ ).

Appendix D. Additional ERM Bounds in Terms of the Mutual Graph Dimension

In this section we define a new dimension which gives us upper bounds for the sample complexity of
both source-ERM and benchmark-ERM. To do this, we first define an agreement loss class. Note
that this is different from what is defined as the agreement class by Hu and Peale (2023).

Definition 27 (Agreement Loss Class) For classes S,B ⊆ ỸX and for any s ∈ S and b ∈ B,
define the agreement function as,b : X × Ỹ → {0, 1} as follows:

as,b(x, y) =

{
0 s(x) = b(x) = y ∈ Y
1 otherwise

(4)

Also let AS,B = {as,b : s ∈ S, b ∈ B} denote the agreement class.

Next we define the mutual graph dimension of (S,B). As we will show this dimension controls
VC dimension of the agreement loss class.

Definition 28 (Mutual Graph Dimension) A set U ⊆ X is mutually G-shattered by (S,B) if there
exists a total function g : U → Y such that for all V ⊆ U , there exists s ∈ S and b ∈ B such that:

∀x ∈ V : s(x) = b(x) = g(x)

and
∀x ∈ U\V : s(x) ̸= g(x) ∨ b(x) ̸= g(x)

The mutual graph dimension of (S,B), denoted by dG(S,B), is defined as the maximum size of a set
that can be mutually G-shattered.

Lemma 29 For any two hypothesis classes (S,B), dG(S,B) = vc(AS,B)

Proof The proof is straightforward if you note that:

s(x) = b(x) = g(x) if and only if as,b(x, g(x)) = 0,

and equivalently,

s(x) ̸= g(x) ∨ b(x) ̸= g(x) if and only if as,b(x, g(x)) = 1

Define (U, g(U)) := {(x, g(x)) : x ∈ U}. Then a set U is mutually G-shattered by (S,B) with g as
a witness iff (U, g(U)) is V C-shattered by AS,B.

Now we are ready to see how we can convert a proper learner for agnostic PAC learning of the
agreement loss class to a benchmark-proper or source-proper comparative learner.
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Theorem 30 A pair (S,B) can be both benchmark-properly and source-properly learned in the
comparative setting if dG(S,B) = vc(AS,B) < ∞. Furthermore, the sample complexity of learners

achieving this task is O(
dG(S,B) + log(1δ )

ϵ2
).

Proof Fix any ϵ, δ > 0, and any distribution P on X × Y realizable with respect to S . First, we can
see that for any as,b we have:

L(as,b) := Pr[as,b(x, y) ̸= 0] = Pr[s(x) ̸= y ∨ b(x) ̸= y] (5)

Note that there does not necessarily exist a hypothesis as,b with L(as,b) = 0. However, since

vc(AS,B) < ∞, by Theorem 22, we can learn AS,B with m = O(
vc(AS,B)+log( 1

δ
)

ϵ2
) by a proper

algorithm A. Let Sm ∈ ((X × Y)× {0})m. Let as′,b′ = A(Sm).

Pr[b′(x) ̸= y] ≤ Pr[s′(x) ̸= y ∨ b′(x) ̸= y]

= Pr[as′,b′(x, y) ̸= 0]

≤ inf
as,b

Pr[as,b(x, y) ̸= 0] + ϵ

= inf
s∈S,b∈B

Pr[s(x) ̸= y ∨ b(x) ̸= y] + ϵ

= inf
b∈B

Pr[b(x) ̸= y] + ϵ

The inequality is due to the PAC guarantees of A and the last equality follows from the fact that P is
realizable with respect to S . The same calculations are true if we replace b′ with s′ in the LHS.

Corollary 31 A pair (S,B) can be comparatively PAC learned by any source-ERM or benchmark-
ERM if dG(S,B) = vc(AS,B) < ∞. Furthermore, the sample complexity of those learners is

O(
dG(S,B) + log(1δ )

ϵ2
).

Proof Note that as′,b′ ∈ argminas,b
1
n

∑n
i=1 1[as,b(x, y) ̸= 0] if b′ ∈ argminb∈B

1
n

∑n
i=1 1[b(xi) ̸=

yi] and s′ ∈ argmins∈S
1
n

∑n
i=1 1[s(xi) ̸= yi]. Thus, if b′(s′) is an empirical risk minimizer among

B(S , respectively), then as′,b′ is an empirical risk minimizer among AS,B and thus is a proper learner
by Theorem 22. The results follow by the arguments in proof of Theorem 30.

Although the bound for benchmark-ERM is not tight as we already proved a similar upper bound
with the one-sided mutual graph dimension which is smaller than the mutual graph dimension, the
upper bound for source-ERM is new as such result is lacking.
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